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Semi-dissipative evolution eq.
Consider a linear evolution equation:

ẋ = Ax = −Bx = (J − R)x ,

J skew-adjoint, R self-adjoint.
. A = −B linear operator acting on Hilbert space H.
. A = −B semi-dissipative (R positive semidefinite) and a

unique steady state Ax∞ = 0 exists.
Motivating questions:
1. Optimal long-time decay estimate.

I Exponential decay: ‖x(t)− x∞‖ ≤ ce−µt‖x(0)− x∞‖, t > 0.
I (sharp) maximal rate µ > 0 and minimal c ≥ 1 (uniform in x(0)).

2. Short-time decay estimate.
I ‖x(t)− x∞‖ ≤ (1− ctα +O(tα+1))‖x(0)− x∞‖, t ∈ [0, ε).
I Relation to spectral properties of operator A = −B.
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Classical analysis via coercivity

Definition
Consider evolution equation ẋ = Ax = (−B)x = (J − R)x . B is
coercive if 〈x ,Bx〉 ≥ κ‖x‖H for all x ∈ H and some κ > 0.

Classical: If B is coercive then solution exponentially decays (is
asymptotically stable).
But this is not necessary:

Example: A =

[
−1 1
−1 0

]
∈ C2,2, Evs 1

2(−1±
√

3i), decay rate 1
2 .

However, B = −A = −(J − R) is not coercive, since R is only
semidefinite.
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Analysis via Hypocoercivity

. Notion hypocoercivity was introduced for ẋ = −Bx , x(0) = x0

on Hilbert space H, where linear operator B is not coercive,
but solutions still exhibit exponential decay in time.

. More precisely, for hypocoercive operators A = −B, there
exist constants λ > 0 and c ≥ 1, such that

‖e−Btx0‖H̃ ≤ c e−λt‖x0‖H̃ for all x0 ∈ H̃ , t ≥ 0 ,

where H̃ is Hilbert space, densely embedded in (ker B)⊥ ⊂ H.
. C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202, 2009.
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Stability analysis for linear ODEs

Classical characterization via spectrum of A ∈ Cn,n..

Theorem
Consider a constant coefficient system ẋ = Ax with A ∈ Cn,n.
. It is asymptotically stable if all eigenvalues of A have negative

real part.
. It is stable if all evs of A have nonpositive real part and all evs

with real part 0 are semisimple.

However, Jordan structure is hard to compute numerically.

One may use pseudospectra or employ semi-dissipativity.
. L.N. Trefethen and M. Embree. Spectra and Pseudospectra. Princeton University Press, 2020.
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Lyapunov characterization of stability

. The continuous-time system is stable if there exists a solution
P > 0 of the Lyapunov inequality

AH
d P + PAd ≤ 0.

. The continuous-time system is asymptotically stable if there
exists a solution P > 0 of the strict Lyapunov inequality

AH
d P + PAd < 0.

Open question: Which solution of the Lyapunov inequality.
Optimize a robustness measure?

8 / 46



Stability, dissipativity and controllability

Lemma (Achleitner, Arnold, M. 2021)
Let J,R ∈ Cn,n with JH = −J and RH = R ≥ 0. T.f.a.e.

1. There exists integer m ≥ 0 such that rank[R, JR, . . . , JmR] = n .

2. There exists integer m ≥ 0 such that Tm :=
∑m

j=0 J jR(JH)j > 0 .

3. No eigenvector of J lies in the kernel of R.

4. rank[λI − J,R] = n for every λ ∈ C.

Moreover, the smallest possible m in 1. and 2. coincide.

. F. Achleitner, A. Arnold, and V. Mehrmann. Hypocoercivity and controllability in linear semi-dissipative ODEs and DAEs. Vol.
103, ZAMM, Zeitschrift f. Angewandte Mathematik und Mechanik, e202100171, 2021. http://arxiv.org/abs/2104.07619
https://doi.org/10.1002/zamm.202100171
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Hypercoercivity index

Definition
Let J,R ∈ Cn,n with JH = −J and RH = R ≥ 0.
The hypocoercivity index (HC-index) mHC(A) of A = J − R is the
smallest integer m such that

∑m
j=0 J jR(JH)j > 0. If m is finite

then we call A hypocoercive.

Is there a numerically feasible way to check hypocoercivity?
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Staircase form for J,R

Lemma
Let J = −JH , R = RH ∈ Cn,n . There exists unitary P, such that

PJPH =



J1,1 −JH
2,1 · · · 0 0

J2,1 J2,2 −JH
3,2

. . .
. . .

. . .
.
.
.

Jk,k−1 Jk,k −JH
k+1,k

.

.

.

.

.

.
. . .

. . .
. . .

Js−2,s−3 Js−2,s−2 −JH
s−1,s−2

0 · · · Js−1,s−2 Js−1,s−1 0
0 · · · 0 Jss



, PRPH =



R1 0
0 0
.
.
.

.

.

.
.
.
.

.

.

.
0 0



w. block sizes n1 ≥ · · · ≥ ns−1 ≥ ns ≥ 0, ns−1 > 0, R1 ∈ Cn1,n1 nonsingular. If R is nonsingular, then s = 2 and n2 = 0.
If R is singular, then s ≥ 3 and the matrices Ji,i−1, i = 2, . . . , s − 1, in the subdiagonal have full row rank and are of the form

Ji,i−1 =
[
Σi,i−1 0

]
, i = 2, . . . , s − 1,

with nonsingular matrices Σi,i−1 ∈ Cni ,ni .
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HC-index and staircase form

Lemma
Let A = J − R be a semi-dissipative matrix transformed to
staircase form. Then the matrix A is hypocoercive if and only
if ns = 0, i.e., the last row and last column in PJPH are absent,
and the HC-index of Ac is mHC = s − 2.

We can check hypocoercivity via staircase form and compute
HC-index in a numerically stable way.
BUT we need rank decisions in finite precision.
Perturbation theory for staircase form open problem.
Best to use structure of operator.
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Relation between concepts
B ∈ Cn×n x′ = −Bx is stable

[
9 −3
3 −1

]

λ1 = 0
λ2 = 8

[
1/2 −1
1 −1/2

]

λ± = ±i
√
3
2

B is hypocoercive

x′ = −Bx is asymptotically stable

[
19 −6
6 −1

]

λ1 = 1
λ2 = 17

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

BH ≥ 0

[
0 0
0 0

][
0 −1
1 0

]

λ± = ±i
−B is semi-dissipative

BH > 0
B is coercive

[
1 0
0 1

]

−B is dissipative

Figure: −B = A = J − R, BH = R: (hypo)coercive (pink), R ≥ 0 (blue),
and for which solutions of ẋ = Ax are stable (white).
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HC-index and short-time decay

Relation between short-time decay of ‖eAt‖2 and HC-index.

Theorem
Consider a semi-dissipative Hamiltonian ODE whose system
matrix A has finite HC-index. Its (finite) HC-index is mHC if and
only if

‖eAt‖2 = 1− cta +O(ta+1) for t ∈ [0, ε),

where c > 0 and a = 2mHC(A) + 1.

Open problem what happens between ε and the point when
asymptotic behaviour sets it?
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Example

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

‖eAt‖2
2

Figure: For the ODE with A =

[
−1 1
−1 0

]
, the squared propagator

norm (‖eAt‖22 ∼ 1− t3/6+O(t4) for t → 0+), (red line) and the squared
norms of a family of solutions (blue lines) are plotted. The squared
propagator norm is not continuously differentiable at t = 2π/

√
3, it is

the envelope of ‖x(t)‖22 for all solutions with ‖x(0)‖22 = 1.
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Discrete time systems
Stability of discrete time systems.
Classical characterization via Jordan canonical form of A ∈ Cn,n.

Theorem
Consider a constant coefficient system
xk+1 = Adxk , k = 0,1,2, . . . with Ad ∈ Cn,n.
. It is asymptotically stable if all eigenvalues of Ad are in the

open unit disk.
. It is stable if all evs of Ad are in the closed unit disk and all evs

on unit circle are semisimple.

However, Jordan structure is hard to compute numerically.

One may use pseudospectra or employ semi-dissipativity.
. L.N. Trefethen and M. Embree. Spectra and Pseudospectra. Princeton University Press, 2020.
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Lyapunov characterization of stability

. The discrete-time system is stable if there exists a solution
P > 0 of the discrete Lyapunov (Stein) inequality

AH
d PAd − P ≤ 0.

. The discrete-time systerm is asymptotically stable if there
exists a solution P > 0 of the discrete Lyapunov (Stein)
inequality

AH
d PAd − P < 0.

Open question: Which solution of the Lyapunov inequality.
Optimize a robustness measure?
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Semi-contractivity

Definition
Let σmax(Ad ) be the largest singular value (the spectral norm) of
Ad . We call Ad contractive if σmax(Ad ) < 1; and we call Ad

semi-contractive if σmax(Ad ) ≤ 1.
A matrix Ad is called hypocontractive if all eigenvalues of Ad

have modulus strictly less than one.

Consequently, a discrete-time system is asymptotically stable if
and only if the system matrix Ad is hypocontractive.
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Hypocontractivity and controllability.

Lemma
Let Ad ∈ Cn,n be semi-contractive. T.f.a.e.
. There exists an integer m ≥ 0 such that

rank[(I − AH
d Ad ),AH

d (I − AH
d Ad ), . . . , (AH

d )m(I − AH
d Ad )] = n .

. There exists an integer m ≥ 0 such that
Dm :=

∑m
j=0(AH

d )j(I − AH
d Ad )Aj

d > 0 .

. No eigenvector of Ad lies in the kernel of (I − AH
d Ad ).

. rank[λI − AH
d , I − AH

d Ad ] = n for every λ ∈ C, in particular for
every eigenvalue λ of Ad .

Moreover, the smallest m in first two conditions coincide.
This is controllability of the pair (AH

d , I − AH
d Ad ).

Similar result (in different notation) via observability, O. Staffans,
Well-posed linear systems, Cambridge Univ. Press, 2005.
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Hypocontractivity index

Definition
For a semi-contractive matrix Ad , we define the hypocontractivity
index or discrete HC-index (dHC-index) mdHC as the smallest
integer (if it exists) such that the second condition in the Lemma
holds. For semi-contractive matrices Ad that are not
hypocontractive we set mdHC =∞.

A semi-contractive matrix Ad is contractive iff mdHC = 0.
In operator theory (I − AH

d Ad )
1
2 is called the defect operator of Ad

and the closure of its image the defect space with its dimension
being called the defect index. The defect operator and its index
are a measure for the distance of an operator from being unitary.
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Norm decay

Theorem
Let Ad be semi-contractive with finite hypocontractivity index. Its
(finite) hypocontractivity index is mdHC if and only if

‖Aj
d‖2 = 1 for all j = 1, . . . ,mdHC ,and ‖AmdHC+1

d ‖2 < 1 .
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Polar decomposition
Polar decomposition is the discrete-time analogue of the additive
splitting of a matrix into its Hermitian and skew-Hermitian part.

Lemma (Polar decomposition)

Let Ad ∈ Cn,n.
(a) There exist positive semi-definite Hermitian matrices Pd ,Qd

and a unitary matrix Ud such that

Ad = PdUd = UdQd .

The factors Pd , Qd are uniquely determined and if Ad is
nonsingular, then Ud = P−1

d Ad = AdQ−1
d is unique..

(b) If Ad is real, then Pd , Qd and Ud may be taken to be real.

Ad with polar decomp. Ad = PdUd = UdQd is semi-contractive iff
spectra of Pd or Qd are contained in [0,1].
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Hypocontractivity via polar factors
Lemma
Let U be a unitary matrix, and H be a semi-contractive Hermitian
matrix. T.f.a.e.
. There exists an integer m ≥ 0 such that

rank[(I − H),UH(I − H), . . . , (UH)m(I − H)] = n .

. There exists an integer m ≥ 0 such that

D̂m :=
m∑

j=0

(UH)j(I − H)U j > 0 .

. No eigenvector of U lies in the kernel of I − H.

. rank[λI − UH , I − H] = n for every λ ∈ C, in particular for every
eigenvalue λ of UH .

Moreover, the smallest possible m in the first two conditions
coincide.
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Staircase form
Lemma (Staircase form for (U,H))
Let U be a unitary matrix, and H be a nonzero semi-contractive Hermitian matrix. Then there exists a unitary matrix P, such
that PHPH and PUPH are block upper Hessenberg matrices of the form

PUPH =



U1,1 U1,2 · · · · · · U1,s−1 0
U2,1 U2,2 U2,3 · · · U2,s−1 0

. . .
. . .

. . .
. . .

.

.

.
Us−2,s−3 Us−2,s−2 Us−2,s−1 0

0 · · · 0 Us−1,s−2 Us−1,s−1 0
0 · · · 0 Us,s



n1
n2
.
.
.

ns−2
ns−1

ns

,

P H PH =



H1 0 · · · · · · 0 0

0 In2 0 · · ·
.
.
.

.

.

.

.

.

. 0
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . . 0 Ins−1 0

0 0 · · · · · · 0 Ins


,

where n1 ≥ n2 ≥ · · · ≥ ns−1 ≥ ns ≥ 0, ns−1 > 0, and H1 = HH
1 ∈ Cn1,n1 is contractive. If H is contractive, then s = 2

and n2 = 0. If H is not contractive, then s ≥ 3, Ui,i−1, i = 2, . . . , s − 1, have full row rank and are of form
Ui,i−1 =

[
Σi,i−1 0

]
, i = 2, . . . , s − 1, with nonsingular matrices Σi,i−1 ∈ Cni ,ni .
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Relationship
Ad ∈ Cn×n

[
1 2
0 1

]

λ± = 1

xk+1 = Adxk is stable

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

σ1 = 3
2 +

√
5
2

Ad is hypocontractive

xk+1 = Adxk is asymptotically stable

[
0 2
0 0

]

λ± = 0
σ1 = 2

[
0 1
0 0

]

λ± = 0
σ1 = 1

AH
dAd ≤ I

[1]

Ad is semi-contractive

AH
dAd < I

[0]

Ad is contractive

Figure: Relation between matrices Ad which are (semi-)contractive,
hypocontractive and those for which the discrete-time system
xk+1 = Adxk is (asymptotically) stable, respectively. 25 / 46



Linear homogeneous DAEs
Linear differential-algebraic equation (DAE)
Eẋ = Ax = (J − R)x , E ,A ∈ Cn,n, J skew-adjoint, E ,R
self-adjoint.
The DAE is called semidissipative (or dissipative Hamiltonian) if
E ,R are positive semidefinite.

Theorem
Consider system Eẋ = Ax = (J − R)x with E ,A ∈ Cn,n

. It is asymptotically stable if the pair (E ,A) is regular
(det(λE − A) 6≡ 0), and all evs of λE − A have neg. real part.

. It is stable if (E ,A) is regular, all evs of A have non-positive
real part and all evs with real part 0 are semisimple.

Pseudospectra
. M. Embree and B. Keeler. Pseudospectra of matrix pencils for transient analysis of differential-algebraic equations. SIAM J.

Matrix Analysis and Applications 38, 1028-1054, 2017.
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Semidissipative DAEs
Theorem (Mehl/M./Wojtylak 2018)

Let E ∈ Cn,n and J = −JH ,R = RH ∈ Cn,n be such that R ≥ 0,
EH = E ≥ 0. Then the following holds for P(λ) = λE − (J − R).
1. If µ ∈ C is an eigenvalue of P(λ) then Re(µ) ≤ 0;
2. If ω ∈ R and µ = iω is an eigenvalue of P(λ) then µ is

semisimple. Moreover, if the columns of V ∈ Cn,k form a basis
of the deflating subspace associated with µ of λE − J , then
RV = 0.

3. Kronecker blocks at∞ are at most of size two.
4. The pencil λE − (J − R) is singular iff the kernels of the

matrices E , J, and R have a nontrivial intersection.

. Mehl, V. M., and Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM Journal Matrix
Analysis and Applications, Vol. 39, 489–1519, 2018.

. Mehl, V.M., Wojtylak. Distance problems for dissipative Hamiltonian systems and related matrix polynomials Linear Algebra
and its Application, 2021.
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Almost Kronecker form

Lemma
Consider a semi-dissipative DAE. Then there exist nonsingular
matrices L,Z such that

Ê := L E Z =:


E1,1 0 0 0 0

0 E2,2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Â := L A Z =:


0 0 0 I 0
0 A2,2 0 0 0
0 0 I 0 0
−I 0 0 0 0
0 0 0 0 0

 .

The two matrices are partitioned in the same way, with (square)
diagonal block matrices of sizes n1,n2,n3, n4 = n1,n5. If the
matrices E1,1 and E2,2 are present, then they are Hermitian
positive definite.
The Hermitian part of A2,2 is positive semidefinite.
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Hypocoercivity of DAEs

Definition
Consider a linear DAE system with a regular pencil λE − (J −R)
and the unitarily congruent DAE in staircase form. If the
underlying implicit ODE is present then the HC-index mHC

of λE − (J − R) is defined as the HC-index of the system
matrix (E1/2

2,2 )−1A2,2(E1/2
2,2 ), otherwise it is defined as 0. If the

HC-index is finite then the DAE is called hypocoercive.
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Short term behavior
Consider semi-norm ‖x(t)‖E = 〈x ,Ex〉 1

2 and let S(t) be the
evolution operator of the DAE Eẋ = Ax = (J − R)x with
E ,A ∈ Cn,n, J skew-adjoint, E ,R self-adjoint, semi-definite.

Theorem
Consider a semi-dissipative DAE with a regular, hypocoercive
pencil λE − (J − R), non-trivial dynamics, and consistent initial
condition x(0). Then its (finite) HC-index is mHC, if and only if

‖S(t)‖E = 1− cta +O(ta+1) for t ∈ [0, ε),

where c > 0 and a = 2mHC + 1, and the semi-norm is

‖S(t)‖E := sup
‖x(0)‖E =1,for consistent x(0)

‖x(t)‖E , t ≥ 0.
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Problem with semi-norm
For ε > 0, consider linear semi-dissipative DAE system with

E =




5 3 0 0
3 2 0 0
0 0 0 0
0 0 0 0


 , J =




0 1 1 ε
−1 0 1 0
−1 −1 0 0
−ε 0 0 0


 , R :=




0 0 0 0
0 −2 0 0
0 0 −1 0
0 0 0 0


 ,

It is in almost Kronecker form with n1 = n2 = n3 = n4 = 1.
For given y2(0) ∈ R, the solution is

y1(t) = 0, y2(t) = y2(0) e−t , y3(t) = −y2(0) e−t , y4(t) = −
3
ε

y2(0) e−t ,

and y4(0) = −3y2(0)/ε can be large for small ε > 0.
In contrast, the squared weighted semi-norm of this solution
satisfies ‖y(t)‖2

E = 2(y2(0))2e−2t for t ≥ 0.
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Equivalence Lemma
Lemma (Achleitner, Arnold, M., Nigsch 2023)
Let J = −J∗ ∈ B(H), 0 ≤ R = R∗ ∈ B(H). Consider conditions:

1. There exists m ∈ N0 ∪ {∞} s.t. Span(
⋃m

j=0 Im(J j
√

R)) = H.

2. There exists m ∈ N0 ∪ {∞} s.t.
⋂m

j=0 ker(
√

R(J∗)j) = {0}.

3. There exists m ∈ N0 ∪ {∞} such that ∀x ∈ H \ {0} ∃j = j(x) ≤ m if
m is finite or j = j(x) ∈ N if m =∞ s. t. 〈J jR(J∗)jx , x〉 > 0.

4. If a closed subspace V of kerR is invariant under J then V = {0}.

5. No eigenvector of J lies in the kernel of R.

Then the implications 1. ⇔ 2. ⇔ 3. ⇔ 4. ⇒ 5. hold.
The implication 5. ⇒ 4. holds if and only if dim ker R <∞.

. F. Achleitner, A. Arnold, V. M., E. Nigsch. Hypocoercivity in Hilbert spaces. http://arxiv.org/2307.08280
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Definition (Achleitner, Arnold, M. 2023)

Let H be a separable Hilbert space. For dissipative operators
A = J − R ∈ B(H), the hypocoercivity index (HC-index) mHC of A
is defined as the smallest integer m ∈ N0 (if it exists) such that

m∑

j=0

(A∗)jRAj ≥ κI

for some κ > 0.
Actually for bounded operators the HC-index can only be finite.
. F. Achleitner, A. Arnold, and V. M. Hypocoercivity in algebraically constrained partial differential equations with application to

Oseen equations. In revision. http://arxiv.org/2212.06631
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Staircase Form

Lemma
Let J = −J∗ ∈ B(H), R = R∗ ∈ B(H) with equal domains and
dim ker R <∞. Then there exists a direct sum decomposition
H =

⊕s
i=1Hi with s ≥ 2 and each Hi a (possibly zero) subspace

of H such that:
. dimHi <∞ for i = 2, . . . , s;
. with respect to this decomposition, J, R are operator matrices

of the same form as in the finite dimensional case.

If a nontrivial last block in the staircase form exists, then the
system is not hypocoercive. But in general the number of blocks
cannot be used to determine mHC.
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Short-time decay
Consider the semigroup P(t) := e−At (t ≥ 0) and its operator norm
‖P(t)‖ := sup{‖P(t)x‖ : ‖x‖ = 1}.

Theorem (Achleitner, Arnold, M., Nigsch 2023)
Let the operator A = J − R ∈ B(H) be dissipative.

a) If A has index mHC , then there exist c1 ≥ c ≥ c2 > 0, C1,C2 ≥ 0 and
t0 > 0 such that with a := 2mHC + 1 we have

1− c1ta − C1ta+1 ≤ ‖P(t)‖ ≤ 1− c2ta + C2ta+1 for t ∈ [0, t0]

and
‖P(t)‖ = 1− cta + o(ta) for t → 0.

b) Conversely, if ‖P(t)‖ satisfies the bounds with some c > 0 and
a > 0, then a is an odd integer and A has index mHC = a−1

2 .

. F. Achleitner, A. Arnold, V. M., E. Nigsch. Hypocoercivity in Hilbert spaces. http://arxiv.org/2307.08280
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Comments

. If ‖P(t)‖ is sufficiently often differentiable, then we get the
same result as in finite dimensional case.

. Open: What are conditions on A so that ‖P(t)‖ is sufficiently
often differentiable (analytic).

. Extension to operator DAEs under investigation.
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Isotropic Oseen on 2D torus

Incompressible Oseen equation with isotropic viscosity on 2D
torus T2 := (0,2π)2,

ut = −(b · ∇)u −∇p + ν∆u , t ≥ 0 , on T2 ,

0 = −divu , t ≥ 0 ,

velocity u(x , t), pressure p(x , t) in x ∈ T2 and t ≥ 0.
Assume periodic boundary conditions in both u and p.
Here ν > 0 is the viscosity and b ∈ R2 constant drift velocity.
For any initial condition

u(0) ∈ Hper (div0,T2) := {u ∈ (L2(T2))2 | divu = 0},

the equation has a unique smooth solution for t > 0.
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Analysis by hypocoercivity
Consider Fourier expansion with

u(x , t) =
∑

k∈Z2

φk (t)eik ·x , p(x , t) =
∑

k∈Z2

pk (t)eik ·x .

Fourier coefficients φk (t) ∈ C2, pk (t) ∈ C, k ∈ Z2, satisfy
decoupled DAEs

{
d
dtφk = −ikpk − i(b · k)φk − ν|k |2φk , t > 0 ,
0 = −ik · φk .

For k 6= 0, DAEs exhibit non-trivial dynamics with HC-index 0.
The solution (u(·, t), p(·, t)) of the Oseen equation converges, as
t →∞, to the constant (in x and t) equilibrium (φ0,p0) ∈ R3, for
p0 = 0 with the exponential decay rate µ = mink 6=0(ν|k |2) = ν.
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Anisotropic Oseen on 2D torus

Anisotropic Oseen equations on 2D torus.

ut = −(b(x) · ∇)u −∇p + ν∂2
x2

u , t > 0, on T2,

0 = −divu , t ≥ 0 ,

subject to periodic boundary conditions.
Drift velocity vector b(x) ∈ R2 may depend on x ∈ T2, and
diffusion happens only in x2.
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Constant drift

Consider Hilbert space H̃ := {u ∈ H |
∫
T2 udx = 0}, endowed

with the L2-inner product.

Proposition

Let b ∈ R2 be constant with b1 6= 0. Then, the
operator b · ∇ − ν∂2

x2
is neither coercive nor hypocoercive in H̃.
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Variable anisotropic drift

Take b1 = sin(x2) and perform a modal decomposition for k ∈ Z2.
Due to the non-constant coefficient b1(x2), these modes
decouple now only w.r.t. k1, but not w.r.t. k2 and for each mode
k ∈ Z2 we have the DAE system

{
d
dtφk = k1

2 (φk+e2 − φk−e2)− ikpk − νk2
2φk , t > 0 ,

0 = −ik · φk ,

Proposition

Let b1 = sin(x2). Then for all k1 ∈ Z \ {0}, the modal dynamics is
hypocoercive in `2(Z;C) with HC-index mHC = 1.
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Conclusions

. Stability analysis via hypocoercivity, hypocontractivity.

. No spectral information needed in semi-dissipative case.

. Relation to controllability.

. Initial decay rates via HC-index.

. Staircase forms.

. Extension to DAEs and infinite dimensions.

. Analysis for Oseen on 2D torus.

. Open: Hypocoercivity for nonlinear ODEs/DAEs/PDEs
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