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Gas transport

Collaborative Research Center Transregio
Modelling, simulation and optimization of gas networks

Planning, simulation, optimization, operation of gas networks.
Build a digital model (digital twin) that can handle all this.
. HU Berlin
. TU Berlin
. Univ. Duisburg-Essen
. FA University Erlangen-Nürnberg
. TU Darmstadt
. Real industrial data (anonymized) from OGE.
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Components of gas network model
Network of partial differential equations with constraints.
Network elements: Sources Si , pipes Pi , valves CVi ,
compressors Compi , consumers Ci ,
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Components of gas network model
Data based surrogate and reduced order models.
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Large network size
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Large network size

6 / 54



Mathematical model for flow
Typical model: Compressible 1D Euler equations.
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ρv(
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+
4kw

D
(T − Tw ) ,

Energy balance

p = ρRTz(p,T ), Real gas equation

Terms for pressure energy and dissipation work ignored.
. Variables: density ρ, e internal energy, temperature T ,

velocity v , pressure p, h height, z compressibility factor.
. Constants: kw heat transfer coefficient, λ friction coefficient,

D diameter of pipe, Tw wall temperature , g gravitational force,
R real gas constant. 3D model for hydrogen.
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District heating networks

German Ministry of Education and Research (BMBF)
Energy efficiency via intelligent district heating networks (EiFer)
Coupling of district heating network, hot water flow, heated via
electric, gas heating, waste incineration.
. TU Berlin
. Univ. Trier
. Fraunhofer ITWM Kaiserslautern
. Technische Werke (cityworks) Ludwigshafen.
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District Heating network

Simulated heat distribution in local district heating network:
Technische Werke Ludwigshafen. Entry forward flow
temperature 84C, backward flow temperature 60C.
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Mathematical model
Typical Model: Incompressible Euler equations.

0 =
∂ρ

∂t
+

∂

∂x
(ρv), Mass conservation

0 =
∂
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(ρv) +
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v2 + e)

)
+

∂

∂x
(ev) +

kw

D
(T − Tw ) , Energy balance

together with incompressibility condition for water.
Terms for pressure energy and dissipation work ignored.
. velocity v , density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw , g gravitational force,
. λ friction coefficient, e internal energy, pressure p,
. h height of pipe, D diameter of pipe.
. S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian

modeling of disctrict heating networks, DAE Forum, 333-355, Springer Verlag, 2020.
. R. Krug, V. Mehrmann, and M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering,

Vol. 22, 783-819, 2021.
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Our other research domains

Mathematical modeling, simulation, control, optimization:
. District heating networks.
. Electrical circuits.
. Power networks
. Electric generators.
. Manufacturing and repait of turbine blades.
. Reactive flow control, new gas turbine.
. Poro-elastic networks.
. Multibody dynamics.
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A Modelling Wish list !
. Want a representation that is close to the real physics for open

and closed systems.
. Want representations so that coupling of models works across

different scales and physical domains.
. Model class should have nice algebraic, geometric, and

analytical properties.
. Models should be easy to analyze mathematically (existence,

uniqueness, robustness, stability, uncertainty, errors etc).
. Invariance under local coordinate transformations (in space

and time). Ideally local normal forms.
. Model class should allow for easy (space-time) discretization

and model reduction.
. Class should be good for simulation, control and optimization,
Is there such a Jack of all trades? Eierlegende-Woll-Milch-Sau?
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Energy based network modeling

. Use energy/power as ’lingua franca’ of different physical
systems (mechanical, hydraulic, electrical, chemical, thermal)
and multi physics systems (electro mechanical,
electro-chemical) connected as network via energy transfer.

. Split network into energy storage, energy dissipation
components, control inputs and outputs, as well as
interconnections and combine as network via a geometric
structure.

. Allow every submodel to be a model hierarchy of fine or
course, continuous or discretized, full or reduced models.

. A system theoretic way to realize this are given by the model
class of (dissipative) port-Hamiltonian systems.

Several different viewpoints.
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Port-Hamiltonian systems
Classical nonlinear port-Hamiltonian (pH) ODE/PDE systems

ẋ = (J(x , t)− R(x , t))∇xH(x) + (B(x , t)− P(x , t))u(t),
y(t) = (B(x , t) + P(x , t))T∇xH(x) + (S(x , t)− N(x , t))u(t),

. x is the state, u input, y output.

. H(x) is the Hamiltonian: it describes the distribution of
internal energy among the energy storage elements;

. J = −JT describes the energy flux among energy storage
elements within the system;

. R = RT ≥ 0 describes energy dissipation/loss in the system;

. B ± P: ports where energy/power enters and exits the system;

. S − N, S = ST , N = −NT , direct feed-through input to output.

. In the infinite dimensional case J,R,B,P,S,N are operators.
. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and

Applications, 223. Birkhäuser/Springer Basel CH, 2012.
. A. J. van der Schaft, D. Jeltsema, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In

Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, 2014.
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Why should this be a good approach?
. PH systems generalize Hamiltonian/gradient flow systems.
. Conservation of energy replaced by dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(τ)T u(τ) dτ, supplied energy

. Class of PH systems closed under power-conserving
interconnection. Modularized network based modeling.

. Stability and passivity analysis easy (H Lyapunov fctn.)

. PH structure allows to preserve physical properties in weak
formulation, Galerkin projection, model reduction.

. Physical properties encoded in algebraic structure of
coefficients and in geometric structure of flow.

Add algebraic constraints, like Kirchhoff’s laws, interface
conditions, position constraints, conservation laws (pHDAEs).
. C. Beattie, V. M., H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems. Math. Control Signals Systems, 2018.
. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th

IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019. https://arxiv.org/abs/1903.10451
. A. J. van der Schaft, Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I,

173-226. Springer-Verlag, 2013.
. A. van der Schaft and B. Maschke, Generalized Port-Hamiltonian DAE Systems, Systems Control Letters 121, 31-37, 2018.16 / 54



Definition: Nonlinear pHDAEs
Let X ⊆ Rm (state space), I ⊆ R time interval, and S = I×X . Consider

E(t , x)ẋ + r(t , x) = (J(t , x)− R(r , x))e(t , x) + (B(t , x)− P(t , x))u,
y = (B(t , x) + P(t , x))T e(t , x) + (S(t , x)− N(t , x))u,

Hamiltonian H ∈ C1(S,R), where E ∈ C(S,R`,n), J,R ∈ C(S,Rn,n),
B,P ∈ C(S,R`,m), S = ST ,N = −NT ∈ C(S,Rm,m),e, r ∈ C(S,R`).
System is called port-Hamiltonian differential alg. eq. (pHDAE) if

Γ(t , x) = −ΓT =

[
J B
−BT N

]
, W (t , x) = W T =

[
R P

PT S

]
≥ 0,

∂H
∂x

(t , x) = ET (t , x)e(t , x),
∂H
∂t

(t , x) = eT (t , x)r(t , x).

. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019. https://arxiv.org/abs/1903.10451

. R. Morandin, Modeling and Numerical Treatment of Port-Hamiltonian Descriptor Systems, PhD thesis, TU Berlin, 2023.
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Dissipation inequality
Power balance equation and dissipation inequality still hold.

Theorem (M./Morandin 2019)

Consider a pHDAE . Then the power balance equation (PBE)

d
dt
H(t , x(t)) = −

[
e
u

]T

W
[
e
u

]
+ yT u, dissip. + suppl. energy

holds along any solution x, for any input u. In particular, the
dissipation inequality

H(t2, x(t2))−H(t1, x(t1)) ≤
∫ t2

t1
y(τ)T u(τ)dτ

holds.
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Structure-preserving interconnection

PHDAEs can be made autonomous without destroying structure.
Model class invariant under interconnection.

Theorem
Consider two autonomous pHDAEs of the form

Ei ẋi + ri = (Ji − Ri)ei + (Bi − Pi)ui ,

yi = (Bi + Pi)
T ei + (Si − Ni)ui ,

with Hamiltonians Hi , for i = 1,2, and assume that aggregated
input u = (u1,u2) and output y = (y1, y2) satisfy interconnection
relation Mu + Ny = 0 for some M,N ∈ Rk ,m. Then
interconnected system is pHDAE with Hamiltonian H = H1 +H2.
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Transformation invariance
Theorem (M./Morandin 2019)
Consider a pHDAE and another state space X̃ ⊆ Rñ, let S̃ := I× X̃ , let
x = ϕ(t , x̃) ∈ C1(S̃,X ) local diffeomorphism (w.r.t. x̃ ) and
U ∈ C(S̃,R`,`) pointwise invertible. Consider

Ẽ ˙̃x + r̃ = (J̃ − R̃)ẽ + (B̃ − P̃)u,
y = (B̃ + P̃)T ẽ + (S − N)u,

with Ẽ = UT (E ◦ ϕ)∂x̃ϕ, J̃ = UT (J ◦ ϕ)U, R̃ = UT (R ◦ ϕ)U,
B̃ = UT (B ◦ ϕ), P̃ = UT (P ◦ ϕ), z̃ = U−1(z ◦ ϕ) and
r̃ = UT (r ◦ ϕ+ (E ◦ ϕ)∂tϕ), where (F ◦ ϕ)(t , x̃) = F (t , ϕ(t , x̃)) for any
F ∈ C(S, ·), and let H̃(t , x̃) := (H ◦ ϕ)(t , x̃). Then this is again pHDAE
with Hamiltonian H̃, and to any solution (x̃ ,u, y) there corresponds a
solution (x ,u, y) of the original pHDAE with x(t) = ϕ(t , x̃(t)).
Furthermore, if ϕ(t , ·) is global diffeomorphism t ∈ I, then the two
systems are equivalent. Local normal forms can be constructed.
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Geometric structures
Let F be a linear space dimF = n and E := F∗ its dual space. Define
bilinear forms 〈·, ·〉+, 〈·, ·〉− on F × E

〈(f1,e1), (f2,e2)〉+ := 〈e1 | f2〉+ 〈e2 | f1〉,
〈(f1,e1), (f2,e2)〉− := 〈e1 | f2〉 − 〈e2 | f1〉,

where 〈· | ·〉 denotes the classical duality pairing.
A linear subspace D ⊆ F × E is called Dirac structure if
〈(f1,e1), (f2,e2)〉+ = 0 on D and D is maximal w.r.t. this property.
A linear subspace L ⊆ F × E is called Lagrange structure if
〈(f1,e1), (f2,e2)〉− = 0 on L and L is maximal w.r.t. this property.
A Lagrange structure is called nonnegative if the quadratic form
associated with 〈(f1,e1), (f2,e2)〉+ is nonnegative on L.
A subspaceM⊂ X ×X ∗ is called monotone if e>f ≥ 0 for all
(f ,e) ∈M, and maximally monotone ifM is maximal w.r.t. this
property.
. V. Mehrmann and A.J. van der Schaft. Differential-algebraic systems with dissipative Hamiltonian structure. Mathematics of

Control Signals and Systems, https://doi.org/10.1007/s00498-023-00349-2, http://arxiv.org/abs/2208.02737, 2023.

. A.J. van der Schaft and V. Mehrmann. Linear port-Hamiltonian DAE systems revisited. System and Control Letters,
http://arxiv.org/abs/2211.06676, 2023.
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Abstract dissipative Hamiltonian DAEs

Consider a linear state space X with coordinates x , a maximally
monotone subspaceM⊂ X ×X ∗, and a Lagrange structure
L ⊂ X × X ∗. A dHDAE system is a system (X ,M,L) satisfying

{(ẋ , x) | there exists e ∈ X ∗ such that (−ẋ ,e) ∈M, (x ,e) ∈ L}.

Generalization to pHDAEs with external port variables, by
extendingM⊂ X ×X ∗ to a maximally monotone subspace
Me ⊂ X × X ∗ ×FP ×F∗P , with FP ×F∗P space of port variables.

For abstract nonlinear version, use sub-bundle of TX ⊕ T ∗X , the
Whitney sum between tangent and cotangent bundles of X , that
are locally described by the corresponding linear structures.
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Lagrange structure

Theorem
Any Lagrange structure L ⊂ X × X ∗ can be represented as

L = ker
[

S> −P>
]
= im

[
P
S

]
⊂ X × X ∗,

for certain matrices S,P ∈ Rn,n satisfying rank
[

P
S

]
= n as well

as the generalized symmetry condition

S>P = P>S.

A Lagrange structure is nonnegative if and only if S>P ≥ 0.
A quadratic Hamiltonian is defined by H(x) = 1

2x>P>Sx.
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Dirac struture

Theorem
Using matrices K ,L ∈ Rn,n, any Dirac structure D ⊂ X × X ∗
admits the kernel/image representation

D = ker
[

K L
]
= im

[
L>

K>

]
⊂ X × X ∗,

with K ,L satisfying rank
[

K L
]
= n and the generalized

skew-symmetry condition

KL> + LK> = 0.

Conversely any such pair K ,L defines a Dirac structure.
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Maximally monotone structure

Theorem
Any maximally monotone structureM⊂ X ×X ∗ can be
represented as

M = im
[

N>

M>

]
for M,N ∈ Rn,n satisfying rank

[
N M

]
= n and the

semi-definiteness condition

MN> + NM> ≥ 0.

Conversely, any subspace defined by any such M,N is a
maximally monotone subspace.
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Example

If in the maximally monotone subspace representation M is
invertible, then the representation is equivalent to

Eż = (J − R)Qz, Q>E = E>Q, J = −J>, R = R> ≥ 0.

. V. Mehrmann and A.J. van der Schaft. Differential-algebraic systems with dissipative Hamiltonian structure. Mathematics of
Control Signals and Systems, https://doi.org/10.1007/s00498-023-00349-2, http://arxiv.org/abs/2208.02737, 2023.

. A.J. van der Schaft and V. Mehrmann. Linear port-Hamiltonian DAE systems revisited. System and Control Letters,
http://arxiv.org/abs/2211.06676, 2023.

. A. van der Schaft and B. Maschke. Generalized port-Hamiltonian DAE systems. Systems Control Lett., 121:31–37, 2018.

. A. van der Schaft and B. Maschke. Dirac and Lagrange algebraic constraints in nonlinear port-Hamiltonian systems.
Vietnam J. Mathematics, 48(4):929–939, 2020.
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pH PDE Modeling
Different approaches.
. Operator pH DAE modeling.
. Gradient flow, GENERIC.
. Formal geometric structures.
. Structured PDE systems with input and outputs.
References:
. R. Altmann und P. Schulze A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows Systems Control

Lett., Vol. 100, 2017, pp. 51-55.
. A. M. Badlyan, B. Maschke, C. Beattie, and V. M., Open physical systems: from GENERIC to port-Hamiltonian systems,

Proceedings of MTNS, 2018.
. A. Moses Badlyan and C. Zimmer. Operator-GENERIC formulation of thermodynamics of irreversible processes. Preprint TU

Berlin 2018.
. M. Grmela and H.Öttinger, Dynamics and thermodynamics of complex fluids. i. development of a general formalism.

Physical Review E, 56 6620–6632, 1997.
. M. Hütter and B. Svendsen, Quasi-linear versus potential-based formulations of force-flux relations and the generic for

irreversible processes: comparisons and examples. Continuum Mechanics and Thermodynamics, 25, 803–816, 2013.
. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and

Applications, 223. Birkhäuser/Springer Basel CH, 2012.
. A. Macchelli, and B. Maschke, Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach,

chapter Infinite-dimensional Port-Hamiltonian Systems, Springer Verlag, pages 211–272, 2009.
. H.-C. Öttinger, Beyond Equilibrium Thermodynamics. John Wiley & Sons, 2005.
. A. van der Schaft and B. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow. J.

of Geometry and Physics, 42:166–174, 2002.
. H. Yoshimura and J Marsden. Dirac structures in Lagrangian mechanics part i: Implicit Lagrangian systems. Journal of

Geometry and Physics, 57, 133–156, 2006.
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Example: Gas flow

Port-Hamiltonian formulation of compressible Euler including
pressure energy and dissipation work, as well as entropy (s)
balance. A. Moses Badlyan 2019

0 =
∂ρ

∂t
+

∂

∂x
(ρv), mass conservation

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂

∂x
h, momentum balance

0 =
∂e
∂t

+
∂

∂x
(ev)) + p

∂v
∂x
− λ

2D
ρv2 |v |+ 4kw

D
(T − Tw ) , energy bal.

0 =
∂s
∂t

+
∂

∂x
(sv))− λ ρ

2D T
v2 |v |+ 4kw

D
(T − Tw )

T
, entropy balance

We have to add node conditions (interconnection) and boundary
conditions (input/ouput) as well as constraints.
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Boundary conditions, inputs/outputs

There is no uniform way to treat boundary conditions.
One needs to proceed differently for analysis, PDE
discretization, system and control.
Example: Gas flow.
Wall temperature boundary conditions in pipe network: Can be
classical boundary conditions for PDE simulation and
optimization of network or interconnection conditions when
coupling with environment.
Inflow and outflow boundary conditions are controls and
observations, or used for interconnection, or classical boundary
conditions for simulation.
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Space discretization
. Space discretization as in unstructured PDEs.
. Exterior calculus approach.
. Hybrid approaches.
Galerkin projection preserves pH structure, exterior calculus
discretization preserves geometric structure.
But boundary conditions have to be treated properly
. D. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta

Numerica, 15, 2006.

. G. Awanou, M. Fabien, J. Guzman and A. Stern, Hybridization and postprocessing in finite element exterior calculus.
Mathematics of Computation, 92, 2023,

. A. M. Badlyan, and C. Zimmer, Operator GENERIC formulation of thermodynamics of irreversible processes. Preprint TU
Berlin, arxiv: 1807.09822, 2018.

. A. Brugnoli and R. Rashad and S. Stramigioli, Dual field structure-preserving discretization of port-Hamiltonian systems
using finite element exterior calculus, J. Computational Physics, 471, 2022.

. H. Egger, Energy stable Galerkin approximation of Hamiltonian and gradient systems, Numerische Mathematik, 2019.

. H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V.M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM J. Scientific Computing, 40. 2018.

. J. Lohi, Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus. Numerical
Algorithms, 91, 2022.

. A. Serhani, D. Matignon, and G. Haine. A partitioned finite element method for the structure-preserving discretization of
damped infinite-dimensional port-Hamiltonian systems with boundary control. In F. Nielsen and F. Barbaresco, editors,
Geometric Science of Information, pages 549–558. Springer, Cham, 2019.
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Time discretization/solvers
Idea: Use geometric structure and structure preserving methods.
. Most classical ODE/DAE methods do not preserve the energy

or dissipation inequality.
. Conflict between preserving Dirac structure and constraints.
. Want integrators that lead to discrete-time pH systems, i.e.

preserve power balance equation (symplectic methods), as
well as algebraic constraints (stiffly accurate methods).

. However: No implicit Runge-Kutta method is both stiffly
accurate and symplectic.

. Way out: Use e.g. Gauss-Legrendre collocation (like implicit
midpoint rule) for dynamics and stiffly accurate method for
algebraic part, if these can be decoupled.

. Kotyczka, Lefèvre, Discrete-Time Port-Hamiltonian Systems Based on Gauss-Legendre Collocation, IFAC-PapersOnLine 51,
no. 3 (2018): 125–30.

. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019. https://arxiv.org/abs/1903.10451.

. R. Morandin, PhD thesis, 2023.
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(Non-)linear Solvers

. The space-time discretization methods require the solution of
(non)linear systems.

. This is a large scale problem when the problem is a space
discretized PDE.

. Does the pHDAE structure help?
Example: Discretize Eẋ = (J − R)x with implicit midpoint rule
linear system

(E + τ/2R − τ/2J)xi+1 = bi = (I + τ/2(J − R))xi

Matrix E + τ/2R − τ/2J has pos. (semi)-def. symmetric part.
Locally the pHDAE structure always lead to such linear systems.
Structure similar to saddle point problems.
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Linear solvers
For systems (M + N)x = b with M = MT > 0, N = −NT ,
Widlund’s method uses symmetric part as preconditioner.

(I − K )x = b̂, where K = M−1N, b̂ = M−1b.

Leads to optimal 3-term recurrence to generate M-orthogonal
basis of Krylov subspace Kk(K , v) = span[v ,Kv , . . . ,K k−1v ] for
each k and initial vector v .
Oblique projection method with Galerkin projection property:

xk ∈ Kk(K , b̂) s.t. rk = b − (M + N)xk ⊥ Kk(K , b̂).

. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14, 2005.

. C. Güdücü, J. Liesen, V. M., and D. Szyld, On non-Hermitian positive (semi)definite linear algebraic systems arising from
dissipative Hamiltonian DAEs, http://arxiv.org/abs/2111.05616, SIAM J. Scientific Computing, 2022.

. M. Manguoğlu and V. M., A two-level iterative scheme for general sparse linear systems based on approximate
skew-symmetrizers. Electronic Transactions Numerical Analysis, Vol. 54, 370–391, 2021. D. Rapoport, A nonlinear Lanczos
algorithm and the atationary Navier-Stokes wquation, PhD thesis, Department of Mathematics, Courant Institute, New York
University, 1978.

. O. Widlund. A Lanczos method for a class of nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 15, 1978.
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Example: Stokes flow

Method Time ‖Rel .Res.‖ #Iter .
Widlund 10.273 6.794e − 09 10
GMRES 1672.294 4.727e − 02 500

Stokes equation. Run times, relative residual norms at the final step,
and total number of iterations for τ = 0.0001.
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Model hierarchy in gas pipe

Every element/node/edge modelled via a hierarchy, PDE,
FE/FV/FD model, grid hierarchies, reduced, surrogate models.
. P. Domschke and B. Hiller and J. Lang and V. Mehrmann and R. Morandin and C. Tischendorf, Gas Network Modeling: An

Overview, TRR 154 Preprint, 2021, https://opus4.kobv.de/opus4-trr154,
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Model hierarchy and adaptivity

Use model hierarchy for adaptivity in space-time discretization
and model for simulation and optimization.
Find compromise between error tolerance/ computational speed.
. Determine sensitivities when moving in model hierarchy.
. Determine error estimates for time and space discretization.
. Choose cost functions or adaptation strategies.
. Use adaptivity to drive method for simulation and optimization.
PHDAE approach allows jump between models in hierarchy
without changing simulation, control, optimization framework.
Allows to solve control and optimization problems that
otherwise could not be solved.
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Example: 4-level-hierarchy gas transport

. Full model M0 (truth): isothermal Euler equations

0 =
∂ρ

∂t
+

∂

∂x
(ρv),

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂h
∂x
,

p = RρTz(p,T )

together with boundary cond. and Kirchhoff’s laws at nodes.
. M1: ∂h

∂x = 0 .
. M2: Model M1 and ∂

∂x (ρv
2) = 0.

. M3: Model M2 and stationary state.
. J.J. Stolwijk and V. M. Error analysis and model adaptivity for flows in gas networks. ANALELE STIINTIFICE ALE

UNIVERSITATII OVIDIUS CONSTANTA. SERIA MATEMATICA, 2018.

. P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. Mehrmann, Adaptive Refinement Strategies for the Simulation of Gas
Flow in Networks using a Model Hierarchy, Electronic Transactions Numerical Analysis, Vol. 48, 97–113, 2018.
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Test
For given tolerance tol , minimize computational cost.∑

j∈Jp
(ηm,j + ηx ,j + ηt ,j)

|Jp|
≤ tol

S01

S02

C01

C02

C03

C04

P01 P02 P03

P
04

P05

P06
P07

P08 P09

P10

P11

P12

C
V

01

Comp01 Comp02 Comp03

Non-adaptive simulation time is 4 hours using ANACONDA code.
Adapative method: computing time reduction of 80%.
. P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. M., Adaptive Refinement Strategies for the Simulation of Gas Flow in

Networks using a Model Hierarchy, Electronic Transactions Numerical Analysis, 2018.
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Compressor cost optimization

Discretization, model, total error (y -axis) over course of
optimization (x-axis). Left: GasLib-40, right: GasLib-135.
. V. M., M. Schmidt, and J. Stolwijk, Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization,

http://arxiv.org/abs/1712.02745, Vietnam J. Math. 2018.

. R. Krug, V. M., and M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering, Vol. 22,
783-819, 2021.

. H. Dänschel, V. M., M. Roland, and M. Schmidt, Adaptive Nonlinear Optimization of District Heating Networks Based on
Model and Discretization Catalogs, http://arxiv.org/abs/2201.11993, 2022.
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Optimization district heating network

Minimize overall costs required to satisfy the heat demand of all
the consumers. Objective function is given by the cost of
pressure increase, waste incineration, and burning gas.
Constraints:
. pipe flow and thermal model, here stationary flow,
. mass conservation,
. pressure continuity,
. temperature mixing,
. depot constraints,
. consumer constraints, bounds.
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Challenges

. Highly nonlinear and large-scale pHDAE-constrained
mathematical program with complementarity constraints
(MPCC).

. Change of flow direction at multiple junctions and cycles.

. Optimization of non-stationary case currently not possible.

. Solving for reasonably finely-discretized real world problem
currently not possible.

. pHDAE model simplification not complete.

. Model reduction not complete. PhD Sarah Hauschild, Trier.
Simplifications: Stationary regime, constant density and velocity.
Solve entropy equation in post-processing step.
Our approach: Space-model-adaptive optimization algorithm.
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Test networks

Table: Characteristics of the test networks.

Network # pipes # depots # consumers pipe length (m)
AROMA 18 1 5 7262.4
STREET 162 1 32 7627.1

AROMA is an academic test network, whereas STREET is a
part of an existing real-world district heating network.
None of the standard optimization solvers converges to a
feasible point for both the AROMA and the STREET network.
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Space-model-adaptive algorithm

. Algorithm works as expected and terminates after a finite
number of iterations with locally optimal solution of required
accuracy.

. We can solve realistic instances that have not been solvable
before.

. Although we warm-start every with the solution of the previous
one, we observe an increase of solution times due to the
higher complexity of the successive models.

. Is accuracy worth the effort? The answer is a clear “Yes”.
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Optimal power consumption

Aggregated power consumption of households (dashed curve)
with bound on power generated by waste incineration (solid
curve) for distinct heating network.
. R. Krug, V. M., M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering, 1-37, 2020.
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What about our wish list?
. Want a representation that is close to the real physics for open

and closed systems.
. Want representations so that coupling of models works across

different scales and physical domains.
. Model class should have nice algebraic, geometric, and

analytical properties.
. Models should be easy to analyze mathematically (existence,

uniqueness, robustness, stability, uncertainty, errors etc).
. Invariance under local coordinate transformations (in space

and time). Ideally local normal form.
. Model class should allow for easy (space-time) discretization

and model reduction.
. Class should be good for simulation, control and optimization,
With pHDAE systems most wishes are fulfilled.
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Outlook

But there are many things to do
. Real time control, optimization.
. Incorporate stochastics and delay in pHDAEs.
. Function Spaces.
. Error estimates.
. Data based realization.
. Software.
. Digital twins.
. . . .
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Thanks

Thank you very much
for your attention

and my sponsors for their support

. Research center MATHEON, Einstein Center ECMath,
Excellence Cluster Math+.

. DFG collaborative Research Centers 1029, 910, TRR154.

. DFG priority program 1984.

. BMBF/industry project Eifer.
Details: http://www.math.tu-berlin.de/?id=76888
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