Density Questions on Elliptic Curves

Mohammad Sadek

Sabanci University, Istanbul
Koç University Mathematics Seminar

March 19, 2024

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Example:

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Example:

$\pi(X):=$ the number of prime numbers less than X

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Example:

$\pi(X):=$ the number of prime numbers less than X
(~ 1792) Gauss computed tables of $\pi(X)$ by hand for X up to the millions.

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Example:

$\pi(X):=$ the number of prime numbers less than X
(~ 1792) Gauss computed tables of $\pi(X)$ by hand for X up to the millions. Gauss claimed

$$
\frac{\pi(X)}{X} \sim \frac{1}{\log X}
$$

Arithmetic Statistics

Goal: Describe the frequency of occurrence of number theoretic objects with certain properties.

Example:

$\pi(X):=$ the number of prime numbers less than X
(~ 1792) Gauss computed tables of $\pi(X)$ by hand for X up to the millions. Gauss claimed

$$
\frac{\pi(X)}{X} \sim \frac{1}{\log X}
$$

(~1896) Hadamard, and de la Vallée-Poussin proved the Prime Number Theorem

$$
\lim _{X \rightarrow \infty} \frac{\pi(X) / X}{1 / \log X}=1
$$

Arithmetic Statistics

"It is curious how aggregates rather than single instances creep into our subject even when we aren't looking for statistical trouble."
-Barry Mazur

Arithmetic Statistics

"It is curious how aggregates rather than single instances creep into our subject even when we aren't looking for statistical trouble."
-Barry Mazur

Question:

Arithmetic Statistics

"It is curious how aggregates rather than single instances creep into our subject even when we aren't looking for statistical trouble."
-Barry Mazur
Question: (\$5 prize)

Arithmetic Statistics

"It is curious how aggregates rather than single instances creep into our subject even when we aren't looking for statistical trouble."

-Barry Mazur

Question: (\$5 prize)

- prove that $a X+b$ with a, b relatively prime integers represent at least one prime number; and yet

Arithmetic Statistics

"It is curious how aggregates rather than single instances creep into our subject even when we aren't looking for statistical trouble."

-Barry Mazur

Question: (\$5 prize)

- prove that $a X+b$ with a, b relatively prime integers represent at least one prime number; and yet
- the proof doesn't actually show that it represents infinitely many primes.

Arithmetic Statistics

- $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$

Arithmetic Statistics

- $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$
- What is the proportion of primes of the form $4 n+1$ among all primes?

Arithmetic Statistics

- $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$
- What is the proportion of primes of the form $4 n+1$ among all primes?
- For relatively prime integers a and b, define

$$
\lim _{X \rightarrow \infty} \frac{\#\{p: p \text { is prime of the form } a n+b \leq X\}}{\pi(X)}
$$

Arithmetic Statistics

- $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$
- What is the proportion of primes of the form $4 n+1$ among all primes?
- For relatively prime integers a and b, define

$$
\lim _{X \rightarrow \infty} \frac{\#\{p: p \text { is prime of the form } a n+b \leq X\}}{\pi(X)}
$$

- Dirichlet proved that the limit above exits;

Arithmetic Statistics

- $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ldots$
- What is the proportion of primes of the form $4 n+1$ among all primes?
- For relatively prime integers a and b, define

$$
\lim _{X \rightarrow \infty} \frac{\#\{p: p \text { is prime of the form } a n+b \leq X\}}{\pi(X)}
$$

- Dirichlet proved that the limit above exits; and is equal to $1 / \phi(a)$, where ϕ is the Euler's totient function.

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?
(III) Is there a set of instructions to be followed to give answers to questions (I) and (II)?

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?
(III) Is there a set of instructions to be followed to give answers to questions (I) and (II)?
If $\operatorname{deg} f$ is either 1 or 2 , then we can answer (I),

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?
(III) Is there a set of instructions to be followed to give answers to questions (I) and (II)?
If $\operatorname{deg} f$ is either 1 or 2 , then we can answer (I), and both questions (II) and (III) have affirmative answers.

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?
(III) Is there a set of instructions to be followed to give answers to questions (I) and (II)?
If $\operatorname{deg} f$ is either 1 or 2 , then we can answer (I), and both questions
(II) and (III) have affirmative answers. What if $\operatorname{deg} f \geq 3$?

Diophantine Equations

Let $f\left(x_{1}, \cdots, x_{n}\right)=0$ be a homogeneous polynomial equation with integer coefficients.
(I) Are there nontrivial solutions $\left(x_{1}, \cdots, x_{n}\right)$ with integer coordiantes?
(II) If YES, then

- can such a solution be found?
- can we describe all such solutions?
(III) Is there a set of instructions to be followed to give answers to questions (I) and (II)?
If $\operatorname{deg} f$ is either 1 or 2 , then we can answer (I), and both questions (II) and (III) have affirmative answers. What if $\operatorname{deg} f \geq 3$?
(I') What is the proportion of homogeneous polynomials of degree d in n variables having non-trivial integral zeros?

Elliptic Curves

Our set-up is

$$
f\left(x_{1}, x_{2}, x_{3}\right)=0
$$

where the degree of each term of f is exactly 3 (f is homogeneous of degree 3 in 3 variables.)

Elliptic Curves

Our set-up is

$$
f\left(x_{1}, x_{2}, x_{3}\right)=0
$$

where the degree of each term of f is exactly 3 (f is homogeneous of degree 3 in 3 variables.)
If $f\left(x_{1}, x_{2}, x_{3}\right)=0$

- describes a smooth curve E, and

Elliptic Curves

Our set-up is

$$
f\left(x_{1}, x_{2}, x_{3}\right)=0
$$

where the degree of each term of f is exactly 3 (f is homogeneous of degree 3 in 3 variables.)
If $f\left(x_{1}, x_{2}, x_{3}\right)=0$

- describes a smooth curve E, and
- has at least one nontrivial solution $\left(x_{1}, x_{2}, x_{3}\right)$ with integer coordiantes, then

Elliptic Curves

Our set-up is

$$
f\left(x_{1}, x_{2}, x_{3}\right)=0
$$

where the degree of each term of f is exactly 3 (f is homogeneous of degree 3 in 3 variables.)
If $f\left(x_{1}, x_{2}, x_{3}\right)=0$

- describes a smooth curve E, and
- has at least one nontrivial solution $\left(x_{1}, x_{2}, x_{3}\right)$ with integer coordiantes, then
E is an elliptic curve.

Elliptic Curves

"Elliptic curves have been at the heart of many exciting things. They are complicated enough to carry a lot of juicy information, but simple enough to be able to study in depth."

-Peter Sarnak

If E is an elliptic curve over \mathbb{Q}, then it can always be described by an affine equation of the form

$$
y^{2}=x^{3}+a x+b,
$$

where a and b are integers, and $\Delta=-4 a^{3}-27 b^{2} \neq 0$.

If E is an elliptic curve over \mathbb{Q}, then it can always be described by an affine equation of the form

$$
y^{2}=x^{3}+a x+b
$$

where a and b are integers, and $\Delta=-4 a^{3}-27 b^{2} \neq 0$.

- A group structure!

Elliptic curves

Elliptic curves

Elliptic curves

Elliptic curves

Elliptic curves

Let E be an elliptic curve over \mathbb{Q} defined by $y^{2}=x^{3}+a x+b$. Set

$$
E(\mathbb{Q})=\left\{(x, y): x, y \in \mathbb{Q}, y^{2}=x^{3}+a x+b\right\}
$$

Elliptic curves

Let E be an elliptic curve over \mathbb{Q} defined by $y^{2}=x^{3}+a x+b$. Set

$$
E(\mathbb{Q})=\left\{(x, y): x, y \in \mathbb{Q}, y^{2}=x^{3}+a x+b\right\}
$$

$E(\mathbb{Q})$ is a subgroup of E.

Let E be an elliptic curve over \mathbb{Q} defined by $y^{2}=x^{3}+a x+b$. Set

$$
E(\mathbb{Q})=\left\{(x, y): x, y \in \mathbb{Q}, y^{2}=x^{3}+a x+b\right\}
$$

$E(\mathbb{Q})$ is a subgroup of E.
"Rational points on elliptic curves are the gems of arithmetic: they are, to diophantine geometry, what units in rings of integers are to algebraic number theory, what algebraic cycles are to algebraic geometry. Despite all that we know about these objects, the initial mystery and excitement that drew mathematicians to this arena in the first place remains in full force today."

Let E be an elliptic curve over \mathbb{Q} defined by $y^{2}=x^{3}+a x+b$. Set

$$
E(\mathbb{Q})=\left\{(x, y): x, y \in \mathbb{Q}, y^{2}=x^{3}+a x+b\right\}
$$

$E(\mathbb{Q})$ is a subgroup of E.
"Rational points on elliptic curves are the gems of arithmetic: they are, to diophantine geometry, what units in rings of integers are to algebraic number theory, what algebraic cycles are to algebraic geometry. Despite all that we know about these objects, the initial mystery and excitement that drew mathematicians to this arena in the first place remains in full force today."
-B. Bektemirov, B. Mazur, W. Stein, M. Watkins, Average ranks of elliptic curves: Tension between data and conjecture, Bulletin of the American Mathematical Society, 44 (2007), 233-254.

Elliptic curves

Theorem (Mordell, 1922)
 $E(\mathbb{Q})$ is a finitely generated abelian group.

Elliptic curves

Theorem (Mordell, 1922)

$E(\mathbb{Q})$ is a finitely generated abelian group.
Corollary
There exists a nonnegative integer r such that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}, \quad|\mathbb{T}|<\infty
$$

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- r is the rank of E.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- r is the rank of E.
- \mathbb{T} is the torsion part of E.

Theorem (Mazur, 1978)
\mathbb{T} is one of the following fifteen groups in the following list Φ :

$$
\begin{aligned}
& \mathbb{Z} / n \mathbb{Z}, 1 \leq n \leq 12, n \neq 11 \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 n \mathbb{Z}, 1 \leq n \leq 4
\end{aligned}
$$

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- r is the rank of E.
- \mathbb{T} is the torsion part of E.

Theorem (Mazur, 1978)
\mathbb{T} is one of the following fifteen groups in the following list Φ :

$$
\begin{gathered}
\mathbb{Z} / n \mathbb{Z}, 1 \leq n \leq 12, n \neq 11 \\
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 n \mathbb{Z}, 1 \leq n \leq 4
\end{gathered}
$$

In particular, $|\mathbb{T}| \leq 16$.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

Arithmetic Statistics

Recall:

- For relatively prime integers a and b, what is the proportion of primes of the form $a n+b$ among all primes?

Arithmetic Statistics

Recall:

- For relatively prime integers a and b, what is the proportion of primes of the form $a n+b$ among all primes?

$$
\lim _{x \rightarrow \infty} \frac{\#\{p: p \text { is prime of the form } a n+b \leq X\}}{\pi(X)}=\frac{1}{\phi(a)}
$$

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

- Do such elliptic curves exist?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

- Do such elliptic curves exist?
- Are there infinitely many such curves?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves?
- How can we define the "size" of an elliptic curve?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves?
- How can we define the "size" of an elliptic curve?
- How many curves are there up to a given "size" ?

Elliptic curves

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves?

Elliptic curves

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves? Yes,

Elliptic curves

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves? Yes, Yes,

Elliptic curves

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves? Yes, Yes, and Yes.

Elliptic curves

- Do such elliptic curves exist?
- Are there infinitely many such curves?
- Do we have explicit/parametrized description of these curves? Yes, Yes, and Yes.

For example, when $\mathbb{T} \cong \mathbb{Z} / 7 \mathbb{Z}$, then any elliptic curve with torsion \mathbb{T} over \mathbb{Q} lies in the family
$\mathcal{E}_{7}: y^{2}+(1-t(t-1)) x y-t^{2}(t-1) y=x^{3}-t^{2}(t-1) x^{2}, \quad t \in \mathbb{Q}$.

Elliptic Curves

- How can we define the "size" of an elliptic curve?

Elliptic Curves

- How can we define the "size" of an elliptic curve?
- Let \mathcal{E} be the set
$\left\{y^{2}=x^{3}+a x+b: a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0, d^{4}\left|a, d^{6}\right| b \Longrightarrow d= \pm 1\right\}$.

Elliptic Curves

- How can we define the "size" of an elliptic curve?
- Let \mathcal{E} be the set
$\left\{y^{2}=x^{3}+a x+b: a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0, d^{4}\left|a, d^{6}\right| b \Longrightarrow d= \pm 1\right\}$.
- For any E in \mathcal{E}, we define the height of E to be

$$
\operatorname{ht}(E)=\max \left\{4|a|^{3}, 27 b^{2}\right\}
$$

Elliptic Curves

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

Elliptic Curves

Question. Given $\mathbb{T} \in \Phi$, what is the proportion of all elliptic curves whose torsion subgroup is \mathbb{T} among all elliptic curves over \mathbb{Q} ?

Theorem (Harron-Snowden, 2017)

Let $\mathbb{T} \in \Phi$. Set $N_{\mathbb{T}}(X)$ to be the number of (isomorphism classes of) elliptic curves E over \mathbb{Q} of height at most X for which $E(\mathbb{Q})_{\text {tors }} \cong \mathbb{T}$. Then, there is an explicit constant $d(\mathbb{T})$ such that

$$
\lim _{X \rightarrow \infty} \frac{\log N_{\mathbb{T}}(X)}{\log X}=\frac{1}{d(\mathbb{T})}
$$

$d(0)=6 / 5, d(\mathbb{Z} / 2 \mathbb{Z})=2, d(\mathbb{Z} / 3 \mathbb{Z})=3, d(\mathbb{Z} / 5 \mathbb{Z})=6$, and $d(\mathbb{Z} / 7 \mathbb{Z})=12$.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- What do we know about the rank r ?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- What do we know about the rank r ?
- r tells how big $E(\mathbb{Q})$ is.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- What do we know about the rank r ?
- r tells how big $E(\mathbb{Q})$ is.
- But how big r can be?

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- What do we know about the rank r ?
- r tells how big $E(\mathbb{Q})$ is.
- But how big r can be?

Conjecture

r can be aribtrarily large

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

- What do we know about the rank r ?
- r tells how big $E(\mathbb{Q})$ is.
- But how big r can be?

Conjecture

r can be aribtrarily large; or not.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Recall that

$\mathcal{E}:=\left\{y^{2}=x^{3}+a x+b: a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0, d^{4}\left|a, d^{6}\right| b \Longrightarrow d= \pm 1\right\}$.

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Recall that

$$
\mathcal{E}:=\left\{y^{2}=x^{3}+a x+b: a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0, d^{4}\left|a, d^{6}\right| b \Longrightarrow d= \pm 1\right\} .
$$

Set

$$
\mathcal{E}(X):=\{E \in \mathcal{E}: h t(E) \leq X\}
$$

Conjecture (Minimalist Conjecture)

$$
\lim _{X \rightarrow \infty} \frac{\# \sum_{E \in \mathcal{E}(X)} \operatorname{rank}(E(\mathbb{Q}))}{\# \mathcal{E}(X)}=\frac{1}{2}
$$

Elliptic curves

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Recall that
$\mathcal{E}:=\left\{y^{2}=x^{3}+a x+b: a, b \in \mathbb{Z}, 4 a^{3}+27 b^{2} \neq 0, d^{4}\left|a, d^{6}\right| b \Longrightarrow d= \pm 1\right\}$.
Set

$$
\mathcal{E}(X):=\{E \in \mathcal{E}: \operatorname{ht}(E) \leq X\}
$$

Theorem (Bhargava-Shankar, Skinner)

$$
0.216 \leq \lim _{X \rightarrow \infty} \frac{\# \sum_{E \in \mathcal{E}(X)} \operatorname{rank}(\mathrm{E}(\mathbb{Q}))}{\# \mathcal{E}(X)} \leq 0.885
$$

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- The above Weierstrass equation is called p-minimal if $\nu_{p}(\Delta)$ is the smallest among all elliptic curves isomorphic to E.

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- The above Weierstrass equation is called p-minimal if $\nu_{p}(\Delta)$ is the smallest among all elliptic curves isomorphic to E.
- Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (p-minimal at every prime p).

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- The above Weierstrass equation is called p-minimal if $\nu_{p}(\Delta)$ is the smallest among all elliptic curves isomorphic to E.
- Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (p-minimal at every prime p).
- We set $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- The above Weierstrass equation is called p-minimal if $\nu_{p}(\Delta)$ is the smallest among all elliptic curves isomorphic to E.
- Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (p-minimal at every prime p).
- We set $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.
- Is E_{p} still an elliptic curve over \mathbb{F}_{p} ?

$$
E: y^{2}=x^{3}+432 x+21492
$$

$$
\begin{aligned}
& \prec \prec \\
& \propto \\
& p=2
\end{aligned}
$$

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- Is $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ still an elliptic curve over \mathbb{F}_{p} ?

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- Is $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ still an elliptic curve over \mathbb{F}_{p} ?
- E_{p} is an elliptic curve over \mathbb{F}_{p} if $\nu_{p}(\Delta)=0$, and E is said to have good reduction at p.

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- Is $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ still an elliptic curve over \mathbb{F}_{p} ?
- E_{p} is an elliptic curve over \mathbb{F}_{p} if $\nu_{p}(\Delta)=0$, and E is said to have good reduction at p.
- E_{p} is a singular curve \mathbb{F}_{p} if $\nu_{p}(\Delta)>0$, and E is said to have bad reduction at p.

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- Is $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ still an elliptic curve over \mathbb{F}_{p} ?
- E_{p} is an elliptic curve over \mathbb{F}_{p} if $\nu_{p}(\Delta)=0$, and E is said to have good reduction at p.
- E_{p} is a singular curve \mathbb{F}_{p} if $\nu_{p}(\Delta)>0$, and E is said to have bad reduction at p. If, moreover, $\nu_{p}(a)=0$, then E is said to have multiplicative reduction at p

Reduction of Elliptic curves

Let $y^{2}=x^{3}+a x+b, a, b \in \mathbb{Z}$, and $p \geq 5$ a prime.

- Is $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ still an elliptic curve over \mathbb{F}_{p} ?
- E_{p} is an elliptic curve over \mathbb{F}_{p} if $\nu_{p}(\Delta)=0$, and E is said to have good reduction at p.
- E_{p} is a singular curve \mathbb{F}_{p} if $\nu_{p}(\Delta)>0$, and E is said to have bad reduction at p. If, moreover, $\nu_{p}(a)=0$, then E is said to have multiplicative reduction at p; otherwise, E has additive reduction at p.

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?
- Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_{E}=D$?

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?
- Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_{E}=D$?
- There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?
- Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_{E}=D$?
- There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.
- Shafarevich's Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_{E}=D$.

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?
- Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_{E}=D$?
- There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.
- Shafarevich's Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_{E}=D$.
- How finite?

Elliptic Curves with a Prescribed Discriminant

- The minimal discriminant Δ_{E} of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_{p} is not an elliptic curve over \mathbb{F}_{p} ? how hard it is to get rid of the singularity of E_{p} ?
- Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_{E}=D$?
- There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.
- Shafarevich's Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_{E}=D$.
- How finite? Is there a way we can list all such isomorphism classes of elliptic curves?

Elliptic Curves with a Prescribed Discriminant

Given a specified number field K and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.

Elliptic Curves with a Prescribed Discriminant

Given a specified number field K and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.
Example. If $K=\mathbb{Q}$ and $S=\{2,3\}$, then there are 6120 elliptic curves over \mathbb{Q}, up to \mathbb{Q}-isomorphism, with discriminant $2^{a} \times 3^{b}(a \leq 8, b \leq 5$.

Elliptic Curves with a Prescribed Discriminant

Given a specified number field K and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.
Example. If $K=\mathbb{Q}$ and $S=\{2,3\}$, then there are 6120 elliptic curves over \mathbb{Q}, up to \mathbb{Q}-isomorphism, with discriminant $2^{a} \times 3^{b}(a \leq 8, b \leq 5$.) This list was given earlier by Ogg and Hadano.

Elliptic Curves with a Prescribed Discriminant

- Question. Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, $p^{\alpha}, \alpha \geq 1$?

Elliptic Curves with a Prescribed Discriminant

- Question. Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, $p^{\alpha}, \alpha \geq 1$?
- Answer. Either $\left|\Delta_{E}\right|=p$ or p^{2}, or else $p=11$ and $\Delta_{E}=11^{5}$, or $p=17$ and $\Delta_{E}=17^{4}$, or $p=19$ and $\Delta_{E}=19^{3}$, or $p=37$ and $\Delta_{E}=37^{3}$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).

Elliptic Curves with a Prescribed Discriminant

- Question. Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, $p^{\alpha}, \alpha \geq 1$?
- Answer. Either $\left|\Delta_{E}\right|=p$ or p^{2},or else $p=11$ and $\Delta_{E}=11^{5}$, or $p=17$ and $\Delta_{E}=17^{4}$, or $p=19$ and $\Delta_{E}=19^{3}$, or $p=37$ and $\Delta_{E}=37^{3}$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).
It is conjectured that there are infinitely many elliptic curves with prime discriminant!
- Question. Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, $p^{\alpha}, \alpha \geq 1$?
- Answer. Either $\left|\Delta_{E}\right|=p$ or p^{2}, or else $p=11$ and $\Delta_{E}=11^{5}$, or $p=17$ and $\Delta_{E}=17^{4}$, or $p=19$ and $\Delta_{E}=19^{3}$, or $p=37$ and $\Delta_{E}=37^{3}$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).
It is conjectured that there are infinitely many elliptic curves with prime discriminant!
- Can we classify all elliptic curves over \mathbb{Q} whose minimal discriminant is a product of two prime powers?

Elliptic Curves with a Prescribed Discriminant

History:

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^{k} p^{m}$ was given by Ogg, Hadano, and Ivorra.

Elliptic Curves with a Prescribed Discriminant

History:

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^{k} p^{m}$ was given by Ogg, Hadano, and Ivorra.
- The list of elliptic curves with n-torsion, $n \geq 4$, and with minimal discriminant $p^{m} q^{n}$, where p and q are distinct primes was given by Bennett-Vatsal-Yazdani, Sadek, Dạbrowski-Jędrzejak.

Elliptic Curves with a Prescribed Discriminant

History:

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^{k} p^{m}$ was given by Ogg, Hadano, and Ivorra.
- The list of elliptic curves with n-torsion, $n \geq 4$, and with minimal discriminant $p^{m} q^{n}$, where p and q are distinct primes was given by Bennett-Vatsal-Yazdani, Sadek, Dạbrowski-Jędrzejak.
- Open Question: Classify elliptic curves over \mathbb{Q} with trivial rational torsion and good reduction outside the set $\{p, q\}$, with p and q different primes.

Elliptic Curves with a Prescribed Discriminant

Why is the question hard?

Elliptic Curves with a Prescribed Discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}. A globally minimal Weierstrass equation describing E is of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in \mathbb{Z}
$$

Define

Elliptic Curves with a Prescribed Discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}. A globally minimal Weierstrass equation describing E is of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in \mathbb{Z}
$$

Define

$$
\begin{aligned}
b_{2} & =a_{1}^{2}+4 a_{2}, \\
b_{4} & =2 a_{4}+a_{1} a_{3}, \\
b_{6} & =a_{3}^{2}+4 a_{6}, \\
b_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}, \\
\Delta_{E} & =-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} .
\end{aligned}
$$

Elliptic Curves with a Prescribed Discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}. A globally minimal Weierstrass equation describing E is of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in \mathbb{Z}
$$

Define

$$
\begin{aligned}
b_{2} & =a_{1}^{2}+4 a_{2}, \\
b_{4} & =2 a_{4}+a_{1} a_{3}, \\
b_{6} & =a_{3}^{2}+4 a_{6}, \\
b_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}, \\
\Delta_{E} & =-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} .
\end{aligned}
$$

- The Question: Solve the Diophantine equation

$$
-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6}=p^{\alpha} q^{\beta}
$$

in $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, p, q, \alpha, \beta$.

Elliptic Curves with a Prescribed Discriminant

Question. Classify elliptic curves over \mathbb{Q} with a torsion point of order $m \geq 4$ and good reduction outside the set $\{p, q\}$, with p and q different primes.

Theorem (Sadek, 2014)

Let E be an elliptic curve over \mathbb{Q} such that $E(\mathbb{Q})[6] \neq 0$ and $\Delta_{E}= \pm p^{\alpha} q^{\beta}$ for distinct prime p and q. It follows that Δ_{E} is given as follows:
$2 \times 7^{2},-2^{2} \times 7,2^{3} \times 7^{6}, 2^{4} \times 5,-2^{4} \times 3^{3}, 2^{6} \times 17,-2^{6} \times 7^{3}, 2^{8} \times 3^{3},-2^{8} \times 5^{2}$.

Elliptic Curves with a Prescribed Discriminant

Question. Classify elliptic curves over \mathbb{Q} with a torsion point of order $m \geq 4$ and good reduction outside the set $\{p, q\}$, with p and q different primes.

Theorem (Sadek, 2014)

Let E be an elliptic curve over \mathbb{Q} such that $E(\mathbb{Q})[6] \neq 0$ and $\Delta_{E}= \pm p^{\alpha} q^{\beta}$ for distinct prime p and q. It follows that Δ_{E} is given as follows:
$2 \times 7^{2},-2^{2} \times 7,2^{3} \times 7^{6}, 2^{4} \times 5,-2^{4} \times 3^{3}, 2^{6} \times 17,-2^{6} \times 7^{3}, 2^{8} \times 3^{3},-2^{8} \times 5^{2}$.

- Similar lists when $E(\mathbb{Q})[m] \neq\{0\}, m \geq 4$.

Elliptic Curves with a Prescribed Discriminant

Question. Classify elliptic curves over \mathbb{Q} with a torsion point of order $m \geq 4$ and good reduction outside the set $\{p, q\}$, with p and q different primes.

Theorem (Sadek, 2014)

Let E be an elliptic curve over \mathbb{Q} such that $E(\mathbb{Q})[6] \neq 0$ and $\Delta_{E}= \pm p^{\alpha} q^{\beta}$ for distinct prime p and q. It follows that Δ_{E} is given as follows:
$2 \times 7^{2},-2^{2} \times 7,2^{3} \times 7^{6}, 2^{4} \times 5,-2^{4} \times 3^{3}, 2^{6} \times 17,-2^{6} \times 7^{3}, 2^{8} \times 3^{3},-2^{8} \times 5^{2}$.

- Similar lists when $E(\mathbb{Q})[m] \neq\{0\}, m \geq 4$.
- For example: There exists no elliptic curve E over \mathbb{Q} with $E(\mathbb{Q})[10] \neq\{0\}$ and $\left|\Delta_{E}\right|=p^{\alpha} q^{\beta}$, where $p \neq q$ are primes, and $\alpha, \beta>0$.

Elliptic Curves with a Prescribed Discriminant

What is the proportion of elliptic curves whose discriminant/conductor is ...?

Elliptic Curves with a Prescribed Discriminant

What is the proportion of elliptic curves whose discriminant/conductor is ...?

Theorem (Cremona-Sadek, 2023)

- The density of semistable elliptic curves over \mathbb{Q} is

$$
\zeta(10) / \zeta(2) \approx 60.85 \%
$$

Elliptic Curves with a Prescribed Discriminant

What is the proportion of elliptic curves whose discriminant/conductor is ...?

Theorem (Cremona-Sadek, 2023)

- The density of semistable elliptic curves over \mathbb{Q} is

$$
\zeta(10) / \zeta(2) \approx 60.85 \%
$$

- The density of elliptic curves over \mathbb{Q} whose minimal discriminant is square-free is

$$
\zeta(10) \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right) \approx 42.93 \%
$$

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$.

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$. Also recall that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$. Also recall that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

We defined $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.
Facts:

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$. Also recall that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

We defined $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.

Facts:

- $\mathbb{T} \hookrightarrow E_{p}\left(\mathbb{F}_{p}\right)$ for every $p \nmid \Delta_{E}$

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$. Also recall that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

We defined $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.
Facts:

- $\mathbb{T} \hookrightarrow E_{p}\left(\mathbb{F}_{p}\right)$ for every $p \nmid \Delta_{E}$
- $\# \mathbb{T} \mid \# E_{p}\left(\mathbb{F}_{p}\right)$ for every $p \nmid \Delta_{E}$

Order of Reductions of Elliptic Curves

Recall that $E: y^{2}=x^{3}+a x^{2}+b, a, b \in \mathbb{Z}$,
$\Delta_{E}:=-4 a^{3}-27 b^{2} \neq 0$. Also recall that

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{T}
$$

We defined $E_{p}: y^{2}=x^{3}+a_{p} x+b_{p}$ where $a_{p} \equiv a \bmod p, b_{p} \equiv b$ $\bmod p$.
Facts:

- $\mathbb{T} \hookrightarrow E_{p}\left(\mathbb{F}_{p}\right)$ for every $p \nmid \Delta_{E}$
- $\# \mathbb{T} \mid \# E_{p}\left(\mathbb{F}_{p}\right)$ for every $p \nmid \Delta_{E}$
- Mazur: $\# \mathbb{T} \in\{1,2, \cdots, 10,12,16\}$

Order of Reductions of Elliptic Curves

Theorem (Serre-Katz)

Let $m \geq 2$ be an integer. Let E be an elliptic curve defined over K. The following statements are equivalent:
a) $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod m$ for a set of primes p of density 1 in \mathbb{Q}.
b) There exists an elliptic curve E^{\prime} over \mathbb{Q} such that:
i) E is \mathbb{Q}-isogenous to E^{\prime}; and
ii) $\# \mathbb{T}_{E^{\prime}} \equiv 0 \bmod m$.

Order of Reductions of Elliptic Curves

Theorem (Serre-Katz)

Let $m \geq 2$ be an integer. Let E be an elliptic curve defined over K. The following statements are equivalent:
a) $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod m$ for a set of primes p of density 1 in \mathbb{Q}.
b) There exists an elliptic curve E^{\prime} over \mathbb{Q} such that:
i) E is \mathbb{Q}-isogenous to E^{\prime}; and
ii) $\# \mathbb{T}_{E^{\prime}} \equiv 0 \bmod m$.

In particular, $m \in\{1,2, \cdots, 10,12,16\}$.

Arithmetic Statistics

Recall.

Arithmetic Statistics

Recall.

- What is the density of primes of the form $p \equiv \alpha \bmod m$, $\operatorname{gcd}(m, \alpha)=1$, among all primes?

Arithmetic Statistics

Recall.

- What is the density of primes of the form $p \equiv \alpha \bmod m$, $\operatorname{gcd}(m, \alpha)=1$, among all primes?
- Dirichlet proved that the density is $1 / \phi(m)$, where ϕ is the Euler's totient function.

Order of Reductions of Elliptic Curves

Let E be an elliptic curve defined over \mathbb{Q}; and $m \geq 2$ be such that $m \nmid \# \mathbb{T}_{E^{\prime}}$ for any $E^{\prime} \sim_{\mathbb{Q}} E$.

Order of Reductions of Elliptic Curves

Let E be an elliptic curve defined over \mathbb{Q}; and $m \geq 2$ be such that $m \nmid \# \mathbb{T}_{E^{\prime}}$ for any $E^{\prime} \sim_{\mathbb{Q}} E$.

Question: For each $\alpha \bmod m$, what is the density of primes p such that $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv \alpha \bmod m$?

Order of Reductions of Elliptic Curves

Example. (Pajaziti-Sadek, 2022)

Order of Reductions of Elliptic Curves

Example. (Pajaziti-Sadek, 2022)

$$
E_{t}: y^{2}=g_{t}(x):=x^{3}-7 t x^{2}+96 t^{2} x+256 t^{3}
$$

Order of Reductions of Elliptic Curves

Example. (Pajaziti-Sadek, 2022)

$$
E_{t}: y^{2}=g_{t}(x):=x^{3}-7 t x^{2}+96 t^{2} x+256 t^{3}
$$

- For any $t \in \mathbb{Z} \backslash \mathbb{Z}^{2}$ and any prime $p \nmid \Delta_{E_{t}}$, if $\left(\frac{t}{p}\right)=1$, then $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 5 ;$

Order of Reductions of Elliptic Curves

Example. (Pajaziti-Sadek, 2022)

$$
E_{t}: y^{2}=g_{t}(x):=x^{3}-7 t x^{2}+96 t^{2} x+256 t^{3}
$$

- For any $t \in \mathbb{Z} \backslash \mathbb{Z}^{2}$ and any prime $p \nmid \Delta_{E_{t}}$, if $\left(\frac{t}{p}\right)=1$, then $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 5 ;$
- there are infinitely many rational values of t such that $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 10$ for a set S of primes p of density at least $1 / 6$; and

Order of Reductions of Elliptic Curves

Example. (Pajaziti-Sadek, 2022)

$$
E_{t}: y^{2}=g_{t}(x):=x^{3}-7 t x^{2}+96 t^{2} x+256 t^{3}
$$

- For any $t \in \mathbb{Z} \backslash \mathbb{Z}^{2}$ and any prime $p \nmid \Delta_{E_{t}}$, if $\left(\frac{t}{p}\right)=1$, then $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 5 ;$
- there are infinitely many rational values of t such that $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 10$ for a set S of primes p of density at least $1 / 6$; and $\# E_{t, p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 20$ for a positive proportion of the primes in S.

Order of Reductions of Elliptic Curves

Theorem (Sun, 2006, Kim-Koo-Park, 2008)

Let $E: y^{2}=x^{3}-12 x-11$ be an elliptic curve defined over \mathbb{Q}. Then

$$
\# E_{p}\left(\mathbb{F}_{p}\right) \equiv\left\{\begin{array}{lll}
0 & \bmod 12 & \text { if } p \equiv 1,9,11,13,17,19 \bmod 20 \\
6 & \bmod 12 & \text { if } p \equiv 3,7 \bmod 20
\end{array}\right.
$$

In particular, $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 12$ for primes of density $3 / 4$, whereas $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 6 \bmod 12$ for primes of density $1 / 4$.

Order of Reductions of Elliptic Curves

Theorem (Sun, 2006, Kim-Koo-Park, 2008)

Let $E: y^{2}=x^{3}-12 x-11$ be an elliptic curve defined over \mathbb{Q}. Then

$$
\# E_{p}\left(\mathbb{F}_{p}\right) \equiv\left\{\begin{array}{lll}
0 & \bmod 12 & \text { if } p \equiv 1,9,11,13,17,19 \bmod 20 \\
6 & \bmod 12 & \text { if } p \equiv 3,7 \bmod 20
\end{array}\right.
$$

In particular, $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 12$ for primes of density $3 / 4$, whereas $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 6 \bmod 12$ for primes of density $1 / 4$.

Remark. E is \mathbb{Q}-isogenous to $E^{\prime}: y^{2}=x^{3}-372 x+2761$ where $E^{\prime}(\mathbb{Q}) \simeq \mathbb{Z} / 6 \mathbb{Z}$.

Order of Reductions of Elliptic Curves

Theorem (Sun, 2006, Kim-Koo-Park, 2008)

Let $E: y^{2}=x^{3}-12 x-11$ be an elliptic curve defined over \mathbb{Q}. Then

$$
\# E_{p}\left(\mathbb{F}_{p}\right) \equiv\left\{\begin{array}{lll}
0 & \bmod 12 & \text { if } p \equiv 1,9,11,13,17,19 \bmod 20 \\
6 & \bmod 12 & \text { if } p \equiv 3,7 \bmod 20
\end{array}\right.
$$

In particular, $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 12$ for primes of density $3 / 4$, whereas $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 6 \bmod 12$ for primes of density $1 / 4$.

Remark. E is \mathbb{Q}-isogenous to $E^{\prime}: y^{2}=x^{3}-372 x+2761$ where $E^{\prime}(\mathbb{Q}) \simeq \mathbb{Z} / 6 \mathbb{Z}$.
Another Remark. $E^{\prime}(\mathbb{Q}(\sqrt{5})) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z}$.

Order of Reductions of Elliptic Curves

Theorem (Pajaziti-Sadek, 2022)

Let $K=\mathbb{Q}(\sqrt{d})$, where d is a square free integer. Let E be an elliptic curve defined over \mathbb{Q} such that E is \mathbb{Q}-isogenous to an elliptic curve E^{\prime} with $E^{\prime}(\mathbb{Q})_{\text {tors }} \subsetneq E^{\prime}(K)_{\text {tors }}$. Assume moreover that ℓ is an odd integer such that $\# E^{\prime}(K)_{\text {tors }} \equiv 0 \bmod \ell$ and $\operatorname{gcd}\left(\# E^{\prime \prime}(\mathbb{Q})_{\text {tors }}, \ell\right)=1$ for any \mathbb{Q}-isogenous elliptic curve $E^{\prime \prime}$ to E. If $p \nmid 2 d \# E^{\prime}(K)_{\text {tors }}$ is a prime of good reduction of E, then

$$
\# E_{p}\left(\mathbb{F}_{p}\right) \equiv \begin{cases}0 \bmod \ell & \text { if }\left(\frac{d}{p}\right)=1 \\ 2 p+2 \bmod \ell & \text { if }\left(\frac{d}{p}\right)=-1\end{cases}
$$

In particular, the density of primes p such that $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0$ $\bmod \ell$ is at least $1 / 2$.

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$
- $E(\mathbb{Q}(\sqrt{-15}))_{\text {tors }} \simeq \mathbb{Z} / 16 \mathbb{Z}$

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$
- $E(\mathbb{Q}(\sqrt{-15}))_{\text {tors }} \simeq \mathbb{Z} / 16 \mathbb{Z}$
- if $p \equiv 7,11,13,14 \bmod 15$, or equivalently $\left(\frac{-15}{p}\right)=-1$, then $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0,2,4,6 \bmod 8$

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$
- $E(\mathbb{Q}(\sqrt{-15}))_{\text {tors }} \simeq \mathbb{Z} / 16 \mathbb{Z}$
- if $p \equiv 7,11,13,14 \bmod 15$, or equivalently $\left(\frac{-15}{p}\right)=-1$, then $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0,2,4,6 \bmod 8$
- however, E is \mathbb{Q}-isogenous to
$y^{2}+x y+y=x^{3}-x^{2}-240755 x-26606253$ whose torsion subgroup is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$,

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$
- $E(\mathbb{Q}(\sqrt{-15}))_{\text {tors }} \simeq \mathbb{Z} / 16 \mathbb{Z}$
- if $p \equiv 7,11,13,14 \bmod 15$, or equivalently $\left(\frac{-15}{p}\right)=-1$, then $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0,2,4,6 \bmod 8$
- however, E is \mathbb{Q}-isogenous to
$y^{2}+x y+y=x^{3}-x^{2}-240755 x-26606253$ whose torsion subgroup is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, so $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 4$ for any prime p of good reduction of E

Order of Reductions of Elliptic Curves

- $E: y^{2}+x y+y=x^{3}-x^{2}+47245 x-2990253$ over \mathbb{Q}
- $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$
- $E(\mathbb{Q}(\sqrt{-15}))_{\text {tors }} \simeq \mathbb{Z} / 16 \mathbb{Z}$
- if $p \equiv 7,11,13,14 \bmod 15$, or equivalently $\left(\frac{-15}{p}\right)=-1$, then $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0,2,4,6 \bmod 8$
- however, E is \mathbb{Q}-isogenous to
$y^{2}+x y+y=x^{3}-x^{2}-240755 x-26606253$ whose torsion subgroup is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, so $\# E_{p}\left(\mathbb{F}_{p}\right) \equiv 0 \bmod 4$ for any prime p of good reduction of E

$$
\# E_{p}\left(\mathbb{F}_{p}\right) \equiv \begin{cases}0 \bmod 16 & \text { if } p \equiv 1,2,4,8 \bmod 15 \\ 0,4,8,12 \bmod 16 & \text { if } p \equiv 7,11,13,14 \bmod 15\end{cases}
$$

Bibliography

- J. Cremona and M. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Exp. Math. 16 (2007), 303-312.
- J. Cremona and M. Sadek, Local and Global Densities for Weierstrass Models of Elliptic Curves, Mathematical Research Letters, 30 (2023), 413-461.
- T. Ekedahl, An Infinite Version of the Chinese Remainder Theorem, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 53-59.
- A. Pajaziti and M. Sadek, On congruence classes of orders of reductions of elliptic curves, preprint.
- B. Poonen and M. Stoll, A local-global principle for densities, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 241-244.
- M. Sadek, On elliptic curves whose conductor is a product of two prime powers, Math. Comput. 83 (2014), 447-460.

Thank you!

