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1. Lecture 1: Some remarks on mathematical rigor, sets, operations,
fields

Mathematically proving a statement means reducing it to axioms/definitions and
(very importantly) previously proven statements by way of logic. In mathematics,
you simply cannot know that a statement is true without proving it.

On the other hand, when you cannot prove something or give an invalid proof
it is very rarely the case that this is because you do not know the mechanics of
proofs. It is either laziness (just making a statement which feels true but not
properly thinking about why) or quite possibly you do not have a sufficiently good
understanding of the actual content of what you are thinking about. The latter
might be not knowing the definition of something, but you might also have all the
definitions of everything and still not be able to prove a statement that actually is
true.

You have given arguments that come pretty close to proofs your entire life.

Question 1. Find all rational numbers x ∈ Q satisfying the equation

x2 = 4.

�

When you write that x is either 2 of −2 on your answer sheet, what you are
really saying is the following.

Claim 1. x ∈ Q satisfies the equation x2 = 4 if and only if x = 2 or x = −2.

Here is something that is not a proof of Claim 1: Clearly, x = ±2 solve the
equation and I cannot find any other solutions – I hope we will all agree that this
is not a proof.

Here is the outline of a proof:

x2 = 4 ⇐⇒ x2 − 4 = 0 ⇐⇒ (x− 2)(x+ 2) = 0 ⇐⇒ x = 2 or x = −2

This is an outline because you would need to justify each if and only if sign.
Since we are very used to doing arithmetic with rational numbers each of these
steps might look obvious (and they are not that difficult). Do not worry about this
now. We will come back to this at the end of this lecture.
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In order to erase the effects of this sort of ”looking obvious“, we will start the
course with introducing abstract fields, learn how to do arithmetic with them and
develop the fundamental notions of linear algebra in this very general setting. Once
the linear algebra part starts having some real content, we will switch to working
with real and complex numbers.

Remark 1. There is something slightly awkward that I want to warn you about. We
will not give a rigorous construction of real numbers. This is non-trivial business
and the ideas involved are not really that relevant in linear algebra. We are just
going to assume that the real numbers are somehow defined and they form a field
with the operations we are accustomed to. This awkwardness will not occur today.

�

Here is another notion that we will be vague about. For us a set is something
that has elements. Some examples are: {1, 2, 3, 4, 5}, Z, {apple, orange}, R, C. A
map of sets S → S′ is something that assigns an element of S′ to each element of
S.

Let S be a set. An operation on S is a machine that takes in two elements of S
in an order (which matters in general) and produces an element of S. Let us say
this in more proper language.

If S and S′ are sets, then we can define the product set

S × S′ : {(s, s′) | s ∈ S, s′ ∈ S′}.

Definition 1. Let S be a set. An operation on S is a map

S × S → S.

�

When talk about an operation we generally choose a symbol like � and denote
the result of applying the operation to element (s1, s2) ∈ S × S by s1 � s2.

Example 1. S = {1, 2} with 1� 1 = 1, 1� 2 = 1, 2� 1 = 2, 2� 2 = 2. �

Exercise 1. Concisely describe this operation in words. �

Exercise 2. The set of integers Z has operations addition + and multiplication ·.
Are subtraction and/or division operations on Z? �

We are ready for the main definition of the day, but it is a long one.

Definition 2. A field F is a set equipped with two operations ⊕ (referred to as
addition) and � (referred to as multiplication) which satisfy the following axioms:

• commutativity of both operations:

a⊕ b = b⊕ a and a� b = b� a,
for every a, b ∈ F
• associativity of both operations:

(a⊕ b)⊕ c = a⊕ (b⊕ c) and (a� b)� c = a� (b� c),
for every a, b, c ∈ F
• existence of identity elements for operations: there exists elements 0 6= 1 ∈
F such that

a⊕ 0 = a and a� 1 = a,

for every a ∈ F
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• existence of additive inverses: for every a ∈ F, there exists a′ ∈ F such that
a⊕ a′ is an additive identity
• existence of multiplicative inverses for non-zero elements: for every a ∈ F

which is not an additive identity, there exists a′ ∈ F such that a � a′ is a
multiplicative identity
• distributivity of multiplication over addition:

a� (b⊕ c) = (a� b)⊕ (a� c),
for every a, b, c ∈ F

�

Exercise 3. Is (Z,+, ·) a field? �

Conveniently, it follows from the axioms that the identity elements and inverse
are in fact unique.

Lemma 1. Let F be a field.

(1) There is only one additive identity.
(2) There is only one multiplicative identity.
(3) For every a ∈ F, there exists only one additive inverse.
(4) For every a ∈ F− {0}, there exists only one multiplicative inverse.

Proof. I will do only one, the first one. Assume that both 0 and 0′ are additive
identity elements. Then, we have 0⊕0′ = 0, but also 0⊕0′ = 0′⊕0 = 0′. Therefore,
0 = 0′. �

Exercise 4. Carefully prove the other three statements. �

We will denote the additive identity by 0, and the multiplicative identity by 1 as
above. Let us also denote the additive inverse of a by −a and, if a 6= 0, we denote
the multiplicative inverse by a−1. It is also customary to write

a− b for a⊕ (−b)

In your first homework, you will go through the construction of rational numbers
and prove the following important result.

Lemma 2. (Q,+, ·) is a field. The identities and inverses are what you have been
saying they are all your life.

Exercise 5. Let’s assume that rationals are what you had been saying they are so
far and assume this lemma. Turn the proof outline

x2 = 4 ⇐⇒ x2 − 4 = 0 ⇐⇒ (x− 2)(x+ 2) = 0 ⇐⇒ x = 2 or x = −2

of Claim 1 to an actual proof. �

This is probably still slightly confusing. Let us now start doing arithmetic over
fields. We will now remove the circles from the operations of an abstract field. The
· will slowly simply disappear, and you will be expected to understand that it is
there from the context.

We can simply repeat the discussion from the beginning.
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Question 2. Let F be a field. Find all elements x ∈ F satisfying the equation

x2 = 4.

�

Exercise 6. What is 4 here? How about x2? Define them carefully in the only
possible way. �

Remark 2. Part of doing mathematics is also to make good sensible definitions.
Even though you will not be doing that a lot in this course, I gave you one chance
here. �

The following claim which is a full answer of the question is still true.

Claim 2. x ∈ F satisfies the equation x2 = 4 if and only if x = 2 or x = −2.

The same outline of the proof can still be turned into a full proof:

x2 = 4 ⇐⇒ x2 − 4 = 0 ⇐⇒ (x− 2)(x+ 2) = 0 ⇐⇒ x = 2 or x = −2

If you solved Exercise 5 in the right way the same proof works here as well. If you
were confused there maybe just do this one, which implies Exercise 5 by Lemma 2.

We finish with a trick question.

Question 3. Is it true that for every F, x2 = 4 has two solutions? �

2. Lecture 2: Isomorphisms of fields, equivalence relations,
Examples of fields: F2, Fp, C

There are many many different kinds of fields. Today we will give examples and
non-examples of fields.

Let us start with a definition. Assume that we have two fields F and F′, and a
bijective map φ : F→ F′ such that

φ(a+ b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b),

for every a, b ∈ F.

Exercise 7. Prove that it also follows that φ(0) = 0 and φ(1) = 1. �

We call φ an isomorphism, and say that F and F′ are isomorphic fields. This
means that if I consider the addition and multiplication tables (see the figure in the
next page for an example of how these look like) of F and replace all the elements
in the tables with elements of F′ using φ, what I obtain is precisely the full addition
and multiplication tables of F′.

Remark 3. In mathematics, generally, two sets equipped with the same kind of
“extra structure” being isomorphic means that they are the same up to a relabeling
of the elements as above. We will consider this notion for vector spaces as well later.

�

Remark 4. Even though in this lecture this will not come up, it is an important
point that two fields can be isomorphic in different ways. For example, there can be
an isomorphism φ : F → F, which is not the identity map. These would be called
symmetries of F. We will come back to this notion later in the course for vector
spaces and normed vector spaces. �
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Figure 1. A respectable looking multiplication table for numbers
1 − 10 to explain you the form of an addition or multiplication
table.

Let us start with fields with finitely many elements. Since we assumed 0 6= 1, a
field needs to have at least two elements.

Proposition 1. On the set {a,m} there exists exactly one way to define addition
and multiplication operations so that these form a field with the property that a is
the additive identity and m is the multiplicative identity.

Proof. Let us try to determine the operations assuming they give a field. Using what
it means to be an additive or multiplicative identity (along with commutativity),
we automatically know what the operations should be immediately except m + m
and a · a.

We know that m needs to have an additive inverse and a cannot be that inverse.
Therefore, we need m+m = a.

We also have that

a · a = a · (m+m) = a ·m+ a ·m = a+ a = a.

Hence, we know what the addition and multiplication operations need to be if
they are to define a field. What we now need to do is to check that these operations
indeed do define a field by checking the axioms. I leave this to you - note that we
could really fail here. �

Remark 5. When writing this proof, I could have denoted a by 0 and m by 1.
It would be sort of like giving nicknames to a and m, and refer to them by their
nicknames. Note that sometimes nicknames describe a person better than their
name. �

Exercise 8. Prove that there exists a unique field with two elements up to isomor-
phism. �

Exercise 9. Show that for an arbitrary field F, we have 0 · 0 = 0. �
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Another one of your homework problems will be showing that for every prime
number p there exists a unique field Fp with p elements up to isomorphism. Just as
a reminder: prime numbers are 2, 3, 5, . . . - positive integers who are divisible only
by 1 and themselves.

Remark 6. We have just constructed F2 and showed, as you will understand hope-
fully while solving the exercise, that it is unique up to isomorphism. �

Today I will get you started on that problem and use this chance to introduce
another abstract notion.

An equivalence relation on a set S is a subset E ⊂ S × S with some properties
that we will momentarily state. First we introduce a notation. If (s1, s2) ∈ E,
we write s1 ∼ s2 and say s1 is equivalent to s2. The properties/axioms that E is
supposed to satisfy to be an equivalence relation are

• s ∼ s for every s ∈ S.
• s1 ∼ s2 if and only if s2 ∼ s1 for every s1, s2 ∈ S.
• If s1 ∼ s2 and s2 ∼ s3, we have s1 ∼ s3 for every s1, s2, s3 ∈ S.

It is customary to simply say ∼ is an equivalence relation on S and never give a
name to the subset. This definition albeit being abstract is a simple one. Let’s say
you have some students in a class and you want to divide them into groups, but
you want to do this by writing down which ordered pairs of students are going to
be in the same group. If you do not want want to lose the respect of your students,
you better choose these ordered pairs in such a way that they satisfy the three
properties listed.

As this analogy suggests, if you have a set S with an equivalence relation ∼,
you can talk about the set of equivalence classes denoted by S/ ∼. An equivalence
class is a subset of S such that all of its elements are equivalent to each other and
none of its elements are equivalent to an element in its complement. These are the
groups of students from above.

Example 2. Let n > 0 be an integer. We define an equivalence relation on Z as
follows. We declare a ∼ b if a− b is divisible by n, i.e.

a ≡ b mod n

�

Exercise 10. Prove that that this is indeed an equivalence relation by quickly check-
ing the axioms. �

Let us call the set of equivalence classes Z/nZ and the denote the equivalence
class of a ∈ Z by [a] ∈ Z/nZ. By definition [a] = [a+ n]. Notice that:

Z/nZ = {[0], [1], . . . [n− 1]}
Finally, we define addition and multiplication on Z/nZ:

• [a] + [b] = [a+ b], for 0 ≤ a, b ≤ n− 1
• [a] · [b] = [a · b], for 0 ≤ a, b ≤ n− 1

where on the RHS we are using the addition and multiplication operations on the
set of integers.

In the homework you will show that if n is a prime number, then these operations
turn Z/nZ into a field.
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Exercise 11. Show that Z/4Z with these two operations is not a field. �

Remark 7. There are other finite fields. We will prove in this course that the
number of elements of a finite field has to be qk for some prime q and k ≥ 1. In
fact, up to isomorphism such a field is unique, but we will not show this in this
course.

�

Enough about finite fields! Let’s go to infinite fields. As I mentioned last time,
that Q is a field is in your homework. You should also be able to convince yourself
that R is a field as well (with the caveat I mentioned in the previous class, shh..)

The next example is complex numbers. As a set C := R× R, but we denote an
element (a, b) ∈ C by

a+ ib.

In the next class, I will explain to you how to think about complex numbers
geometrically, but for today let us simply define the addition and multiplication on
them:

• (a+ ib) + (c+ id) = (a+ c) + i(b+ d)
• (a+ i0) · (c+ id) = ac+ iad
• (0 + i1)2 = −1 + i0

As you may have realized the last two look quite weird unless we introduce the
following shorthand notations:

• a+ i0 is denoted by a
• 0 + ib is denoted by ib
• i1 is denoted by i

Exercise 12. We put ourselves in danger here since a+ ib can be interpreted in two
ways. Show that these two interpretations are in fact the same. �

The last two rules with these conventions looks like:

• a · (c+ id) = ac+ iad
• i2 = −1

Exercise 13. Deduce the general multiplication rule for two complex numbers from
these two rules assuming that the addition and multiplication operations turn C
into a field. �

Next class we will also prove that these operations (addition as defined above
and the multiplication you just derived) indeed turn C into a field.

Let’s finish with an example of a set with two operations which come very close
to being a field called quaternions (we will never see them again). As a set H = R4

with elements denoted by

a+ ib+ jc+ kd.

Addition of two quaternions and multiplication of a “purely real” quaternion with
an arbitrary quaternion is defined exactly as in complex numbers. In addition:

• i2 = j2 = k2 = −1
• ij = −k
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Figure 2. Adding complex numbers geometrically

Exercise 14 (Bonus). Show that multiplication of two quaternions can be defined in
only one way so that the two rules above are satisfied and along with the addition
operation all the axioms of a field except commutativity of the multiplication are
satisfied. After defining the multiplication operation this way, show that commu-
tativity of multiplication is not satisfied. �

3. Lecture 3: Geometric interpretation of complex numbers and its
operations, first examples of vector spaces

Recall from last time that complex numbers C are defined to be the set R × R
with the operations

• (a+ ib) + (c+ id) = (a+ c) + i(b+ d)
• (a+ ib) · (c+ id) = (ac− bd) + i(bc+ ad)

Note that on the right hand side of these definitions, we are using addition and
multiplication operation of real numbers.

Let’s start checking that these operations make C into a field.

• Commutativity of addition and multiplication follows from the formulas
and commutativity of addition and multiplication for real numbers
• Associativity of addition follows again from associativity of addition for real

numbers. Associativity of multiplication can be checked directly but let’s
leave it for later.
• Easy to see that 0 + i0 is an additive identity and 1 + 0i is a multiplicative

identity.
• Again it is clear that −a− ib = −a+ i(−b) is an additive inverse for a+ ib.

We leave the existence of multiplicative inverses for later.
• Let us leave the distributivity axiom for later as well.

Before we check these three remaining axioms, we make an excursion into the
geometry of complex numbers.

First of all, we think of complex numbers as points in the Cartesian plane where
a+ ib is the point with coordinates (a, b).

We can also of course think of points in the Cartesian plane (and therefore
complex numbers) as vectors with starting points at the origin. The addition of
complex numbers correspond precisely to the addition of vectors.
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The more challenging task is to understand how to represent multiplication of
complex numbers geometrically. We can represent every non-zero vector inside the
Cartesian plane in a unique way by its polar coordinates (r, θ):

• r is its magnitude - a positive real number
• θ its phase - an element of R/2πZ := R/ ∼, where φ ∼ φ′ if φ − φ′ = 2πk

for some k ∈ Z

Definition 3. We define the magnitude of a complex number a+ ib as

|a+ ib| :=
√
a2 + b2.

We define the phase of a non-zero complex number as the unique θ ∈ R/2πZ
which satisfies

cos(θ) =
a√

a2 + b2
and sin(θ) =

b√
a2 + b2

�

The magnitude and phase of a complex number is of course nothing but the
magnitude and phase of the vector that corresponds to it in the Cartesian plane.

Definition 4. For any θ ∈ R/2πZ, we define the complex number

eiθ := cos(θ) + i sin(θ)

�

Lemma 3. Let r and θ be the magnitude and phase of a non-zero complex number
a+ ib. Then,

a+ ib = reiθ.

Proof. The right hand side is equal to
√
a2 + b2( a√

a2+b2
+i b√

a2+b2
) by definition. �

Proposition 2. For any θ, θ′ ∈ R/2πZ, we have

eiθ · eiθ
′

= ei(θ+θ
′).

On the left we used the multiplication of two complex numbers as defined above.

Proof. Direct computation of the left hand side gives

(cos(θ) cos(θ′)− sin(θ) sin(θ′)) + i(cos(θ) sin(θ′) + sin(θ) cos(θ′)).

Using trigonometric identities, this is equal to

cos(θ + θ′) + i sin(θ + θ′),

which is the right hand side. �

With this proposition, it is straightforward to multiply complex numbers written
in terms of their magnitude and phase

reiθ · r′eiθ
′

= rr′ei(θ+θ
′).

In words: when you multiply two complex numbers you multiply their magni-
tudes as real numbers and add their phases (modulo 2π). If you think about one of
the complex numbers as a vector in the Cartesian plane and the other one in reiθ

form then the result of multiplication rotates the vector by θ and then scales it by
r.
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Figure 3. Multiplying complex numbers geometrically

The complex number 0 does not have a well defined phase, but multiplying any
complex number with 0 clearly results in 0.

Let us first check the associativity of complex multiplication. Multiplication of
real numbers is associative and addition of phases modulo 2π is likewise associative.
Hence, we have our associativity.

Secondly, we can easily see that any non-zero complex number has a multi-
plicative inverse using that the magnitude and phase of 1 are 1 and 0 modulo 2π
respectively. Therefore if the magnitude and phase of a + ib is r and θ, it is clear
that the complex number with magnitude r−1 and phase −θ is a multiplicative
inverse.

In standard representation the inverse complex number is

a√
a2 + b2

− i b√
a2 + b2

.

Exercise 15. Check directly that this is the inverse. �

Finally let us check the distributive law. We need to show that

z · (z1 + z2) = z · z1 + z · z2.

This is clearly true for z = 0. We write z as reiθ and think of z1, z2, z1 + z2 as
vectors in the Cartesian plane. Multiplication with reiθ is a θ radian rotation of
the plane followed by a scaling by r. These operations both send the send the sum
of any two vectors in the plane to the sum of their images. If one thinks about the
usual parallelogram picture for adding vectors (as in Figure 2), this becomes visible
by rotating or scaling the entire parallelogram.

This finishes our discussion of complex numbers for now. We now give some
examples of what will be vector spaces next week.
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Figure 4. The complex number −1.8 + i and its inverse

Let F be a field. Let Fn be the set of n-tuples of elements of F:

Fn = F× F · · · × F︸ ︷︷ ︸
n

= {(a1, . . . , an) | a1, . . . , an ∈ F}

If we call an arbitrary element of F a scalar, we can define scalar multiplication
for elements of Fn:

c · (a1, . . . , an) = (ca1, . . . , can).

We can also add two elements of Fn:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

These two operations turn Fn into a vector space over F as we will define on
Monday.

Here is a slightly more complicated example of a to-be vector space. Fix

α1, . . . , αn, β1, . . . , βn ∈ F.
Consider the subset V ⊂ Fn of elements (a1, . . . , an) that satisfy the equations

α1a1 + . . .+ αnan = 0 and β1a1 + . . .+ βnan = 0.

Exercise 16. Prove that V is closed under multiplication by any scalar and addition.
�

As a result we will have a vector space structure on V as well. Notice that V
does not come with a “basis”. We will see that one can be chosen but even without
choosing one, we will be able to say that V is a vector space over F and work with
it.

4. Lecture 4: Vector spaces, subspaces

Definition 5. Let F be a field. A vector space V over F is a set equipped with

• scalar multiplication: a map F× V → V denoted by (c, v) 7→ c · v
• vector addition: a map V × V → V denoted by (v1, v2) 7→ v1 + v2
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satisfying the following axioms:

(1) vector addition is commutative, associative, admits additive identity and
additive inverses

(2) scalar multiplication satisfies
• 1 · v = v, for every v ∈ V
• (a · b) · v = a · (b · v) for every a, b ∈ F, v ∈ V

(3) the two together satisfy
• a · (v + w) = a · v + a · w for every a ∈ F, v, w ∈ V
• (a+ b) · v = a · v + b · v for every a, b ∈ F, v ∈ V

�

Some remarks:

• Vector addition is an operation in the sense that we defined before. The
axioms satisfied by vector addition alone are the same axioms that are
satisfied by the addition operation alone in a field.

• In the second axiom for scalar multiplication one out of the four multipli-
cation symbols denote the multiplication in F, whereas the other three are
the scalar multiplication. I hope you can see which one is which.

• There are two distributivity axioms: one for vector addition, one for addi-
tion in F.

We will use the same symbols for addition in the field and vector addition, and
also for multiplication in the field and scalar multiplication. Context will take care
of the ambiguity.

The most important example of a vector space is Fn for n ≥ 0 with the scalar
multiplication and vector addition as we defined in the previous lecture. For F = R,
n = 1, 2, 3, we know how to geometrically think about scalar multiplication and
vector addition. This will provide important intution but you have to always use
intution along with rigor so that it does not lead to mistakes.

Exercise 17. Check the axioms of a vector space for Fn. �

Here is a generalization of Fn. Let S be a set, we define FS as the set of all maps
S → F. On FS we can define scalar multiplication and vector addition so that it
becomes a vector space over F.

• Given c ∈ F and f ∈ FS , we define c · f to be the map S → F that sends s
to c · f(s)

• Given f1, f2 ∈ FS , we define f1 + f2 to be the map S → F that sends s to
f1(s) + f2(s)

Exercise 18. Check the axioms of a vector space for FS . �

Question 4. Why did I say that FS is a generalization of Fn? �

Let me also give a weird example of a vector space: R is a vector space over Q.
We use the usual multiplication of a rational number with a real number as scalar
multiplication and usual addition of real numbers as the vector addition.

We now note some direct implications of the axioms of a vector space. You
should make sure that you can parse them first.

Proposition 3. • 0 · v = 0 for all v ∈ V .
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• a · 0 = 0 for all a ∈ F.
• (−1) · v = −v for all v ∈ V.

Proof. I will only do the first one.

0 · v = (0 + 0) · v = 0 · v + 0 · v.

Adding −0 · v to both sides we obtain 0 = 0 · v as desired. �

Remark 8. Noting that F is a vector space over itself using the field operations (i.e.
Fn for n = 1), you can see that these implications hold for field operations as well.

�

Here is another important definition.

Definition 6. A non-empty subset W of a vector space V over F is called a subspace
if it is closed under scalar multiplication with any element of F and vector addition.

�

Exercise 19. A subspace W ⊂ V is automatically a vector space with the scalar
multiplication and vector addition operations taken from V . �

Last lecture we had considered the subset W ⊂ Fn of elements (a1, . . . , an) that
satisfy the equations

α1a1 + . . .+ αnan = 0 and β1a1 + . . .+ βnan = 0,

where α1, . . . , αn, β1, . . . , βn ∈ F. You showed (hopefully) that W is a subspace,
without knowing the word, in an exercise from last class.

One can show that all subspaces of Fn are the set of solutions of a finite number
of linear equations as in this example. Eventually this will become an “obvious”
statement for us. For now let us accept it for the simple case R3 and think about
the following question.

Question 5. What are the subspaces of R3 geometrically? �

Of course, we could also think about the subspaces of for example F5
2. It is much

harder to use visual intuition in this case. There will be a problem on this in your
next homework.

Exercise 20. What should be the definition of an isomorphism of vector spaces over
the same field F? The answer will be on your next homework as well, along with
some questions about it. �

5. Lecture 5: Sums and direct sums of subspaces, linear combinations,
span of a list of vectors, finite dimensionality

Let’s begin with a definition. Throughout this lecture F denotes an arbitrary
field.

Definition 7. Let V be a vector space over F and U1, . . . , Un ⊂ V be subspaces.
We define the subset

U1 + . . .+ Un := {v ∈ V | there exists u1 ∈ U1, . . . un ∈ Un
such that v = u1 + . . .+ un}.

�
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In words U1 + . . . + Un consists of the vectors in V which can be written as a
sum of one vector from each Ui.

Lemma 4. The sum of subspaces U1 + . . .+ Un is a subspace.

Proof. Clearly, 0 = 0 + . . . + 0 is an element of U1 + . . . + Un. We need to check
that it is closed under scalar multiplication and vector addition in V .

• Let c ∈ F, and u1 ∈ U1, . . . un ∈ Un, we need to show that

c · (u1 + . . .+ un) ∈ U1 + . . .+ Un.

By distributivity:

c · (u1 + . . .+ un) = c · u1 + . . .+ c · un.
Since each Ui is a subspace, we have c · ui ∈ Ui. This proves the desired
claim.

• Let u1, u
′
1 ∈ U1, . . . un, u

′
n ∈ Un, we need to show that

(u1 + . . .+ un) + (u′1 + . . .+ u′n) ∈ U1 + . . .+ Un.

By commutativity and associativity the sum is equal to:

(u1 + u′1) + . . .+ (un + u′n).

Since each Ui is a subspace, we have ui + u′i ∈ Ui. This proves the desired
claim.

�

Definition 8. Let V be a vector space over F and U1, . . . , Un ⊂ V be subspaces.
We call U1 + . . .+ Un a direct sum if for u1 ∈ U1, . . . un ∈ Un,

u1 + . . .+ un = 0 implies u1 = . . . = un = 0.

If U1 + . . .+ Un is a direct sum, then we denote it by

U1 ⊕ . . .⊕ Un.
�

The following lemma explains the meaning of a sum being a direct sum.

Lemma 5. U1 + . . .+Un is a direct sum if and only if for every v ∈ U1 + . . .+Un,
there are unique elements u1 ∈ U1, . . . un ∈ Un such that

v = u1 + . . .+ un.

Proof. Let us first prove the if direction, which means that we will assume that
for every v ∈ U1 + . . . + Un, there are unique elements u1 ∈ U1, . . . un ∈ Un such
that v = u1 + . . . + un and prove that U1 + . . . + Un is a direct sum. We use the
definition: assume that u1 + . . .+ un = 0. Since 0 + . . .+ 0 = 0 and because of the
uniqueness that we assumed, this means u1 = . . . = un = 0 as desired.

Now we prove the converse, so now we assume that U1 + . . .+Un is a direct sum.
Let us assume that for some v ∈ U1 + . . .+ Un and u1, u

′
1 ∈ U1, . . . un, u

′
n ∈ Un we

have
v = u1 + . . .+ un = u′1 + . . .+ u′n.

Let us subtract u1 + . . . + un from the two sides of the last equality and use
associativity to obtain:

(u′1 − u1) + . . .+ (u′n − un) = 0.
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By our assumption we get u1 = u′1, . . . , un = u′n, proving the desired uniqueness.
�

Below are some examples of subspaces of F3. I will use the notation to ask you
exercises today and next class.Let us denote the set

• U1 = {(x, 0, 0) | x ∈ F}
• U2 = {(x, x, 0) | x ∈ F}
• U3 = {(x, y, 0) | x, y ∈ F}
• U4 = {(x, y, z) | x, y, z ∈ F with x+ y + z = 0}
• U5 = {(x, y, z) | x, y, z ∈ F with x+ y + z = 0, x = y}
• U6 = {(x, y, z) | x, y, z ∈ F with z = x+ y}

Exercise 21. Check that these are indeed subspaces. For F = R, imagine (if you
want draw) them geometrically inside the three dimensional Euclidean space. �

Let us denote the set {1, . . . , 6} by [6].

Exercise 22. Can you find i, j, k ∈ [6] such that

(1) Ui ⊕ Uj = Uk?
(2) Ui + Uj = Uk but Ui + Uj is not a direct sum?
(3) Ui ⊕ Uj ⊕ Uk = F3?
(4) Ui + Uj = F3 but Ui + Uj is not a direct sum?
(5) Ui ⊕ Uj = F3?

�

Definition 9. V is a vector space over F. A linear combination of a list of vectors
v1, . . . , vn ∈ V is any vector in V of the form

a1v1 + . . .+ anvn,

for some a1, . . . , an ∈ F. �

The set of all linear combinations of a list of vectors v1, . . . , vn ∈ V is called the
span of v1, . . . , vn:

span(v1, . . . , vn) = {a1v1 + . . .+ anvn | a1, . . . , an ∈ F} ⊂ V.
Next time we will prove that span(v1, . . . , vn) is the smallest subspace of V which

contains the vectors v1, . . . , vn.

Here is our final definition.

Definition 10. V is a vector space over F. If there is a finite list of vectors
v1, . . . , vn ∈ V whose span equals V , then V is called finite dimensional. Oth-
erwise, we call it infinite dimensional. �

Question 6. For S a set, when is FS finite dimensional? �

6. Lecture 6: More on the span of a list of vectors, linear
dependence

Throughout this lecture, let F be a field and V a vector space over it.
Last time, we ended with defining the span of a list of vectors. We start with a

simple claim.
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Proposition 4. Let v1, . . . , vn ∈ V . Then span(v1, . . . , vn) ⊂ V is a subspace that
contains each vector vi.

Exercise 23. Carefully write a proof of this. �

Proposition 5. Let v1, . . . , vn ∈ V . Let W ⊂ V be a subspace that contains the
vectors v1, . . . , vn. Then span(v1, . . . , vn) ⊂W .

Proof. First of all, since W is closed under scalar multiplication for any scalar
ai ∈ F, ai · vi is in W . Moreover, since W is closed under vector addition (using a
simple induction) we can also show that for a1, . . . , an ∈ F,

a1v1 + . . .+ anvn ∈W.

This finishes the proof. �

Colloquially, we can say that span(v1, . . . , vn) is the smallest subspace containing
v1, . . . , vn.

Exercise 24. Let U1, . . . , Un be subspaces of V . Prove that U1 + . . . + Un is the
smallest subspace of V containing U1, . . . , Un in the same sense. �

Definition 11. Let v1, . . . , vn ∈ V . If span(v1, . . . , vn) = V , we say that v1, . . . , vn
span V . �

We can restate a definition we made last time as: if there are v1, . . . , vn ∈ V
that span V , then we call V finite dimensional. Our next order of business is to
show that if V is finite dimensional, then there is a well-defined notion of minimum
number of vectors that span V . This will lead us to the definition of the dimension
of V .

Definition 12. Let v1, . . . , vn ∈ V . If a1v1 + . . .+anvn = 0 for scalars a1, . . . , an ∈ F
implies a1 = . . . = an = 0, we say that v1, . . . , vn are linearly independent.

Otherwise, i.e. if there exists a1, . . . , an ∈ F which are not all equal to 0 such
that a1v1 + . . .+ anvn = 0, then we call them linearly dependent. �

Exercise 25. Prove that the non-zero vectors v1, v2 ∈ V are linearly dependent if
and only if v2 = av1 for some non-zero a ∈ F. Visualize what this statement means
in R3. �

If we have a list of linearly dependent vectors, there is a systematic way to remove
vectors from the list until the remaining vectors are linearly independent without
changing the span. To state the precise statement let us introduce a notation.
If v1, . . . , vn is a list of vectors, then v1, . . . , v̂j , . . . , vn be the list of vectors that
remains after removing vj . Here j can be 1 or n as well. Let us also define the span
of an empty list of vectors to be {0}.

Lemma 6. Let v1, . . . , vn ∈ V be linearly dependent. Then, there exists j ∈
{1, . . . , n} such that

• span(v1, . . . , v̂j , . . . , vn) = span(v1, . . . , vn)
• vj ∈ span(v1, . . . , vj−1)

Proof. By the assumption of linear dependence, there exists a1, . . . , an ∈ F, not all
of them zero, such that

a1v1 + . . .+ anvn = 0.
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Let us choose j ∈ {1, . . . , n} be the largest such that aj 6= 0. This means that we
actually have:

a1v1 + . . .+ ajvj = 0

with aj 6= 0. Subtracting a1v1 + . . .+ aj−1vj−1 from both sides and dividing by aj
(which by definition means multiplying by a−1

j using that aj 6= 0), we obtain

vj = −a−1
j a1v1 − . . .− a−1

j aj−1vj−1.(1)

To see the first bullet point, we take any v ∈ V that is equal to a linear com-
bination of v1, . . . , vn and use the Equation (1) to show that v is also a linear
combination of v1, . . . , v̂j , . . . , vn. The second bullet point follows by definition
from Equation (1). �

Exercise 26. Recall our subspaces U1, . . . , U6 ⊂ F3 from the previous lecture.

(1) Which of these subspaces are the span of one vector in F3?
(2) Are all of these vector spaces finite dimensional? Prove your result.
(3) Find the minimum number of vectors that span each of these subspaces.

�

7. Lecture 7: Our first theorem

In this lecture we will prove a result that is extremely important. You should
notice that it is the first result that we are calling a theorem.

Here is a convention for what follows. We have used it in the previous lecture
but I will make it more visible here. If we have a list of vectors v1, . . . , vn, we will
sometimes consider the list vi, . . . , vk for i ∈ {1, . . . , n, n+ 1} and k ∈ {0, 1, . . . , n}.
If i < k, this just means what you think: we take all the vectors in the list between
and including vi and vk in the list in the same order. If i = k, it will mean the list
with one vector vi, and finally if i > k, it is simply the empty list.

Here is another piece of notation. Given a list of vectors v1, . . . , vn and a possibly
empty subset σ ⊂ {1, . . . , n}, we can construct a new list of vectors vσ(1), . . . , vσ(k).
This is the empty list if σ is empty, and otherwise σ(1) < . . . < σ(k) are all the
elements of σ written in increasing order.

Theorem 1. Let F be a field and V be a vector space over F. Assume that v1, . . . , vn
is a list of vectors that span V and w1, . . . , wm be one that is linearly independent.
Then, m ≤ n.

Proof. Assume the contrary, i.e. that m > n.
We will prove the following claim using induction on j:

• For 0 ≤ j ≤ n, there is an n − j element subset σ ⊂ {1, . . . , n} such that
the list of vectors

w1, . . . , wj , vσ(1), . . . , vσ(n−j)

span V .

Let’s start with j = 0. All we are claiming then is that v1, . . . , vn span V , which
we are given.
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We go on to j = 1 to illustrate the procedure even though we could directly go
on to the induction step. This time we are claiming that there is an i ∈ {1, . . . , n}
such that

w1, v1, . . . , v̂i, . . . , vn

span V .
Clearly, w1, v1, . . . , vn span V , since even without w1 we know that it does.

Moreover, this list of vectors is linearly dependent as w1 is in the span of v1, . . . , vn.
Now we use Lemma 6, which will be our main tool in the proof. It says that we
should be able to remove a vector from w1, v1, . . . , vn which is in the span of the
vectors that came before it in the list, but without changing the span as a result of
this removal. The key point is that this vector cannot be w1, since no vector comes
before it. Therefore, the vector that we remove has to be one of v1, . . . , vn and this
gives exactly what we were trying to prove.

Let us go on with our induction step. We know that the result is true for j = 0.
Let us assume that it is true for 0 ≤ j ≤ n− 1 and prove it for j + 1.

Our induction hypothesis says that there is an n−j element subset σ ⊂ {1, . . . , n}
such that the list of vectors

w1, . . . , wj , vσ(1), . . . , vσ(n−j)

span V. Now, we consider the list

w1, . . . , wj+1, vσ(1), . . . , vσ(n−j).

This list clearly spans V and is linearly dependent. The latter is because wj+1 is a
linear combination of w1, . . . , wj , vσ(1), . . . , vσ(n−j).

We then use our Lemma 6 to deduce that we can remove a vector from the list
w1, . . . , wj+1, vσ(1), . . . , vσ(n−j), which is in the span of the vectors that come before
it and without changing the span. Can this vector be one of w1, . . . , wj+1? No,
because we are given that these vectors are linearly independent! Therefore, the
removed vector has to be one of vσ(1), . . . , vσ(n−j). Defining the new σ by removing
the corresponding integer from the σ for j, we finish our induction.

For j = n, therefore we obtain that w1, . . . , wn span V . In particular, wn+1 is
a linear combination of w1, . . . , wn. This is a contradiction to w1, . . . , wm being
linearly independent. Therefore, we cannot have m > n, or equivalently m ≤ n.

�

Remark 9. Make sure that you have a good sense of the direction of the inequality.
If you need to look at the statement to remember what it says that means you did
not yet get the point. �

Let us finish this lecture with a corollary.

Corollary 1. Let F be a field and V be a finite dimensional vector space over F.
Then any subspace U ⊂ V is also finite dimensional.

Proof. Let us assume that there is a list of vectors of length d in V that span V .
Our previous Theorem implies that a list of linearly independent vectors in U can
have length at most d. This is because if a list of vectors is linearly independent in
U , then they are also linearly independent in V .

Therefore, there is a list of vectors u1, . . . , un in U that is linearly indepen-
dent and such that no matter what vector from U we add to the list it becomes
linearly dependent (otherwise, we could keep adding and contradict the previous
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paragraph). Now, any u ∈ U has to be in the span of u1, . . . , un because other-
wise u1, . . . , un, u would also be linearly independent, contradicting the choice of
u1, . . . , un as in the previous sentence (see Lemma 7 in the next lecture). This
finishes the proof since u1, . . . , un then is a list of vectors that span U certifying its
finite dimensionality. �

Please go back and solve the exercises that you did not have time to solve.

8. Lecture 8: Basis and dimension for finite dimensional vector
spaces

I want to start by turning an argument I used before into a lemma. We will use
it in the future as well.

Lemma 7. Let F be a field and V be a vector space over F. Assume that we have
a linearly independent list of vectors v1, . . . , vn. Then, if v ∈ V is not in the span
of v1, . . . , vn, then v1, . . . , vn, v is also a linearly independent list.

Proof. Take any v ∈ V that is not in the span of v1, . . . , vn. If we have scalars
a1, . . . , an+1 ∈ F such that

a1v1 + . . .+ an+1v = 0,

then there are two options: an+1 = 0 or an+1 6= 0. In the former case, using that
v1, . . . , vn is linearly independent, we conclude that all ai = 0, which gives what we
want. In the latter case (i.e. an+1 6= 0), subtracting a1v1 + . . . + anvn from both
sides and dividing by an+1 (which by definition means multiplying by a−1

n+1 using
that an+1 6= 0), we obtain

v = −a−1
n+1a1v1 − . . .− a−1

n+1anvn.(1)

This contradicts that v is not in the span of v1, . . . , vn, showing that the latter
option is not actually possible. �

We make one of the most important definitions in this class.

Definition 13. Let F be a field and V be a vector space over F. A list of vectors
v1, . . . , vn is called a basis if they are linearly independent and they span V . �

The following proposition explains the usefulness of bases.

Proposition 6. Let F be a field and V be a vector space over F. A list of vectors
v1, . . . , vn is a basis if and only if every v ∈ V can be written uniquely as a linear
combination of v1, . . . , vn.

Proof. If v1, . . . , vn is a basis, then every v ∈ V is a linear combination of v1, . . . , vn
since v1, . . . , vn span V . Assuming

v = a1v1 + . . .+ anvn = a′1v1 + . . .+ a′nvn

we obtain
(a1 − a′1)v1 + . . .+ (an − a′n)vn = 0.

By the linear independence of v1, . . . , vn, we see that ai = a′i, proving the unique-
ness.

Conversely, if every v ∈ V can be written uniquely as a linear combination of
v1, . . . , vn then we immediately get that v1, . . . , vn span V . Moreover, since 0 can be
written as a linear combination of v1, . . . , vn by choosing all coefficients to be 0, the
uniqueness part of our assumption implies the linear independence of v1, . . . , vn. �
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Exercise 27. Assume that v1, . . . , vn is a basis for V . Prove that V is isomorphic
to Fn! �

As soon as we know that our vector space is finite dimensional, we can conclude
that it has a basis using the following proposition.

Proposition 7. Let F be a field and V be a finite dimensional vector space over
F. Then, V admits a basis.

Proof. By definition, there is a finite list of vectors that span V . Choose the
minimum n ≥ 0 such that there is a list of vectors v1, . . . , vn that span V . If
v1, . . . , vn were to be linearly dependent, then using Lemma 6, we could produce
a shorter list of vectors that span V . Therefore, v1, . . . , vn is linearly independent.
Since, we already knew that they span, we found a basis. �

We had set out to show that for a finite dimensional vector space V , there is a
meaningful notion of a minimum number of vectors that span V . Now we know
what it means for a spanning list of vectors to be devoid of redundancies - they
should be linearly independent, and hence be a basis. We now prove that the
number of elements in any basis has to be the same, finishing the task.

Proposition 8. Let F be a field and V be a finite dimensional vector space over
F. Then, the number of elements in any basis of V is the same.

Proof. This immediately follows from Theorem 1. Let v1, . . . , vn and w1, . . . , wm be
two bases. Since v1, . . . , vn is linearly independent and w1, . . . , wm span V , we get
m ≥ n. Reversing the roles of the two bases in this argument, we also get n ≥ m.
This implies m = n as desired. �

Definition 14. Let F be a field and V be a finite dimensional vector space over F.
Then, the number of elements in any basis of V is called the dimension of V . �

Exercise 28. Compute the dimension of Fn, its subspace given by two equations
that we considered first in Lecture 3 (there are cases here, be careful), U1, . . . , U6.
Think about the case F = R to make a connection with the intuitive understanding
of dimension that you have from before. �

9. Lecture 9: Dimension of a subspace, characterizations of bases,
dimensions of sums of subspaces

We continue our development of the notion of a basis of a vector space. Through-
out this lecture assume that F is a field and V is a finite dimensional vector space
over F.

Lemma 8. Every linearly independent list of vectors can be extended to a basis by
adding finitely many vectors to the list on the right1.

Proof. Let v1, . . . , vn be linearly independent. If v1, . . . , vn span V , we are done. If
not, there exists a vn+1 ∈ V which is not a linear combination of v1, . . . , vn. Then,
by Lemma 7, we have that v1, . . . , vn, vn+1 is still linearly independent

If v1, . . . , vn+1 span V , we are done. Otherwise, we can add a vn+2 to the list,
keeping it linearly independent. We keep going with this procedure knowing that it
has to stop after finitely many iterations since the length of a linearly independent

1Not adding any new vectors is allowed.
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list of vectors can be at most the dimension of V by Theorem 1. This produces the
desired type of basis. �

Exercise 29. We could structure this proof in a way that is similar to the proof of
Proposition 7. Do this by yourself. �

Recall that in Lecture 7, we showed that a subspace of a finite dimensional vector
space has to be finite dimensional.

Proposition 9. Let U ⊂ V be a subspace. Then the dimension of U is at most the
dimension of V .

Proof. Let u1, . . . , un be a basis for U . Then, u1, . . . , un is a linearly independent
list of vectors in V , which can be extended to a basis of V by the previous lemma.
This finishes the proof since dimension is defined as the number of elements in a
basis. �

Here is an important characterization of bases.

Proposition 10. Let n be the dimension of V . Then,

(1) A linearly independent list of n vectors v1, . . . , vn is a basis.
(2) A list of n vectors v1, . . . , vn which span V is a basis.

Proof. Let’s start with (1). We know that v1, . . . , vn can be extended to a basis by
Lemma 8. Since n is the dimension, this shows that v1, . . . , vn already has to be a
basis.

We move on to (2). We know that if v1, . . . , vn is not linearly independent, then
we can remove a vector from the list using Lemma 6 without changing the span.
This contradicts Theorem 1 since a basis in V gives a list of linearly independent
vectors in V of length n. �

Let us finish by now considering multiple subspaces in V . For the following two
exercises, we do not make the assumption that V is finite dimensional.

Exercise 30. Let U1, U2 ⊂ V be subspaces. Prove that U1 ∩ U2 ⊂ V is also a
subspace. �

Exercise 31. Let U1, U2 ⊂ V be subspaces. Prove that U1 + U2 is a direct sum if
and only if U1 ∩ U2 = {0}. �

Let V be finite dimensional again.

Proposition 11. Let U1, U2 ⊂ V be subspaces. We have the following dimension
formula

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).

Proof. Let w1, . . . , wn be a basis for U1 ∩ U2. We find vectors u1, . . . , ul ∈ U1 and
v1, . . . vk ∈ U2 such that

• w1, . . . , wn, u1, . . . , ul is a basis of U1

• w1, . . . , wn, v1, . . . vk is a basis of U2

using Lemma 8.
We claim that we need to have

span(u1, . . . , ul) ∩ (U1 ∩ U2) = {0}.
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Take a vector v in this intersection. There must be scalars such that

v = a1u1 + . . .+ alul = b1w1 + . . .+ bnwn,

which implies

a1u1 + . . .+ alul − b1w1 − . . .− bnwn = 0.

Since w1, . . . , wn, u1, . . . , ul is linearly independent, this means that all the scalars
has to be zero. This shows that v = 0. The same argument shows that

span(v1, . . . vk) ∩ (U1 ∩ U2) = {0}

as well.
Now, we claim that

w1, . . . , wn, u1, . . . , ul, v1, . . . vk

is a basis of U1 +U2. Let’s first show linear independence. We take a linear depen-
dence relation:

a1w1 + . . .+ anwn︸ ︷︷ ︸
w

+ b1u1 + . . .+ blul︸ ︷︷ ︸
u

+ c1v1 + . . .+ ckvk︸ ︷︷ ︸
v

= 0.

It immediately follows that u is an element of both U1 and U2. Therefore u is in
both U1 ∩ U2 and span(u1, . . . , ul). From our discussion above, this means u = 0.
Similarly, v = 0 and therefore w = 0. This implies that all the scalars in the linear
dependence relation needs to be 0, since w1, . . . , wn and u1, . . . , ul and v1, . . . vk are
all linearly independent among themselves.

Second we show that this list spans U1 +U2. By definition any u ∈ U1 +U2 can
be written as ũ1 + ũ2 with ũ1 ∈ U1 and ũ2 ∈ U2

2. Now write ũ1 as a linear combina-
tion of w1, . . . , wn, u1, . . . , ul and ũ2 as a linear combination of w1, . . . , wn, v1, . . . vk.
Adding them up and collecting the terms that have wi’s together using distributiv-
ity, we obtain a linear combination of w1, . . . , wn, u1, . . . , ul, v1, . . . vk that equals u.
The proof that we have a basis of U1 + U2 is complete.

By definition, dim(U1 ∩ U2) = n, dim(U1) = n + l, dim(U2) = n + k, and
dim(U1 + U2) = n+ l + k. This proves the claim. �

Exercise 32. Let U1, . . . , Un ⊂ V be subspaces such that U1 + . . . + Un is a direct
sum. Prove that

dim(U1 + . . .+ Un) = dim(U1) + . . .+ dim(Un).

�

Remark 10. Notice that reordering the vectors in a finite list does not change their
span, whether they are linearly independent or not, or whether they form a basis
or not. �

Next week we continue with linear maps between vector spaces.

2I put tilde’s to deal with the notation clash with basis elements
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10. Lecture 10: Linear maps

The importance of the following definition cannot be overstated.

Definition 15. Let V and W be vector spaces over F. A linear map T : V → W is
a map satisfying the following properties:

• additivity: T (u+ v) = Tu+ Tv for every u, v ∈ V
• homogeneity: T (c · v) = c · Tv for every c ∈ F and v ∈ V

�

You have already seen these conditions in HW2 in the definition of an isomor-
phism of vector spaces. Indeed an isomorphism of vector spaces is nothing but a
bijective linear map.

Exercise 33. Prove that a linear map has to send 0 to 0 �

Exercise 34. Prove that T : V →W is linear if and only if

T (c1 · u+ c2 · v) = c1 · Tu+ c2 · Tv

for every c1, c2 ∈ F and u, v ∈ V . �

Here are some examples of linear maps:

(1) A linear map T : F1 → F1 is nothing but multiplication by T (1) ∈ F.
We will see pretty soon that a linear map T : Fm → Fn is nothing but
multiplication of column vectors with m components by a matrix of size
n×m with entries in F.

(2) To get a sense of the definition let us take F = R and analyze the image of
a linear map T : R2 → R3.

Consider the vectors (1, 0) and (0, 1) in the plane R2. Note that (1, 0)
and (0, 1) clearly are linearly independent. They also span R2 since

(a, b) = a · (1, 0) + b · (0, 1).

Succintly, they are a basis. Let T (1, 0) = v and T (0, 1) = w, which are
vectors in R3. By Exercise 34,

T (a, b) = av + bw,

the image of T are all vectors in R3 that is a linear combination of v and
w. We want to understand what this is geometrically.

It is possible that v = w = 0, in which case the entire R2 has to be sent
to 0. A less trivial case is when v and w are contained in a unique line l in
R3. This means that a1v = a2w, for some real numbers a1, a2 that are not
both equal to zero. Any vector on l can be written as a scalar multiple of
v or w (one of them is non-zero) and moreover any vector av + bw has to
lie on l. Therefore, the image of T is precisely l.

The last case is the most common one, namely that there is not a line
that contains both v and w. In this case there is a unique plane P ⊂ R3 that
contains both v and w. Geometrically it is clear that the sum of two vectors
that are contained in a plane is also contained in the same plane via the
parallelogram picture of vector addition. Moreover the scaling of a vector
that is contained in a plane is also contained in the plane. These mean that
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the image of T has to be be contained in P . You had to essentially come
up with this argument for the last problem of HW2.

Last but not least, we want to show that every vector u in P is in the
image of T , or equivalently that every vector on P is av+ bw for some real
numbers a and b. To see this draw the parallelogram contained in P with
edges parallel to v and w that admits u as a diagonal. The picture shows
that some (possibly negative) multiples of v and w adds up to u as desired.
Hence, the image is the plane P .

(3) Make sure you understand that rotations and scalings of the plane give
linear maps R2 → R2. Multiplication with the matrix(

1 1
0 1

)
,

i.e. (a, b) 7→ (a+ b, b) is another example of a linear map R2 → R2. This is
a little harder to think about visually - it is called a shear.

The following lemma is sometimes called the linear map construction lemma. It
makes it clear what the data of a linear map is.

Lemma 9. Let V and W be vector spaces over F. Let v1, . . . , vn be a basis for V
and w1, . . . , wn ∈ W be arbitrary vectors. Then, there exists a unique linear map
T : V →W such that T (vi) = wi for every i = 1, . . . , n.

Proof. Let us start by proving the uniqueness. Assume that

v = a1v1 + . . .+ anvn.

Linearity of T implies that we need to have

Tv = T (a1v1 + . . .+ anvn)

= T (a1v1) + . . .+ T (anvn)

= a1T (v1) + . . .+ anT (vn)

= a1w1 + . . .+ anwn.

By Proposition 6, we know that every v ∈ V can be written uniquely as a linear
combination of v1, . . . , vn. As a result, we see that T (vi) = wi for every i = 1, . . . , n
determine what Tv has to be for every v ∈ V .

Now, we move on to the existence. From the uniqueness part we know that we
have no other option but to define

T (v) = a1w1 + . . .+ anwn.

for v = a1v1 + . . .+ anvn. We need to check that T is linear and sends vi to wi for
every i = 1, . . . , n. The latter is clear. For the former let us start by proving the
additivity of T .

If v = a1v1 + . . .+ anvn and u = b1v1 + . . .+ bnvn, we need to show that

T (v + u) = a1w1 + . . .+ anwn + b1w1 + . . .+ bnwn.

Note that we have

v + u = (a1 + b1)v1 + . . .+ (an + bn)vn.

This has to be the unique representation of v + u as a linear combination of
v1, . . . , vn. By construction therefore

T (v + u) = (a1 + b1)w1 + . . .+ (an + bn)wn.
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This finishes the proof of additivity.
We move on to showing the homogeneity of T . If v = a1v1 + . . . + anvn and

c ∈ F, we need to show that

T (cv) = c(a1w1 + . . .+ anwn).

Note that we have
cv = ca1v1 + . . .+ canvn.

This has to be the unique representation of cv as a linear combination of v1, . . . , vn.
By construction therefore

T (cv) = ca1w1 + . . .+ canwn.

This finishes the proof of homogeneity and the entire proof. �

We end with a corollary of Lemma 9.

Corollary 2. Let V and W be vector spaces over F. Let v1, . . . , vn be a basis for
V and u1, . . . , um be one for W . Let aji ∈ F, for 1 ≤ j ≤ m and 1 ≤ i ≤ n, be
arbitrary scalars. Then, there exists a unique linear map T : V →W such that

T (vi) = a1iu1 + . . .+ amium

for every i = 1, . . . , n.

Proof. This immediately follows from Proposition 6 and Lemma 9. �

This means that once bases are chosen a linear map between two finite dimen-
sional vector spaces is nothing but a choice of a table of scalars. We will explore
this further in the next class.

11. Lecture 11: Column vectors and matrices, invertible maps,
composition of linear maps

Today we start with a look back at linear algebra as you probably knew it before
this class; using column vectors and matrices.

A column vector with n ≥ 1 entries in a field F is the same thing as an element of
Fn. The only difference is that instead of representing them as n-tuples (a1, . . . , an)
we represent them as columns of entries. This is entirely a convention. Sometimes
we will think of elements of Fn as column vectors in this way.

An m×n matrix A with entries in F is simply an m×n table of scalars Aji ∈ F,
for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

Lemma 10. Let A be an m × n matrix and let us think of Fn and Fm as column
vectors. Then matrix multiplication of column vectors define a linear map

TA : Fn → Fm.
We will use the notation TA in what follows so this lemma is in part a definition
as well.

Exercise 35. Prove this important lemma. �

Let us continue exploring Fn. Let us call

ei = (0, . . . , 0, 1, 0, . . . , 0)

ith-entry

the ith standard basis vector Fn.
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Exercise 36. Prove that e1, . . . , en is basis of Fn. �

We call e1, . . . , en the standard basis of Fn. Let us rewrite Corollary 2 in a special
case.

Corollary 3. Let e1, . . . , en be the standard basis for Fn and f1, . . . , fm be the one
for Fm. Let aji ∈ F, for 1 ≤ j ≤ m and 1 ≤ i ≤ n, be arbitrary scalars. Then,
there exists a unique linear map T : Fn → Fm such that

T (ei) = a1if1 + . . .+ amifm

for every i = 1, . . . , n.

Defining a m× n matrix A by setting Aji = aji, the map T in this statement is
precisely the linear map TA : Fn → Fm as in Lemma 10. To see this note that the
linear map TA sends ei to the column vector

(a1i, . . . , ami)
T ,

which is nothing but a1if1 + . . .+ amifm. Let us record this for future use.

Corollary 4. Let e1, . . . , en be the standard basis for Fn and f1, . . . , fm be the one
for Fm. Let aji ∈ F, for 1 ≤ j ≤ m and 1 ≤ i ≤ n, be arbitrary scalars and define
the m× n matrix A by setting Aji = aji. Then, TA : Fn → Fm as in Lemma 10 is
the unique linear map such that

T (ei) = a1if1 + . . .+ amifm

for every i = 1, . . . , n.

Here is a corollary of the corollary.

Corollary 5. For every linear map T : Fn → Fm, there exists a unique m × n
matrix A with entries in F such that T = TA.

We will come back to matrices in this lecture to explain the origin of the matrix
multiplication operation.

Recall that we had defined an isomorphism of vector spaces to be a bijective
linear map. In your HW2 you showed the following:

Lemma 11. Let V and W be vector spaces over F and φ : V →W an isomorphism.
Then, the inverse map φ−1 : W → V is also linear and hence an isomorphism.

Because of this lemma, isomorphisms of vector spaces are also invertible linear
maps.

Definition 16. Let V and W be vector spaces over F. We denote by

L(V,W )

the set of all linear maps V →W . �

We know that maps between sets S → S′ and S′ → S′′ can be composed. Now
we show that composition of linear maps are linear.

Lemma 12. Let U, V and W be vector spaces over F; and f ∈ L(V,W ) and
g ∈ L(U, V ), then the composition f ◦ g is a linear map as well:

f ◦ g ∈ L(U,W ).
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Proof. We need to show that f ◦ g is additive and homogeneous.

• Additive: f ◦ g(u1 + u2) = f(g(u1 + u2)) = f(g(u1) + g(u2)) = f(g(u1)) +
f(g(u2)) = f ◦ g(u1) + f ◦ g(u2)
• Homogeneous: f ◦ g(cu) = f(g(cu)) = f(cg(u)) = cf(g(u) = cf ◦ g(u)

In the first item we used the additivity of f and g, and in the second one we used
the homogeneity of f and g. �

We know that there is a one to one correspondence between linear maps Fn → Fm
and m × n matrices as in Corolllary 5. Let A be an m × n matrix and B be a
k × m matrix. We know that we can compose linear maps TA : Fn → Fm and
TB : Fm → Fk to obtain a linear map Fn → F k, which has to be TC for some k×n
matrix C. This C nothing but the matrix multiplication of B and A:

C = BA.

This is best checked at home since it involves some book keeping of indices so I
will make you do this in your HW4. Let us record it for the future:

Proposition 12. Let A be an m × n matrix and B be a k ×m matrix. Consider
the linear maps TA : Fn → Fm and TB : Fm → Fk as in Lemma 10. Then,

TB ◦ TA = TBA

as linear maps Fn → Fk, where we BA is the matrix multiplication of B and A.

12. Lecture 12: Rank-nullity Theorem

Today we will prove the second result that I deemed to call a theorem. Before
stating it we need a couple of definitions.

Definition 17. Let V and W be vector spaces over F and T : V →W a linear map.
Then, the null-space of T are the subset of vectors in V that are mapped to 0 under
T :

null(T ) := {v ∈ V | Tv = 0}.
�

Lemma 13. In the notation of the previous definition, null(T ) is a subspace.

Exercise 37. Prove this lemma. �

Lemma 14. In the notation of the previous definition, T is injective if and only if
null(T ) = {0}.

Proof. If T is injective, there can be only one element v ∈ V such that Tv = 0. We
know that v = 0 is such an element, so null(T ) = {0}.

The converse has more content. Assume null(T ) = {0} and Tv1 = Tv2. By
linearity,

0 = Tv1 − Tv2 = T (v1 − v2).

Therefore v1 − v2 is in the null-space, which implies v1 = v2 as desired. �

Definition 18. Let V and W be vector spaces over F and T : V →W a linear map.
Then, the image (or range) of T is the subset of vectors in W that are equal to Tv
for some v ∈ V :

im(T ) := {w ∈W | Tv = w for some v ∈ V }.
�
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Lemma 15. In the notation of the previous definition, im(T ) is a subspace.

Exercise 38. Prove this lemma. �

We are ready to state out theorem, which is commonly called the rank-nullity
theorem. Here rank refers to the dimension of im(T ) and nullity to the dimension
of null(T ).

Theorem 2. Let V be a finite dimensional vector space over F and W be a not-
necessarily finite dimensional one. Let T : V →W be a linear map. Then

(1) im(T ) is finite dimensional.
(2) dim(V ) = dim(null(T )) + dim(im(T )).

Let us prove a preliminary lemma that will be useful in the proof first.

Remark 11. From now on, we will use that every finite dimensional vector space
admits a basis (Proposition 7) and that every vector is a unique linear combination
of a basis (Proposition 6) without mention. �

Lemma 16. Let V be a finite dimensional vector space over F and U ⊂ V be a
subspace. Then, there exists another subspace U ′ ⊂ V such that

U ⊕ U ′ = V.

Proof. Let u1, . . . , um be a basis for U , which we know exists by Corollary 1. We
can extend it to a basis of V using Lemma 8:

u1, . . . , um, u
′
1, . . . , u

′
n.

Now choose

U ′ = span(u′1, . . . , u
′
n).

Using that u1, . . . , um, u
′
1, . . . , u

′
n is a basis of V you quickly show that U +U ′ is a

direct sum and that every v ∈ V can be written as u+ u′. �

Exercise 39. Rigorously prove the last sentence of the proof. �

Proof of Theorem 2. Let us start with a special case. Namely assume that T is
injective. Let v1, . . . , vn be a basis of V . Then, we claim that Tv1, . . . , T vn is a
basis of im(T ).

Let’s first show that Tv1, . . . , T vn span im(T ). Let w ∈ im(T ), which means
that there exists v ∈ V such that Tv = w. We can write v as a linear combination
a1v1 + . . .+ anvn of v1, . . . , vn. Then we have

Tv = T (a1v1 + . . .+ anvn)

= T (a1v1) + . . .+ T (anvn)

= a1Tv1 + . . .+ anTvn,

which finishes the proof.
Next we show that Tv1, . . . , T vn is linearly independent. Assume that a1Tv1 +

. . .+ anTvn = 0. This implies

T (a1v1 + . . .+ anvn) = 0

by reading the equalities above backwards. By injectivity, a1v1 + . . . + anvn = 0
and by the linear independence of v1, . . . , vn, we obtain ai = 0, as desired.
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Tv1, . . . , T vn being a basis of im(T ) implies (1) by the definition of finite dimen-
sionality and (2) by the definition of dimension along with null(T ) = {0} (which is
0 dimensional).

With this special case at hand, we move on to the general case. We have that
null(T ) is a subspace of V , so by Lemma 16, we can find a subspace U ⊂ V such
that null(T )⊕ U = V . Note that in this case we have

dim(V ) = dim(U) + dim(null(T )),(1)

by Proposition 11.
Let us consider the linear map T |U : U →W , which is obtained by restricting T

to the subspace U . We claim two statements:

• null(T |U ) = {0}: this is true by the fact that null(T ) ∩ U = {0}.
• im(T |U ) = im(T ): this is true because for v = n+ u with n ∈ null(T ) and
u ∈ U , Tv = Tn+ Tu = Tu.

By Lemma 14, the first bullet point implies that T |U is injective. Hence, we can
apply what we proved in the first part of the proof to conclude that im(T |U ) is
finite dimensional and dim(im(T |U )) = dim(U). Using the second bullet point we
get that im(T ) is finite dimensional and

dim(im(T )) = dim(U).

Combining this with Equation (1), we get the desired equality.
�

Let us discuss some corollaries.

Corollary 6. Let V and W be finite dimensional vector spaces over F. Let T :
V →W be an injective linear map, then dim(V ) ≤ dim(W ).

Proof. We have dim(V ) = dim(im(T )) ≤ dim(W ). �

Exercise 40. Prove the following corollary of this corollary. Let V and W be
finite dimensional vector spaces over F. If T : V → W is an isomorphism, then
dim(V ) = dim(W ). �

In fact we can prove a stronger statement.

Proposition 13. Let V and W be finite dimensional vector spaces over F. Then
V is isomorphic to W if and only if dim(V ) = dim(W ).

Proof. All that is left to prove is that if dim(V ) = dim(W ), then there is an
isomorphism φ : V → W. Let v1, . . . , vn be a basis for V and w1, . . . , wn be one
for W . By Lemma 9, we know that we can choose a linear map φ : V → W such
that φ(vi) = wi for all i = 1, . . . n. One can prove in many ways that φ is an
isomorphism. �

Exercise 41. Finish the proof. �

13. Lecture 13: Determinant of a matrix

Let F be a field as usual. In this lecture we will introduce the determinant of
an n × n matrix with entries in F. As you may have noticed the author of your
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textbook has certain feelings towards the determinant3. I agree with most of his
opinions and we will keep following his approach.

On the other hand, determinants are magical. I think it is a shame to not talk
about them at all in a linear algebra course. We will briefly cover determinants
today and then mostly avoid them in the rest of the course.

From now on we will use the result that a linear map is injective if and only if
its null space is {0} without mentioning anything more about it.

We start with a lemma that will be used later in the course.

Lemma 17. Let V and W be finite dimensional vector spaces over F with the same
dimension. Let T : V →W be a linear map. Then,

• If T is injective, then it is an isomorphism.
• If T is surjective, then then it is an isomorphism.

Exercise 42. These are direct consequences of the rank-nullity theorem. Prove
them. �

We denote the set of n×n matrices with entries in F by Mat(n,F). Determinant
is a map

det : Mat(n,F)→ F,
defined for every n ≥ 1.

Let us start by defining the determinant for small values of n. For n = 1, it is
very easy to define. If our matrix is (a) then its determinant is a.

For n = 2, we define it with the following formula

det

(
a11 a12

a21 a22

)
:= a11a22 − a12a21

Let us note the following lemma, which will generalize to all n ≥ 1.

Lemma 18. Let n be 1 or 2. For any n × n matrix A, the map TA : Fn → Fn is
an isomorphism if and and only if detA 6= 0.

Proof. For n = 1, let A = (a). We have detA = a. If a = 0, TA sends all elements
of F to 0, and therefore it is not an isomorphism. If a 6= 0, then since TA(a−1b) = b,
TA is surjective. If TA(b) = ab = 0, then we need to have b = 0, so the null-space
is trivial and TA is injective as well. We could also use Lemma 17 instead of one of
the last two sentences but it would be an overkill.

For n = 2, let

A =

(
a11 a12

a21 a22

)
.

First, let’s assume detA 6= 0. We will show that TA is injective, which suffices by
Lemma 17. Assume that (v1, v2) ∈ F2 is in null(TA), which concretely means

a11v1 + a12v2 = 0 and a21v1 + a22v2 = 0

We multiply the equality on the left by a22, the one on the right by a12, and then
subtract the second one from the first one. The result is

(a11a22 − a12a21)v1 = 0.

3see https://www.axler.net/DwD.html for a clear picture

https://www.axler.net/DwD.html
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Since detA 6= 0, v1 = 0. By a similar argument, we can also show that v2 = 0.
Therefore, we have null(TA) = {0}, which proves the injectivity.

Conversely, assume that TA is an isomorphism. Then at least one of the entries
of A has to be non-zero. Assume that one of a11 or a12 is not zero. We know
that TA(−a12, a11) 6= 0. Computing the LHS, we see that it is equal to (0,detA).
Hence, we have detA 6= 0 as desired. If one of a21 or a22 is not zero, then a similar
argument proves the claim. �

Exercise 43. Explicitly find the “similar arguments” above. �

Let us move on to n = 3,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Now the determinant is defined as

detA = a11a22a33 − a11a32a23 . . .

with four more terms that I did not write. Instead of writing them at this point
we should make some definitions that will allow us to define the determinant in
general.

Definition 19. Let n ≥ 1. A permutation of [n] := {1, . . . , n} is a bijection

σ : [n]→ [n].

The set of all permutations of [n] is denoted by Σn. �

A common way to represent a permutation σ ∈ Σn, is to write

(σ(1)σ(2) . . . σ(n))

for it. For example for n = 3, the permutation defined by

σ(1) = 3, σ(2) = 2, σ(3) = 1 is represented by (321).

Exercise 44. Make sure you understand why this is a valid representation of a
permutation. This should in particular show you that your previous conception of
a permutation is the same as what we are talking about here. �

Definition 20. To each σ ∈ Σn, we can associate its sign, which is equal to either
−1 or 1. We define it by

sign(σ) = (−1)#A,

where #A is the number of pairs 1 ≤ i < j ≤ n such that σ(i) > σ(j). �

As an example sign(312) = 1, but sign(21) = −1.

Let us now go back to matrices. Fix an n×n matrix A with entries Aji, i, j ∈ [n].
Let σ ∈ Σ(n). We define

σ(A) := sign(σ)Aσ(1)1 . . . Aσ(n)n.

Here is what this is in words: from the ith column you choose the σ(i)th entry from
the top for all columns, multiply each of these entries and finally multiply the whole
thing with the sign of the permutation.
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Definition 21. The determinant of an n× n matrix A is defined as:

detA =
∑
σ∈Σn

σ(A),

where σ(A) := sign(σ)Aσ(1)1 . . . Aσ(n)n. �

Exercise 45. Check that this agrees with our previous definitions for n = 1, 2. Write
the full expression for n = 3. �

The main use of determinants in linear algebra stems from the following lemma
that we already mentioned above.

Lemma 19. Let n ≥ 1. For any n × n matrix A, the map TA : Fn → Fn is an
isomorphism if and and only if detA 6= 0.

We will not use this lemma but we can still appreciate its beauty. Such a com-
plicated condition as TA being an isomorphism can be tested by checking whether
a single explicit function of the entries of A vanishes or not.

The determinant behaves very nicely under row operations. Swapping two rows
negates the determinant, multiplying a row with a scalar multiplies the determi-
nant by that same scalar and adding a row to another one does not change the
determinant. The proof of the lemma can be given using these properties but we
omit it.

In fact determinant is the unique map det : Mat(n,F) → F that satisfies these
three properties in regards to row operations plus det I = 1.

I want to finish by pointing out the geometric meaning of the determinant when
F = R. Take an n × n matrix A and consider the n vectors in Rn given by the
columns of A. Now take a parallelepiped P (A) with edges parallel to these vectors.
Then, we have that the volume of P (A) is given by the absolute value of the
determinant:

vol(P (A)) = |detA|

Exercise 46. Explicitly check this for n = 2. �

Remark 12. Here is a purely geometric proof of Lemma 19 in this case. Note
that the ith column vector of A is nothing but TAei. We know that TA is not
an isomorphism if and only if it is not surjective. The latter is equivalent to the
image of TA being contained in an n−1 dimensional subspace, or equivalently P (A)
being contained in an n− 1 dimensional subspace, or even better P (A) having zero
volume. By the above formula, this in turn is the same as detA = 0. �

14. Lecture 14: Polynomials

Today we will cover some basic properties of polynomials over fields, giving
special attention to F = C.

A polynomial over a field F is a formal expression

adz
d + . . .+ a1z + a0

with d a non-negative integer and a0, . . . , ad ∈ F. We will use the convention that
ad 6= 0 when we write a non-zero polynomial and call d the degree of the polynomial.
The degree of the zero polynomial is defined to be −∞.
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For your homework, you had to think about the vector space structure on P (F),
the set of polynomials over F.

We can also multiply polynomials

(anz
n + . . .+a1z + a0)(bmz

m + . . .+ b1z + b0) =

anbmz
m+n + (anbm−1 + an−1bm)zm+n−1 + . . .+ (a1b0 + a0b1)z + a0b0.

You have seen this before except that now the coefficients are from an arbitrary field.
Polynomial multiplication is commutative, associative, and it distributes over the
addition of polynomials. It does not admit inverses for positive degree polynomials!

One can also do polynomial division with remainder. Formally this is similar to
what one can do with integers. Let us write it as a lemma.

Lemma 20. Let P (z) = amz
m + . . . + a1z + a0 and p(z) = bnz

n + . . . + b1z +
b0 be polynomials over F. Assume that p(z) is non-zero. Then there are unique
polynomials q(z) = clz

l + . . .+ c1z + c0 and r(z) = dkz
k + . . .+ d1z + d0 such that

• k < n
• P (z) = p(z)q(z) + r(z)

Proof. Let us first prove the existence part. Assume the contrary, that there are
P (z) and p(z) such that there is no such q(z) and r(z). Take such P (z) = amz

m +
. . . + a1z + a0 and p(z) = bnz

n + . . . + b1z + b0 with the property that the degree
of P (z) is minimal among such pairs of polynomials. First of all m ≥ n because
otherwise we could choose q(z) = 0 and r(z) = P (z), which would be a contradiction
to the non-existence that we assumed. Then, we can define

P̃ (z) := P (z)− an
bm

zm−np(z).

Notice that the degree of P̃ (z) is strictly less than the degree of P (z). Therefore,
we can find q̃(z) and r̃(z) such that deg(r̃(z)) < n and

P̃ (z) = p(z)q̃(z) + r̃(z).

Combining the two inequalities, we find

P (z) = p(z)

(
an
bm

zm−n + q̃(z)

)
+ r̃(z),

which is a contradiction. We have proved the existence.
Let us now move on to uniqueness. By a simple argument using distributivity,

we see that it suffices to show that if p(z)q(z) + r(z) = 0 with deg(r(z)) < n, then
q(z) and r(z) must be both the zero polynomial. It suffices to show that q(z) is the
zero polynomial. Assuming otherwise, we write q(z) = clz

l + . . . + c1z + c0 with
cl 6= 0. Expanding the equation:

(bnz
n + . . .+ b1z + b0)(clz

l + . . .+ c1z + c0) + r(z) = 0,

and using deg(r(z)) < n, we find that bncl = 0, which implies cl = 0. This is
contradiction. The proof is complete. �

What makes polynomials interesting is the fact that they give rise to maps F→ F.
Namely, given p(z) = amz

m + . . .+ a1z+ a0 over F, we can define a map F→ F by

c 7→ p(c) := am · cm + . . .+ a1 · c+ a0 ∈ F
for every c ∈ F. Here to make the point I have explicitly indicated the multiplication
in F for once.



LECTURE NOTES - MATH 113 (SPRING 2021) 35

For example if F = R, and we are given a polynomial p(z) with real coefficients,
we obtain a function R→ R. We can draw its graph etc.

We also talked briefly about solving polynomial equations like

z2 + 2z + 2 = 0

over F. This of means nothing but finding the elements of F which map to zero
under the map F→ F defined by the polynomial z2 + 2z + 2.

In general for any polynomial p(z) = amz
m + . . .+ a1z + a0, if c ∈ F is sent to

0 under the corresponding map F→ F, we say that c is a root of p(z).

We will heavily rely on the following statement regarding roots of polynomials
over complex numbers in the next weeks. It is called the fundamental theorem of
algebra.

Theorem 3. Every complex polynomial with positive degree has a root.

I will give a sketch proof of this theorem. Let us consider p(z) = amz
m + . . .+

a1z + a0 and the map that it defines f : C→ C. If a0 = 0, we are done since 0 is a
root. So assume a0 6= 0.

For any r > 0, let Cr := {x ∈ C | |x| = r} ⊂ C be the circle of radius r centered
at 0 ∈ C.

For x ∈ C with |x| very small, the terms aix
i for i > 0 have very small absolute

value compared to a0. Therefore, for r sufficiently small the image of Cr under f
stays very close to a0.

For x ∈ C with |x| very large, the terms aix
i for i < m have very small absolute

value compared to amx
m. We can parametrize Cr as reiθ with θ ∈ R/2πZ. Plugging

this in amx
m, we obtain

|ai|rmei(mθ+arg ai).

The means that the image of Cr under f for r very large winds around the origin
m ≥ 1 times.

Now we consider images of Cr under f for r changing from very large to very
small. The image varies continuously with r. Assume that there is no root of p(z).
This means that the image of no Cr passes through the origin.

Think of the images of Cr as a rope on the floor and assume that there is a stick
at a point. For large r we have that the rope goes around the stick m times. For
small r we have that the rope is not going around stick at all, it is bundled up at
some other point on the floor. We also know that there is a continuous movement
of the rope that takes it from the first position to the second without ever crossing
the stick. This is impossible! The polynomial needs to have a root.

This is possibly my favorite proof in all of mathematics. Here is a corollary.

Corollary 7. For every complex polynomial p(z) = amz
m + . . . + a1z + a0 there

exists a, λ1, . . . , λm ∈ C such that

p(z) = amz
m + . . .+ a1z + a0 = a(z − λ1) . . . (z − λm).

Before I prove this lemma, I have to mention something that is a bit confusing.
Let p(z) = bmz

m + . . . + b1z + b0and q(z) = clz
l + . . . + c1z + c0 be polynomials

over F. We can substitute c ∈ F in any polynomial over F as we did above when we
defined the function F→ F obtained from a polynomial. Again as above we denote
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the resulting element of F by putting c in the argument of the polynomial. Then,
we have

p(c) + q(c) = (p+ q)(c) and p(c)q(c) = pq(c),

where on the RHS we have the sum and product polynomials.

Remark 13. The purely formal polynomial addition and multiplication operations
are defined the way they are so that these equalities are true. This is why these
statements look like they don’t need proving - they do, but the proofs are confus-
ingly easy. These statements will look less trivial when we consider substituting
operators into polynomials in Lecture 17. �

Proof of Corollary 7. By fundamental theorem of algebra, we have that there is a
root λ1. Now let us apply Lemma 20, where we divide p(z) by the polynomial z−λ1.
We have p(z) = (z−λ)q(z) + r(z), where r(z) = r0 has degree 0. Now substituting
λ in this equation and using the rules above, we see that r0 = 0. Therefore, we
obtain

p(z) = (z − λ)q(z).

If q(z) has degree 0, then we are done. Otherwise we apply the same procedure to
q(z) and so on. Since we reduce the degree by 1 every time, eventually we get what
we want. �

Of course λ1, . . . , λm ∈ C in the statement are precisely the roots of p(z). Note
that some λi’s can be the same complex number. We will come back to this later.

15. Lecture 15: Matrix of a linear map with respect to bases,
operators

Let F be a field and V,W be finite dimensional vector spaces over F throughout
this lecture.

Let v1, . . . , vn be a basis for V and u1, . . . , um be one for W . We define the matrix
M(T, v1, . . . , vn, u1, . . . , um) of a linear map T : V →W with respect to these bases
as follows. For every 1 ≤ i ≤ n, we obtain unique scalars a1i, . . . , ami ∈ F such that

T (vi) = a1iu1 + . . .+ amium.

We define the (j, i)th entry of the m×n matrix M(T, v1, . . . , vn, u1, . . . , um) as aji.
Let us denote the set of m×n matrices by Mat(m,n,F). By sending each linear

map T : V →W to M(T, v1, . . . , vn, u1, . . . , um), we define a map

M(v1, . . . , vn, u1, . . . , um) : L(V,W )→Mat(m,n,F).

Proposition 14. M(v1, . . . , vn, u1, . . . , um) is a bijection.

Proof. Let us denote M(v1, . . . , vn, u1, . . . , um) by M during the course of this
proof.

We recall Corollary 4 from Lecture 10. It said that if aji ∈ F, for 1 ≤ j ≤ m and
1 ≤ i ≤ n, are arbitrary scalars, then there exists a unique linear map T : V → W
such that

T (vi) = a1iu1 + . . .+ amium

for every i = 1, . . . , n. This defines a map

T : Mat(m,n,F)→ L(V,W ).



LECTURE NOTES - MATH 113 (SPRING 2021) 37

It is also immediate from definitions that

M◦ T : Mat(m,n,F)→Mat(m,n,F)

and

T ◦M : L(V,W )→ L(V,W )

are the identity maps. This finishes the proof. �

Exercise 47. Via entry-wise addition and entry-wise scalar multiplication we can
equip Mat(m,n,F) with a vector space structure over F. Prove that Mat(m,n,F)
is isomorphic to Fmn. �

Exercise 48. Equip L(V,W ) with its natural vector space structure over F - there
is only one natural way of doing this, I will leave it to you but if you are not sure
you can look at your book. Finite dimensionality of V and W does not play a role
here.

Then, show that M(v1, . . . , vn, u1, . . . , um) is a linear map, and therefore an
isomorphism of vector spaces. �

It is extremely important to understand that we can talk about the matrix
corresponding to a linear map between finite dimensional vector spaces only after
we choose bases. For the same linear map different choices of bases lead to different
matrices.

Here is a question: given a linear map T : V → W , can we choose the bases
v1, . . . , vn of V and u1, . . . , um of W such that the matrix of T becomes very simple?
The answer is yes.

Proposition 15. Let V be n dimensional and W be m dimensional. Take a linear
map T : V →W whose image is k dimensional. Then, one can choose bases for V
and W such that the matrix of T is(

Idk 0
0 0

)
.

In case n = k and/or m = k some of the 0-blocks are actually not there.

Proof. We follow the strategy in the proof of rank-nullity theorem. We have that
null(T ) is a subspace of V , so by Lemma 16, we can find a subspace U ⊂ V
such that null(T ) ⊕ U = V . As we had shown in that proof, T |U is injective
and im(T |U ) = im(T ). Also note that U is k-dimensional, which follows from the
rank-nullity theorem.

Take bases v1, . . . , vk of U and vk+1, . . . , vn of null(T ). Let

ui = Tvi, for i = 1, . . . k.

Then, u1, . . . , uk is a basis for im(T ). See the proof of rank-nullity theorem if you
can’t figure out why. Finally, extend u1, . . . , uk to a basis of W by adding the
vectors uk+1, . . . , um using Lemma 8.

One easily sees that the bases v1, . . . , vn of U and u1, . . . , um of W give the
desired matrix for T , since

Tv1 = u1, . . . , T vk = uk, T vk+1 = 0, . . . , T vn = 0.

�
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Definition 22. Let U be a vector space (not necessarily finite dimensional) over F.
We call a linear map T : U → U an operator on U . The set of operators on U is
denoted by L(U). �

Given an operator T on the finite dimensional V , using Proposition 15, we can
find two different bases of V which make the matrix of T very simple. But now we
can ask for something more. What if we are allowed to choose only one basis of V
and write the matrix of T using that basis in both roles?

More succintly, for a basis v1, . . . , vn of V , and an operator T : V → V , we define
the n× n matrix:

M(T, v1, . . . , vn) := M(T, v1, . . . , vn, v1, . . . , vn).

The question of how can we choose v1, . . . , vn so that M(T, v1, . . . , vn) looks as
simple as possible is a very important one that we will be dealing with for a while.
It is significantly more difficult than Proposition 15. In fact it does not have a
uniform answer for all fields F and we will soon start specifying F to be C or R.
Even though perhaps it is not clear now, because of the fundamental theorem of
algebra C gives much better results in regards to this question.

16. Lecture 16: Eigenvalues/vectors, invariant subspaces

Recall the question we raised last time: given T ∈ L(V ), where V is a finite
dimensional vector space, how can we choose v1, . . . , vn so that M(T, v1, . . . , vn) is
as simple as possible?

The simplest matrices without quesion are diagonal matrices. Unfortunately, we
cannot always choose a basis so that the matrix is diagonal. But, we will see how
close we can get. The following definition starts our investigation.

Definition 23. Let V be a vector space over an arbitrary field F and T be a linear
operator on V .

• A scalar λ ∈ F is called an eigenvalue of T if there exists a non-zero vector
v ∈ V such that Tv = λv.
• A vector v ∈ V is called an eigenvector if Tv = λv, for some λ ∈ F.

�

Every non-zero eigenvector has a unique eigenvalue. On the other hand, for a
given eigenvalue λ there are always multiple v ∈ V which satisfy Tv = λv. For
example if v is one, then so is cv for all c ∈ F.

Exercise 49. Rigorously prove all these statements. �

Eigenvalues do not always exist. Let us show this on an example. Consider
F = R and TA ∈ L(R2) with

A =

(
0 −1
1 0

)
.

We will show that TA has no eigenvalue. Assume that there is one. Namely that
for some non-zero vector (a, b) ∈ R2 and λ ∈ R, we have

TA(a, b) = (λa, λb).

Computing the left hand side gives

(−b, a) = (λa, λb).
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It follows that both a and b has to non-zero, which means ab 6= 0. Combining the
equality of the two components we find

λ2ab = −ab.
Cancelling ab, we see that λ has to satisfy

λ2 = −1.

This is a contradiction since we know that the square of a real number is non-
negative.

On the other hand, if we consider the same matrix as defining an operator on
C2, which is a vector space over C, then we would find two eigenvalues ±i. In fact,
next class we will prove that every operator on a finite dimensional vector space
over C has an eigenvalue!

Exercise 50. We can think of A as a matrix with entries in Fp, p a prime number
as well. For what values of p does TA have an eigenvalue? Hint: recall your first
homework. �

Lemma 21. Let V be a vector space over an arbitrary field F and T be a linear
operator on V . Then, λ ∈ F is an eigenvalue of T if and only if T − λId : V → V
is not injective.

Exercise 51. This is a good exercise in definitions, write down the proof. �

Using Lemma 17, we see that if V is finite dimensional, then T ∈ L(V ) is an
isomorphism if and only if it is injective. Hence, we get as a corollary.

Lemma 22. Let V be a finite dimensional vector space over an arbitrary field F
and T be a linear operator on V . Then, λ ∈ F is an eigenvalue of T if and only if
T − λId : V → V is not an isomorphism.

Let us end this lecture with another important notion.

Definition 24. Let V be a vector space over an arbitrary field F and T be a linear
operator on V . We call a subspace U ⊂ V an invariant subspace of T is it is closed
under T , that is if

Tu ∈ U, for every u ∈ U.
�

Exercise 52. Prove that the span of an eigenvector is an invariant subspace. Also
prove a converse: if U is an invariant subspace of dimension 1, all the vectors in U
are eigenvectors with the same eigenvalue. �

17. Lecture 17: Existence of eigenvalues over complex numbers

We start with a preliminary notion. We discussed in Lecture 14 what it means
to substitute scalars into polynomials. We will now substitute operators.

Let V be a vector space over an arbitrary field F and T1, T2 be linear operators on
V . Then, we can compose T1 and T2 to obtain an operator on V : T2 ◦ T1 : V → V.

Remark 14. Operator composition (and more specifically multiplication of square
matrices of the same size) is not commutative. �

Recall that L(V ) is also a vector space. In case you did not solve Exercise 48
from Lecture 15:
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• For c ∈ F and T ∈ L(V ), we define cT ∈ L(V ) by

(cT )v = c(Tv), for every v ∈ V.

• For T1, T2 ∈ L(V ), we define T1 + T2 ∈ L(V ) by

(T1 + T2)v = T1v + T2v, for every v ∈ V.

Exercise 53. Prove that operator composition distributes over operator addition on
either side. �

Definition 25. Let V be a vector space over an arbitrary field F, T be a linear
operator on V and p(z) = adz

d + . . .+ a1z + a0 be a polynomial over F.
We define p(T ) ∈ L(V ) as

p(T ) := adT
d + . . .+ a1T + a0Id.

Here Tn means T ◦ . . . ◦ T︸ ︷︷ ︸
n T ′s

. �

Please take a look at Remark 13, before you proceed. With notation from the
definition, we have the trivial equality

(cp)(T ) = c(p(T )), for every c ∈ F.

If q(z) is another polynomial over F, we have another trivial equality

(p+ q)(T ) = p(T ) + q(T ).

The next one is less trivial:

Lemma 23. We have

(pq)(T ) = p(T ) ◦ q(T ),

where on the left hand side we used polynomial multiplication.

Proof. First, by the distributivity of operator composition we have

(adT
d + . . .+ a1T + a0Id) ◦ (bT k) = adbT

d ◦ T k + . . .+ a1bT ◦ T k + a0Id ◦ T k

= adbT
d+k + . . .+ a1bT

k+1 + a0T
k

In other words we proved the result when q(z) = bzk for some b ∈ F and k ≥ 0.
Next, assume that we have proven the result for p(z), q(z) and also for p(z), q′(z).

We show that the result for p(z), q(z) + q′(z) follows. Note that polynomial multi-
plication also distributes over polynomial addition, We have

(p(q + q′))(T ) = (pq + pq′)(T )

= (pq)(T ) + (pq′)(T )

= p(T ) ◦ q(T ) + p(T ) ◦ q′(T ))

= p(T ) ◦ (q(T ) + q′(T ))

= p(T ) ◦ (q + q′)(T )

Since every polynomial is a sum of polynomials of the form bzk, the result follows.
�
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Recall that in Lecture 14 we proved that for every complex polynomial p(z) =
amz

m + . . .+ a1z + a0 there exists a, λ1, . . . , λm ∈ C such that

p(z) = amz
m + . . .+ a1z + a0 = a(z − λ1) . . . (z − λm).

This is Corollary 7, which was an immediate consequence of the fundamental the-
orem of algebra. In fact it also follows that a = am.

In particular by Lemma 23 and the discussion preceeding it, for any T ∈ L(V ),
we have

amT
m + . . .+ a1T + a0Id = am(T − λ1Id) ◦ . . . ◦ (z − λmId).

Here is what we have been building towards.

Theorem 4. Let V be a finite dimensional vector space over C and T be an operator
on V . Then T has an eigenvalue.

Proof. Let V be n-dimensional. Choose a non-zero v ∈ V and consider the list of
vectors

Tnv, Tn−1v, . . . , T v, v.

Since this list has more elements than the dimension, it has to be linearly dependent.
Therefore, there exists n ≥ m ≥ 1 and complex numbers am, . . . , a1, a0 such that

amT
mv + am−1T

m−1v + . . .+ a1Tv + a0v = 0

and am 6= 0. This means that the operator

amT
m + am−1T

m−1 + . . .+ a1Tv + a0Id

is not an isomorphism.
As we discussed above, there are λ1, . . . , λm ∈ C such that

amT
m + . . .+ a1T + a0Id = am(T − λ1Id) ◦ . . . ◦ (T − λmId).

We know that the left hand side is not an isomorphism, so neither is the right
hand side. This means for at least one 1 ≤ i ≤ m, T − λiId is not an isomorphism,
as compositions of isomorphisms are isomorphisms.

By the simple Lemma 22 from the previous lecture, this means that that λi is
an eigenvalue, proving the desired claim. �

This is a beautiful proof. It is not the one that is most common. The most
common proof uses determinants and in particular Lemma 19.

Exercise 54. Prove Theorem 4 using Lemma 19 and the fundamental theorem of
algebra (no need to consider the factorization to linear polynomials, just that there
is a root). �

What’s bad about this proof? I really do not think it is bad. It is perhaps less
elegant but it is definitely not bad. It’s worth knowing.
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18. Lecture 18: Splittings and block matrices, triangular matrices
for operators over complex numbers

Today, we will show that the matrix of an operator on a finite dimensional vector
space over C can be made upper triangular by choosing the right basis.

Remark 15. Let me first give you a heads up that if you are not quick about how
to read what Tvi is from the matrix M(T, v1, . . . , vn, u1, . . . , um), you will find it
difficult follow the arguments below. This is straightforward, you look at the ith

column and take the linear combination of u1, . . . , um with the entries from that
column. After you get this straight, you should also be able to apply T to a linear
combination of v1, . . . , vn and figure out the result using linearity of T . Note that
when T is an operator, we generally take v1, . . . , vn and u1, . . . , um to be the same
basis.

All of this can be interpreted using the column vector representations of the
vectors as explained in Homework 5, but that is not necessary. I am not even sure
if it is helpful. �

We start with some general observations about block matrices. Most of the
routine proofs below are left to you as exercises and these will be part of the
homework. First, we give a definition that is not as standard as the other ones we
made in this class, but I find it helpful.

Definition 26. Let V be a vector space over F. We call a pair of subspaces U1, U2 ⊂
V such that U1 ⊕ U2 = V a splitting of V . It will be convenient to say “Let
U1 ⊕ U2 = V ... be a splitting” etc. as a shortcut in what follows.

If U ⊂ V is a subspace, then another subspace U ′ ⊂ V is called a complement
to U if U,U ′ is a splitting, that is U ⊕ U ′ = V . �

We have proved in Lemma 16 that if V is finite dimensional then any subspace
U ⊂ V admits a complement. We have already used this in a couple of proofs.

Given a splitting U1⊕U2 = V , we obtain linear maps p1 : V → U1 and p2 : V →
U2. The first one is obtained by writing v = u1 +u2 with u1 ∈ U1 and u2 ∈ U2 and
defining p1(v) = u1.

Exercise 55. Check that we indeed have a well-defined linear map p1 : V → U1.
Define the map p2 : V → U2. �

Now let’s take an operator T : V → V . For every i, j ∈ {1, 2}, we can define a
linear map

Tij := pj ◦ T |Ui
: Ui → Uj .

Recall that T |Ui is the map obtained by restricting the domain of T to Ui.

Lemma 24. Let V be a finite dimensional vector space over F, T an operator on V
and U1 ⊕ U2 = V a splitting. Define Tij : Ui → Uj as above for every i, j ∈ {1, 2}.

Choose a basis u1
1, . . . , u

1
k for U1 and u2

1, . . . , u
2
l for U2, and define

Mji := M(Tij , (u
i
1, . . .), (u

j
1, . . .)).

The matrix of T with respect to the basis u1
1, . . . , u

1
k, u

2
1, . . . , u

2
l has the following

block form: (
M11 M12

M21 M22

)
.
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Exercise 56. This is a long statement and the proof is an exercise in definitions.
Write down everything carefully and the give the proof. �

Note that T11 and T22 are operators and M11 and M22 are defined using the
same bases for both roles as in T and M(T, u1

1, . . . , u
1
k, u

2
1, . . . , u

2
l ).

We stress a special case.

Corollary 8. With notation of Lemma 24,

• If U1 from the statement is an invariant subspace of T , then T12 sends
everything to zero. This means that the block matrix is of the form(

M11 M12

0 M22

)
.

• If U2 is also an invariant subspace of T , then the block matrix is even
simpler (

M11 0
0 M22

)
.

Exercise 57. Again, the proof is left to you as an exercise. �

Now let us finally do what we promised in the beginning.

Theorem 5. Let V be a finite dimensional vector space over C and T be an operator
on V . Then we can find a basis v1, . . . , vn of V such that

M(T, v1, . . . , vn)

is upper triangular.

Proof. We will prove this by induction on the dimension on V . If dim(V ) = 1, the
statement is trivial (all matrices are upper triangular). Let us now assume that the
statement is true when V is n−1 dimensional and prove it when it is n dimensional.

By Theorem 4, we know that there T has an eigenvalue. Let v1 be an eigenvector
for T with eigenvalue λ. Let U := span(v1), which is an invariant subspace for
T . We choose an arbitrary complement U ′ to U in V and obtain the splitting
U ⊕ U ′ = V .

Now consider the map T ′ : U ′ → U ′ which is defined as the composition of T |U ′

and p′ : V → U ′ (same as how we defined Tij above). By the induction hypothesis,
we can choose a basis v2, . . . , vn of U ′ such that the matrix of T ′ is upper triangular.
Let us call this matrix M ′.

We claim that v1, v2, . . . , vn is a basis for which the matrix of T is upper-
triangular. By Corollary 8’s first bullet point, the matrix looks like(

λ ?
0 M ′

)
.

Here ? means that we do not care at all what those entries are. Since M ′ is upper
triangular, this finishes the proof. �

Remark 16. Note that there is no reason we should be able to choose U ′ also be an
invariant subspace. This is why we end up with an upper triangular matrix rather
than a diagonal matrix. �

Upper triangular matrix representations of operators reveal important informa-
tion about the operator in their diagonal entries.
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Lemma 25. Let V be a finite dimensional vector space over F, T be an operator
on V and v1, . . . , vn be a basis of V such that M(T, v1, . . . , vn) is upper triangular.

(1) T is an isomorphism if and only if no diagonal entry of M(T, v1, . . . , vn) is
zero.

(2) The set of eigenvalues of T is equal to the set of diagonal entries of the
matrix M(T, v1, . . . , vn).

Proof. We only prove (1). Let’s first prove that if no diagonal entry is 0, then T is
an isomorphism. It suffices to show that it is injective. Let v = a1v1 + . . . + anvn
be an arbitrary element of V that is in the nullspace of T . Because the matrix is
upper triangular

Tv = v′ + λnanvn,

where v′ ∈ span(v1, . . . , vn−1) and λn is the (n, n)th entry of the matrix. Since
Tv = 0, λnan = 0. This implies an = 0, since we are given that λn 6= 0. Hence, in
fact v = a1v1 + . . .+ an−1vn−1. Now the same argument shows that an−1 = 0 and
so on. By induction, we see that v = 0, as desired.

Conversely, let’s assume that at least one diagonal entry is 0 and prove that
T is not injective. Let the (j, j)th entry of M(T, v1, . . . , vn) be zero. Then, we
see that the image of T |span(v1,...,vj) is contained in span(v1, . . . , vj−1). Using the
rank nullity theorem, we see that the nullspace of T |span(v1,...,vj) is at least one
dimensional. This finishes the proof. �

Exercise 58. Deduce part (2) of this proposition from part (1). �

19. Lecture 19: Eigenspaces, Jordan blocks, generalized
eigenvectors/spaces

Let us start with a definition.

Definition 27. Let V be a vector space over F, T be an operator on V and λ ∈ F.
Then we call the subspace of vectors v ∈ V such that Tv = λv the eigenspace of λ
and denote it by

E(T, λ) ⊂ V.
�

Note that the eigenspace of λ is the same as the nullspace of T − λId. If λ is an
eigenvalue, then E(T, λ) has non-zero vectors in it.

Lemma 26. Let V be a vector space over F, T be an operator on V and λ ∈ F.
Assume that λ1, . . . , λn ∈ F are pairwise distinct eigenvalues of T . Then

E(T, λ1) + . . .+ E(T, λn)

is a direct sum.

Proof. We have to show that if v1, . . . , vn ∈ V are so that Tvi = λivi for all
i = 1, . . . , n and λi pairwise distinct, then v1 + . . .+ vn = 0 implies that all vi are
zero. Let us prove this by induction on n. For n = 1, it is trivial. Let us assume
that it is true for n− 1 and prove it for n.

From v1 + . . .+ vn = 0, we obtain

T (v1 + . . .+ vn) = Tv1 + . . .+ Tvn = λ1v1 + . . .+ λnvn = 0.
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Subtracting λ1(v1 + . . .+ vn) = 0 from the last equality, we end up with

(λ2 − λ1)v2 + . . .+ (λn − λ1)vn = 0.

Note that

vi = 0 if and only if (λi − λ1)vi = 0

for all i = 2, . . . , n.
Applying the induction hypothesis to vectors

v′2 = (λ2 − λ1)v2, . . . , v
′
n = (λn − λ1)vn,

we obtain that v′i = 0 and therefore vi = 0 for all i = 2, . . . , n. The initial equality
also gives v1 = 0, which finishes the induction. �

In the statement we do not need to assume that λi are eigenvalues but this does
not lead to a stronger statement. Here is a corollary.

Corollary 9. Assume that V is an n-dimensional vector space over F and T ∈
L(V ) has n distinct eigenvalues. Then, one can choose a basis v1, . . . , vn such that
M(T, v1, . . . , vn) is a diagonal matrix.

Proof. We take vi to be a non-zero eigenvector with eigenvalue λi for i = 1, . . . , n.
Lemma 26 shows that v1, . . . , vn is linearly independent, and hence a basis. The
statement follows. �

We have already seen an operator on a finite dimensional vector space that is
not “diagonalizable”:

TA ∈ L(R2) with A =

(
0 −1
1 0

)
.

This operator did not even have an eigenvalue.
We now introduce another example, which holds over all fields.

Definition 28. A Jordan matrix of size n over F with diagonal entries λ ∈ F is the
n× n matrix

J(n,F, λ) :=


λ 1

λ 1
... 1

λ

 ,

with all the other entries 0. �

The linear map

TJ(n,F,λ) : Fn → Fn

has only one eigenvalue λ by Lemma 25. A non-zero eigenvector is given by
(1, 0, . . . , 0) and the eigenspace of λ contains its multiplies. It turns out that it
contains nothing else.

Proposition 16. E(TJ(n,F,λ), λ) is one dimensional.

Proof. The image of (a1, . . . , an) is

λ(a1, . . . , an) + (a2, . . . , an, 0).

Therefore, if (a1, . . . , an) is an eigenvector a2 = . . . = an = 0. �
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So even for complex numbers there are matrices that are not diagonalizable.
Colloquially, the linear map defined by a Jordan matrix cannot be simplified further
by using another basis.

On the bright side, for F = C, Jordan blocks are really all that there is as an
obstacle to diagonalization. We will prove the following theorem next class.

Theorem 6. Let V be a finite dimensional vector space over C and T be an operator
on V . Then we can find a basis v1, . . . , vn of V such that

M(T, v1, . . . , vn)

is in Jordan normal form 
J1 0
0 J2

...
Jk

 .

Here all the non-diagonal blocks have all zero entries and

Ji = J(ni,C, λi),

for some ni positive integer and λi ∈ C for all i = 1, . . . , k.

We are going to find subspaces Ui corresponding to each of these Jordan blocks
such that U1 ⊕ . . .⊕ Uk = V . Here is how they will come about.

Definition 29. Let V be a vector space over an arbitrary field F and T be a linear
operator on V . A vector v ∈ V is called a generalized eigenvector with eigenvalue
λ if

(T − λId)Nv = 0,

for some N ≥ 1.
We call the set of all generalized eigenvectors of λ the generalized eigenspace of

λ and denote it by Egen(T, λ). �

Notice that the generalized eigenvector equation for N = 1 is nothing but the
eigenvector equation.

Exercise 59. Prove that Egen(T, λ) is a subspace. �

Exercise 60. Show that Egen(TJ(n,F,λ), λ) = Fn, so in this case all vectors are
generalized eigenvectors with eigenvalue λ. �

20. Lecture 20: Proof of Jordan normal form theorem I

V is a finite dimensional vector space over C throughout this lecture. Recall that
we were after proving the Jordan normal form Theorem, which is Theorem 6 from
last time. If we have an operator T : V → V , we will say that T can be brought
into Jordan normal form (JNF), if Theorem 6 holds for T .

Today, our goal will be to reduce the general statement to the case of nilpotent
operators, that is operators S such that for some positive integer N ,

SN = S ◦ . . . ◦ S︸ ︷︷ ︸
N S′s

= 0.
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In other words we will show that if nilpotent operators on V can be brought into
JNF, then all operators can be brought into JNF. Nilpotent operators will be cov-
ered in the next lecture.

Let us now assume that nilpotent operators can be brought into JNF and deduce
the general case. We will do this by induction on the dimension of V . The state-
ment is trivial for V one dimensional. We assume that if V has dimension less than
n, then all operators on V can be brought into JNF, and prove that T : V → V
can be brought into JNF for V n dimensional. In case you already forgot we are
assuming that all nilpotent operators (for all dimensions) can be brought into JNF.

Let us start with a simple observation. An operator T on V can be brought into
JNF, if T − λId can be brought into JNF for some λ ∈ C. This is because if we
use exactly same basis, then the matrix we obtain for T is the entrywise sum of the
matrix of T − λId and the matrix of λId, which is also in JNF - the latter simply
adds λ to all diagonal entries.

The upshot is that we can reduce to the case where the operator has 0 as an
eigenvalue by replacing T with T − λId with λ an eigenvalue of T . From now on
we assume that T has 0 as an eigenvalue.

Now consider the generalized eigenspace of 0:

E := Egen(T, 0).

This is the set of vectors in V such that TNv = 0 for some positive integer N .
Clearly E is an invariant subspace of T . Also note that E is at least one dimensional.

Lemma 27. There exists a positive integer N0 such that if TNv = 0 for some
positive integer N > N0 and v ∈ V , then in fact TN0v = 0.

Proof. For every positive integer N ,

EN := null(TN )

is a subspace. Morever EN+1 contains EN , since TNv = 0 implies TN+1v = 0. To
finish note that the dimension of EN has to stabilize after some N0, as otherwise we
would have arbitrarily large dimensional subspaces of V , which is finite dimensional.
This implies that EN stabilizes after N0 as desired. �

We fix an N0 as in Lemma 27. We define the subspace

U := im(TN0).

Proposition 17. U is a complement to E, i.e. E ⊕ U = V .

Proof. Because of Lemma 27, we have

E = null(TN0).

Using the rank-nullity theorem we get that the dimensions of E and U add up to
the dimension of V . Therefore, all we need to show is that if v ∈ E∩U , then v = 0.

If v ∈ E∩U . then v = TN0w for some w ∈ V and TN0v = 0. Combining the two
we get T 2N0w = 0. This implies by Lemma 27 that TN0w = 0. since 2N0 > N0.
Hence, we have v = 0 as desired. �
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The point is that U is not just some complement to E. It is trivially invariant
under T as T (TN0v) = TN0(Tv). Therefore we have for ourselves an invariant
complement and we can use Corollary 8’s second part.

We consider the map T ′ : U → U defined by restricting and ”projecting”. By
the induction hypothesis T ′ can be brought into JNF, since the dimension of U is
less than n. On the other hand T ′′ : E → E defined in the same way is nilpotent,
so that can also be brought into JNF. This finishes today’s work by Corollary 8’s
second part.

21. Lecture 21: Proof of Jordan normal form theorem II: Nilpotent
operators

Recall that we reduced the proof of the Jordan normal form theorem over com-
plex numbers to nilpotent operators. Today we finish the proof. It turns out that
this part works over an arbitrary field. Let us state what we are proving for clarity.

Theorem 7. Let V be a finite dimensional vector space over F and T be a nilpotent
operator on V . Then we can find a basis v1, . . . , vn of V such that

M(T, v1, . . . , vn)

is in Jordan normal form 
J1 0
0 J2

...
Jk

 .

Here all the non-diagonal blocks have all zero entries and

Ji = J(ni,F, 0),

for some ni positive integer i = 1, . . . , k.

Remember that T being nilpotent meant that there exists an N > 0 such that
TN = 0 and

J(n,F, 0) =


0 1

0 1
... 1

0

 ,

with all the other entries 0.
We make a definition that will be useful in the proof. For any v ∈ V , we know

that TNv = 0 for some N > 0. Therefore there exists a unique non-negative integer
N0 such that TN0v = 0 but TN0−1v 6= 0. We call this N0 the exponent of v.

We restate Theorem 7 in a way that is more convenient for the proof.

Exercise 61. Prove that Theorem 7 and Theorem 8 are equivalent to each other.
�

Theorem 8. Let V be a finite dimensional vector space over F and T be a nilpotent
operator on V . Then we can find a list of vectors w1, . . . , wk in V with exponents
n1, . . . , nk such that

• The list of vectors

Tn1−1w1, . . . , w1, . . . , T
nk−1wk, . . . , wk

form a basis of V .
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Proof. We use induction on the dimension of V . For V one dimensional, the state-
ment is trivial. Let us assume that it is true for dimV < n and prove it for
dimV = n.

Claim 3. null(T ) 6= {0}
To see this, take any non-zero v ∈ V . We know that TNv = 0 for some N > 0,

so we can take the smallest integer m > 0 such that Tmv = 0. This implies that
Tm−1v is non-zero and in the nullspace.

Therefore, by the rank-nullity theorem im(T ) has smaller dimension than n.
Since im(T ) is an invariant subspace for T , we can apply the induction hypothesis
to the map im(T )→ im(T ) obtained by restricting T to im(T ).

Let u1, . . . , ul ∈ im(T ) be the list of vectors that we obtain with exponents
m1, . . . ,ml. By definition,

Tm1−1u1, . . . , u1, . . . , T
ml−1ul, . . . , ul

is a basis of im(T )
We define vi ∈ V to be any vector such that Tvi = ui for all i = 1, . . . , l. Notice

that the exponent of vi is mi + 1 for all i = 1, . . . , l.

Claim 4. Tm1v1, . . . , v1, . . . , T
mlvl, . . . , vl is a linearly independent set of vectors.

We take a linear relation

a10v1 + . . .+ a1m1
Tm1v1 + . . .+ alml

Tmlvl = 0.

We apply T to this equality and obtain

a10u1 + . . .+ a1m1−1T
m1−1u1 + . . .+ alml−1T

ml−1ul = 0.

This implies that all the coefficients that appear in the last equation are zero. We
therefore have

a1m1
Tm1v1 + . . .+ alml

Tmlvl = 0,

which is the same as

a1m1T
m1−1u1 + . . .+ alml

Tml−1ul = 0.

Therefore, these coefficients are also zero, which finishes the proof of the claim.
We define the subspace

W = span(Tm1v1, . . . , v1, . . . , T
mlvl, . . . , vl).

Claim 5. W + null(T ) = V

Let v ∈ V . We know that Tv is a linear combination of Tm1−1u1, . . . , u1, . . . , T
ml−1ul, . . . , ul.

We define w ∈ W by replacing each ui in this expression with vi, which satisfies
Tw = Tv. This means that v − w is in the nullspace finishing the proof of the
claim.

We are almost done. Choose a complement U to W ∩null(T ) inside null(T ) and
let vl+1, . . . , vk be a basis for it. It is easy to see that U is in fact a complement to
W inside V . Therefore

Tm1v1, . . . , v1, . . . , T
mlvl, . . . , vl, vl+1, . . . , vk

form a basis for V .
Noticing that the exponents of vl+1, . . . , vk are all 1, we see that

v1, . . . , vl, vl+1, . . . , vk

is the kind of list of vectors that we were after to prove the statement. �
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We have finally finished the proof of the Jordan normal form theorem for com-
plex numbers (Theorem 6).

There is a Jordan normal form theorem for real numbers as well. I will state it
below. Its proof is actually not hard given the version for complex numbers, but I
will omit it.

We define

J̃(n,R, a, b) :=


A(a, b) I2

0 A(a, b) I2
... I2

A(a, b)


where the matrix is 2n× 2n,

A(a, b) =

(
a −b
b a

)
and I2 =

(
1 0
0 1

)
.

All the other blocks are zero.

Theorem 9. Let V be a finite dimensional vector space over R and T be an operator
on V . Then we can find a basis v1, . . . , vn of V such that

M(T, v1, . . . , vn)

is in real Jordan normal form 
J1 0
0 J2

...
Jk

 .

Here all the non-diagonal blocks have all zero entries and

Ji = J(ni,R, λ) for some λ ∈ R or Ji = J(ni,R, a, b) for some a, b ∈ R
for some ni > 0 for all i = 1, . . . , k.

22. Lecture 22: Inner product spaces, orthonormal bases

For the rest of the quarter, we are going to be interested in analyzing finite
dimensional vector spaces over real numbers equipped with an inner product.

Here is the prototypical example. On the vector space Rn, we can define the dot
product, which is a map Rn × Rn → R defined by

(a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . .+ anbn.

The dot product is an inner product on Rn, of which definition we give now.

Definition 30. Let V be a vector space over R. Then an inner product on V is a
map

< ·, · >: V × V → R
with the following three properties:

• (positive definiteness) For every v ∈ V , < v, v >≥ 0 and the equality holds
if and only if v = 0.

• (symmetry) For every v, w ∈ V , < v,w >=< w, v >.
• (linearity) For a, b ∈ R and v1, v2, w ∈ V ,

< av1 + bv2, w >= a < v1, w > +b < v2, w > .
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�

Exercise 62. State and prove the linearity in the second slot. �

Exercise 63. Check that indeed the dot product is an inner product on Rn. �

Remark 17. The definition did not assume finite dimensionality but we will make
this assumption from now on. �

For the rest of the lecture, V is a finite dimensional vector space over R with
inner product < ·, · > . It is customary to define the associated norm via

‖v‖ :=
√
< v, v >.

If two vectors v, w satisfy < v,w >= 0, we say that they are orthogonal.

Exercise 64. Show that if v and w are orthogonal, then for any scalar c ∈ R, cv
and w are also orthogonal. �

Definition 31. A basis v1, . . . , vn for V is called orthonormal if

• < vi, vi >= 1 for all i = 1, . . . , n
• < vi, vj >= 0 for all i 6= j ∈ {1, . . . , n}

�

It is easy to see that for Rn with the dot product, the standard basis is orthonor-
mal.

We can turn any basis of V into an orthonormal basis by an algorithmic pro-
cedure called the Gramm-Schmidt process. It goes as follows. Let v1, . . . , vn be a
basis of V . We will modify the vectors in this basis one by one, starting from v1,
and getting to

v′1, . . . , v
′
k, vk+1, . . . , vn

after the kth step, so that v′1, . . . , v
′
n is an ON basis at the end.

The key point of the procedure is that we will require

span(v′1, . . . , v
′
k) = span(v1, . . . , vk)

at all steps k = 1, . . . n. This essentially determines what the procedure is (up to a
sign ambiguity at every step). If you remember that we can achieve our goal under
this requirement, you will have no trouble coming up with the Gramm-Schmidt
process yourself.

So we start: all we get to do in the first step is to multiply v1 by a scalar so that
the result has norm 1. This is possible of course, we define v′1 := v1

‖v1‖ .

Exercise 65. Show that v′1 has norm 1. �

We could have also chosen −v′1 in this step, which is the ambiguity I mentioned.
We will have this ambiguity at every step but I will not mention it again.

We come to the second step. We get to multiply v2 by a scalar and also add
a multiple of v′1 (equivalently of v1) such that the result has norm 1 and it is
orthogonal to v′1. Let us first make it orthogonal, since we already know how to
deal with the norm after that. Here is what we do

v′′2 = v2− < v′1, v2 > v′1.
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Exercise 66. Show that v′′2 is orthogonal to v′1. �

Notice that v′′2 is not zero because v1, v2 and therefore v′1, v2 is linearly indepen-

dent, so we define v′2 :=
v′′2
‖v′′2 ‖

. Orthogonality still holds of course.//

I will also do the third step and leave the proof by induction to you. To modify
v3 we will add a linear combination of v′1, v

′
2 so that it becomes orthogonal to v′1 and

v′2. The result cannot be zero, therefore we can then divide by the norm and get
what we want. What linear combination do we add? We follow the same pattern:

v′′3 := v3− < v′2, v3 > v′2− < v′1, v3 > v′1.

Exercise 67. Show that v′′3 is orthogonal to v′1 and v′2. �

Exercise 68. Rigorously define the Gramm-Schmidt process inductively. �

An immediate corollary is the following.

Corollary 10. V admits an orthonormal basis.

Recall that given subspace U ⊂ V we could also always find a complement
subspace for it. Using the inner product, we can define a special complement called
the orthogonal complement.

Definition 32. The orthogonal complement to a subspace U ⊂ V is defined as

U⊥ := {v ∈ V |< v, u >= 0 for all u ∈ U}.
�

Exercise 69. Show that U⊥ is a subspace. �

Lemma 28. U ⊕ U⊥ = V

Proof. First of all note that if v ∈ U ∩U⊥, then < v, v >= 0, or equivalently v = 0.
Hence it suffices to show U + U⊥ = V . This is very similar to Gramm-Schmidt
process.

Choose an orthonormal basis u1, . . . , uk of U . Let v ∈ V and define

u′ := v− < u1, v > u1 − . . .− < uk, v > uk.

It follows easily that u′ ∈ U⊥, which finishes the proof. �

Just as for any splitting we obtain linear maps V → U and V → U⊥. The map
V → U is called the projection to U . Note that we can define the projection map
V → U⊥ in two different ways: using the splittings U⊕U⊥ = V or U⊥⊕(U⊥)⊥ = V .
It turns out that these two splittings are the same up to changing the order of the
subspaces.

Lemma 29. (U⊥)⊥ = U

Proof. We first show that U ⊂ (U⊥)⊥. We need to show that for u ∈ U , and every
u′ ∈ U⊥, < u, u′ >= 0. This is immediate from symmetry.

Note that just like U ⊕ U⊥ = V , we have U⊥ ⊕ (U⊥)⊥ = V . This means that
the dimensions of (U⊥)⊥ and U are the same which finishes the proof. �

Exercise 70. Let U ⊂ Rn be a subspace that is the span of a subset of the vectors
in the standard basis. Compute the projection map to U with respect to the dot
product. �
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23. Lecture 23: Projection formula, self-adjoint operators,
isometries

Throughout this lecture: V is a finite dimensional vector space over R with inner
product < ·, · > .

Before we start analyzing operators on V , let us point out a couple of useful
things about orthonormal bases and projections.

Lemma 30. Let v1, . . . vn be an ON basis of V . Then for all v ∈ V , we have

v =< v, v1 > v1 + . . .+ < v, vn > vn.

Proof. Since v1, . . . vn is a basis, there exists a1, . . . , an ∈ R such that

v = a1v1 + . . .+ anvn.

Now take the inner product of both sides with vi, for i = 1, . . . , n. Using that
v1, . . . vn is orthonormal, we get that

< v, vi >= ai,

proving the lemma. �

Therefore, we know exactly how to compute which linear combination of an or-
thonormal basis is equal to a given vector.

Now let U ⊂ V be a subspace. Last time we proved that we have a splitting
U ⊕ U⊥ = V , which defines for us the projection map

prU⊂V : V → U.

Lemma 31 (Projection formula). Let U ⊂ V be a subspace and u1, . . . , um be an
ON basis for U . Then, for all v ∈ V, we have

prU⊂V v =< v, u1 > u1 + . . .+ < v, um > um.

Proof. We also take an orthonormal basis of U⊥: u′1, . . . , u
′
k. It follows from Lemma

28 and the definition of U⊥ that u1, . . . , um, u
′
1, . . . , u

′
k is an ON basis for V . There-

fore, we have

v = < v, u1 > u1 + . . .+ < v, um > um︸ ︷︷ ︸
u

+< v, u′1 > u′1 + . . .+ < v, u′m > u′k︸ ︷︷ ︸
u′

.

This finishes the proof. �

Remark 18. As you can see, it is very pleasant to work in the presence of an inner
product. Similar pleasantries are used in the infinite dimensional context as well.
For example when you see Fourier series you should try to think of what is going
on light of the formulas we just proved. �

It turns out that V is always isomorphic to Rn in such a way that its inner
product is matched with the dot product.

Proposition 18. Let v1, . . . , vn be an ON basis of V , and let e1, . . . , en be the
standard basis of Rn. Consider the unique linear map T : V → Rn satisfying
Tvi = ei for all i = 1, . . . , n. Then, for all v, w ∈ V ,

< v,w >= Tv · Tw,
where we used the dot product on the right hand side.
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Exercise 71. Prove this proposition using Lemma 30. You just need compute both
sides using the bases. �

Since we know that we can find an ON basis of V , this shows that V with its
inner product is isomorphic to Rn with the dot product (without the inner products
we already knew this). Since the ON basis is not unique, the isomorphism is also
not unique. We find it useful to keep going with the abstract framework.

Let us now start our analysis of operators. We will focus on two special types of
operators:

Definition 33. Let T be an operator on V .

• We call T self-adjoint if for all v, w ∈ V ,

< Tv,w >=< v, Tw >

• We call T an isometry if for all v, w ∈ V ,

< Tv, Tw >=< v,w >

�

Note that the definitions do not actually require the finite dimensionality as-
sumption.

Exercise 72. Prove that for Rn with dot product an operator T is self-adjoint if
and only if the matrix M(T, e1, . . . , en) is a symmetric matrix. �

Exercise 73. Prove that an isometry of V has to be an isomorphism. �

For a couple of lectures we work on choosing ON bases of V such that self-adjoint
operators and isometries have “simple” matrices with respect those bases. We will
give more intuition as well. Today, we end with a preparatory lemma.

Lemma 32. Let T be either an isometry or a self-adjoint operator on V . If a
subspace U ⊂ V is invariant under T , then so is U⊥.

Proof. Here is what we need to show: if for some v ∈ V , < v, u >= 0 for all u ∈ U ,
then < Tv, u >= 0 for all u ∈ U as well.

First, assume that T is self-adjoint. Then, we have < Tv, u >=< v, Tu >. Since
U is an invariant subspace, Tu ∈ U and < v, Tu >= 0.

Second, assume that T is an isometry, which in particular means that it is
an isomorphism. Let T−1 be the inverse operator. It is easy to see that U is
an invariant subspace of T−1 as well (see exercise below). Therefore, we have
< Tv, u >=< Tv, TT−1u >=< v, T−1u >= 0. �

Exercise 74. Let T be an isomorphism V → V and let U ⊂ V be an invariant
subspace of T . Then, prove that U is an invariant subspace of T−1 as well. This
requires finite dimensionality of V but not the inner product. You might have fun
trying to construct a counter-example when V is infinite dimensional. �

If we assume the real Jordan normal form theorem, we can easily deduce that
any operator T on V has an invariant subspace of dimension at most 2. Using what
we just proved along with Corollary 8, this shows by the induction that in either
case we can make the matrix of T into a block diagonal one, where each block in
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the diagonal has size at most two, by choosing a not necessarily orthonormal basis.
We can in fact make sure that in the self-adjoint case, we can make the blocks size 1
and in the isometry case we can make each block be either ±1 or a rotation matrix.
And, we can achieve these with an orthonormal basis. We will cover these in the
next two classes - we will also not assume the real Jordan normal form theorem as
we did not prove it.

24. Lecture 24: Spectral theorem

Let V be a finite dimensional vector space over R with inner product < ·, · >
throughout this lecture.

Perhaps the most intuitive way to think about self-adjoint operators is the fol-
lowing.

Lemma 33. Let v1, . . . vn be an ON basis of V . Then, T ∈ L(V ) is self-adjoint if
and only if M(T, v1, . . . vn) is a symmetric matrix.

Proof. We have Tvi = a1iv1+. . .+anivn where aji is the jith entry ofM(T, v1, . . . vn).
We compute

< Tvk, vl >= alk and < vk, T vl >= akl,

which finishes the proof. �

Note that what you have already shown in Exercise 72 gives a proof of this state-
ment as well.

Let us now move on to the main theorem about self-adjoint operators: the
spectral theorem. We first need a preparatory lemma.

Lemma 34. For every real polynomial p(z) = amz
m + . . . + a1z + a0 there exists

p1, . . . , ps, b1, c1, . . . br, cr ∈ R such that

p(z) = am(z − p1) . . . (z − ps)(z2 + b1z + c1) . . . (z2 + brz + cr),

and the quadratic polynomials (z2 + biz + ci) have no real roots (that is 4ci > b2i ).

Proof. Using the inclusion of real numbers into complex numbers as purely real
complex numbers, we can think of p(z) as a polynomial over complex numbers.
The key point is that if λ ∈ C is a root of p(z), then should be λ. This can be seen
by taking the complex conjugate of

amλ
m + . . .+ a1λ+ a0 = 0

and using ai = ai.
Using the fundamental theorem of algebra, we had already shown that there

exists λ1, . . . , λm ∈ C such that

amz
m + . . .+ a1z + a0 = am(z − λ1) . . . (z − λm)

as polynomials over complex numbers.
If all of these λi’s are purely real, then we are done, because the same equality

then holds as polynomials over real numbers as well. Assume that λ1 is not purely
real. We know that one of the other roots have to be its complex conjugate, so let’s
assume that λ2 = λ1.

Let’s now consider the real polynomial

z2 + b1z + c1 := z2 − 2Re(λ1) + |λ1|2.
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Over the complex numbers this polynomial is equal to (z−λ1)(z−λ2) and it divides
p(z). It is immediate that 4c1 > b21 since the imaginary part of λ1 is non-zero (check
it!).

Let us prove that z2 + b1z + c1 divides p(z) over the real numbers as well. We
use polynomial division as in Lemma 20 to get that there is a real polynomial q(z)
and an at most degree 1 polynomial r(z) such that

p(z) = (z2 + b1z + c1)q(z) + r(z).

We now consider this equality as an equality of complex polynomials and sub-
stitute λ1 for z. We obtain r(λ1) = 0, but since r(z) is real and has degree at most
1, and λ1 is not real, it follows that r(z) has to be the zero polynomial.

We can now apply the same argument for q(z). Since the degree of q(z) is
less than p(z) the procedure terminates at some point and we obtain the desired
factorization. �

Theorem 10 (Spectral theorem). Let V be a finite dimensional vector space over
R with inner product < ·, · > and T be a self-adjoint operator on V . Then, there is
an ON basis of V which makes the matrix of T diagonal.

Proof. First, it suffices to show that T has an eigenvalue using the inductive argu-
ment relying on Corollary 8. This is because of the important Lemma 28 we proved
in the previous lecture and the simple fact that the restriction of a self-adjoint op-
erator to an invariant subspace is self-adjoint. Make sure you understand why we
automatically get that the basis we produce after the induction is ON if we use a
unit norm eigenvector for our eigenvalue.

The proof that T has an eigenvalue uses the same strategy we used to prove the
existence of eigenvalues over complex numbers. Let V be n-dimensional. Choose a
non-zero v ∈ V and consider the list of vectors

Tnv, Tn−1v, . . . , T v, v.

Since this list has more elements than the dimension, it has to be linearly dependent.
Therefore, there exists n ≥ m ≥ 1 and real numbers am, . . . , a1, a0 such that

amT
mv + am−1T

m−1v + . . .+ a1Tv + a0v = 0

and am 6= 0. This means that the operator

amT
m + am−1T

m−1 + . . .+ a1Tv + a0Id

is not an isomorphism.
We just showed that there exists p1, . . . , ps, b1, c1, . . . br, cr ∈ R such that

p(z) = am(z − p1) . . . (z − ps)(z2 + b1z + c1) . . . (z2 + brz + cr),

and 4ci > b2i . We substitute T for z and obtain that

(T − p1Id) ◦ . . . ◦ (T − psId) ◦ (T 2 + b1T + c1Id) ◦ . . . ◦ (T 2 + brT + crId)

is not an isomorphism.
If T −piId is not an isomorphism for some i = 1, . . . , s, we are done. Let us show

that T 2 + biT + ciId has to be an isomorphism for all i = 1, . . . , r, which finishes
the proof.

Note that

T 2 + biT + ciId = (T +
bi
2
Id)2 + δId,
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for some δ > 0 using 4ci > b2i . Clearly, T + bi
2 Id is self-adjoint. Therefore, for any

v ∈ V :

< ((T +
bi
2
Id)2 + δ)v, v >=< Tv +

bi
2
v, Tv +

bi
2
v > +δ < v, v > .

It follows using positive definiteness that if T 2v+ biTv+ civ = 0, then v = 0, which
shows that T 2 + biT + ciId is injective and hence an isomorphism, as desired. �

25. Lecture 25: Hermitian inner products on complex vector spaces,
eigenvalues of self-adjoint operators, isometries as distance

preserving maps

Let’s talk a little bit about complex vector spaces equipped with a Hermitian
inner product before we move on to isometries.

Definition 34. Let V be a vector space over C. Then a Hermitian inner product
on V is a map

< ·, · >: V × V → C
with the following three properties:

• (conjugate symmetry) For every v, w ∈ V , < v,w >= < w, v >. In partic-
ular, < v, v > is purely real.
• (positive definiteness) For every v ∈ V , < v, v >≥ 0 and the equality holds

if and only if v = 0.
• (linearity) For a, b ∈ R and v1, v2, w ∈ V ,

< av1 + bv2, w >= a < v1, w > +b < v2, w > .

�

Exercise 75. A Hermitian inner product is not linear in the second slot, but it is
conjugate-linear (anti-linear). Formulate what this should mean using the conjugate
symmetry property. �

Definition 35. Let T be an operator on V . We call T self-adjoint if for all v, w ∈ V ,

< Tv,w >=< v, Tw >

�

Remark 19. One can define complexifications of real vector spaces (which are com-
plex vector spaces) and linear maps between them (which are linear maps). You can
also turn an inner product on a real vector space into a Hermitian inner product
on its complexification. Then, the complexification of self-adjoint operator ends
up being self adjoint as well. This essentially boils down to the following: if you
consider a symmetric real matrix as a complex matrix, then it is still symmetric. I
avoided discussing this complexification stoty in detail but it is actually quite use-
ful, especially if one introduces the notion of a normal operator over C. Hopefully
you will learn about them later in your life. �

We know that complex operators have eigenvalues. An important point is that
for self-adjoint ones these have to be purely real.

Lemma 35. Let V be a vector space over C with Hermitian inner product < ·, · >
and T be a self-adjoint operator on V . Then, the eigenvalues of T are purely real.
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Proof. Let λ ∈ C be an eigenvalue of T with non-zero eigenvector v. We want to
show λ = λ.

We compute < Tv, v > in two different ways. Here is the first one:

< Tv, v >=< λv, v >= λ < v.v > .

Using self-adjoint property it is also equal to

< v, Tv >=< v, λv >= λ < v, v > .

Therefore
λ < v.v >= λ < v, v > .

Using positive definiteness we finish the proof. �

Remark 20. This can also be used in the proof of Theorem 10 to obtain a real
eigenvalue using the remark about complexification above but we omit the details.

�

One can use the same proof with Lemma 28 to show that the orthogonal com-
plement (define this!) of an invariant subspace of a self-adjoint operator is also
invariant. Hence, we easily obtain the following.

Theorem 11 (Complex spectral theorem). Let V be a finite dimensional vector
space over C with Hermitian inner product < ·, · > and T be a self-adjoint operator
on V . Then, there is an ON basis (define this) of V which makes the matrix of T
diagonal with purely real entries.

If one understands the complexification idea sufficiently well, one can deduce the
real spectral theorem directly from the complex spectral theorem.

Remark 21. The most general spectral theorem is for normal operators over complex
vector spaces with Hermitian inner products. These also include complexifications
of isometries! Hence, what we will prove next time is also a special case of that
generalization. Normal operators are abstract but they are useful, as I already
mentioned in a previous remark. �

Now let’s go back to real numbers and start our discussion of isometries. For
this part we actually just work with Rn and the dot product. This is actually
the same level of generality with finite dimensional vector spaces equipped with an
inner product by Proposition 18.

There is a notion of a distance between two points x, y in Rn defined by

d(x, y) = ‖x− y‖ =
√

(x− y) · (x− y).

Note that here x− y is a vector in Rn, so we can take its norm with respect to the
dot product. Of course, this is nothing but the Pythagoras theorem distance that
we are all familiar with. I will assume that you are also familiar with:

Lemma 36. We have the triangle inequality:

d(x, y) + d(y, z) ≥ d(x, z),

with equality if and only if y lies inside the straight line segment between x and z.

Let us call a map (not assumed to be linear) Φ : Rn → Rn distance preserving
if for every x, y ∈ Rn:

d(Φ(x),Φ(y)) = d(x, y).

Here is a very cool statement.
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Proposition 19. A map Φ : Rn → Rn is distance preserving and sends the origin
to origin if and only if it is an isometry.

Proof. Let’s start with the main content: if Φ is distance preserving and sends
origin to origin, then it has to be linear!

Let x, z ∈ Rn. We will show that the midpoint y of the straight line segment
between x and z is sent to the midpoint of the straight line segment between Φ(x)
and Φ(z). Let us call this the claim.

We know that

d(x, y) + d(y, z) = d(x, z),

which implies

d(Φ(x),Φ(y)) + d(Φ(y),Φ(z)) = d(Φ(x),Φ(z)).

This means that Φ(y) has to lie inside the straight line segment between Φ(x) and
Φ(z). Since, we also have d(x, y) = d(y, z), which implies

d(Φ(x),Φ(y)) = d(Φ(y),Φ(z)),

the claim follows.
Applying the claim to 0 and 2x, we see that

Φ(2x) = 2Φ(x),

since we know that 0 is sent to 0.
If we think of x, z as vectors, the midpoint y as above is given by 1/2(x + y).

Therefore the claim implies the additivity of Φ by the previous paragraph.
We move onto the homogeneity. Applying the claim to −x and x, we see that

Φ(−x) = −Φ(x),

again using that 0 is sent to 0. All that is left to do is to prove homogeneity for
positive scalars. It suffices to prove this for 0 < c < 1 (why?).

The proof of this final point follows immediate from the argument that gave us
the claim. I leave this to you.

Hence, we know that Φ has to be a norm preserving linear map. To finish we
need to show that it preserves the dot product of arbitrary two vectors. This follows
from the polarization identity:

u · v =
‖u+ v‖ − ‖u− v‖

4

which is in your homework.
The converse is trivial. �

Next class we will analyze isometries of Rn, which are as we just saw the same
as distance preserving maps up to a translation. We stress again that the latter is
a notion that does not use the linear structure in its definition.

For example in three dimensions, we will see that if an isometry preserves the
orientation of R3, then it has to be a rotation along an axis passing through the
origin. Since the composition of two orientation preserving isometries is an orien-
tation preserving isometry, this means that composition of two rotations along two
different axes is a rotation along a third axis. This is not clear visually.
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26. Lecture 26: Multiplicativity of determinants, orientations,
isometries of (Rn, ·)

In what follows Rn is equippped with its standard vector space structure and
the dot product. We denote the standard basis by e1, . . . , en. Note that we will be
choosing different bases for Rn in this lecture as well.

We will first introduce the notion of orientation preserving/reversing isomor-
phisms of Rn → Rn. In fact, we start with a more general discussion. Below is an
important property of determinants that we did not discuss in Lecture 13.

Theorem 12. Let A and B be two n× n matrices over an arbitrary field. Then

det(AB) = det(A)det(B).

We omit the proof as our focus is elsewhere. Giving the correct proof of this
involves the notion of the top exterior power of a vector space, which again I hope
you will see elsewhere.

We have seen in a homework that matrices of operators with respect to different
bases are related by a relation of the form

M ′ = AMA−1

for an invertible matrix A that is called the change of basis matrix.

Remark 22. What I defined as the change of basis matrix in that homework is
the inverse of what most people call the change of basis matrix. I believe that
my definition is more intuitive: it is the matrix that turns the old column vector
representation to the new column vector representation. On the other hand the
more common definition has the virtue that it is easy to say what the matrix is:
you write the old column vector representations of the new basis and put them in a
matrix as the columns. The more conventional definition is so that the matrix turns
the new column vector representation to the old column vector representation.

I took my first class in this stuff from Michael Artin, whose book Algebra covers
this topic. He says that in the first version he used my convention to define what
the change of basis matrix is but then in the second version he switched to the more
conventional one. As long as you know what you are doing, all is fine. �

Corollary 11. Let T be an operator on a finite dimensional vector space V over
F. Then

det(M(T, v1, . . . , vn))

is independent of the chosen basis.

Exercise 76. Prove this using the multiplicativity of determinant. �

As a result, we can talk about the determinant of an operator: det(T ).

Definition 36. Let T be an operator on a finite dimensional vector space V over R,
which we assume is an isomorphism. We call T orientation preserving if det(T ) > 0,
and orientation reversing if det(T ) < 0. �

Let us call an isometry of Rn positive if it is orientation preserving, and negative
if it is orientation reversing. We start by discussing isometries in low dimensions.

Take n = 1. What are the isometries of R? It is trivial that these are the iden-
tity map and multiplication by −1. The former is positive, whereas the latter is
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negative. Multiplication by −1 is the simplest example of a reflection.

How about the isometries of R2? Let T be one and let Te1 = v1 = (cos θ, sin θ)
for some angle θ. Then, Te2 must be a vector that is of norm 1 and is perpendicular
to v1. Here I am using perpendicular to mean orthogonal with respect to the dot
product, which matches exactly the meaning of the word as you always used. There
are two such vectors (− sin θ, cos θ) and (sin θ,− cos θ). The matrix M(T, e1, e2) are
either

Rotθ :=

(
cos θ − sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ − cos θ

)
= Rotθ ·

(
1 0
0 −1

)
The first option gives rise to a counter clockwise rotation by θ radians and it is

positive. The second one gives rise to a reflection along the “x-axis” followed by
the same rotation. This one is negative.

The rotation isometry has the same matrix with respect to any ON basis of R2

(show this!). It has no eigenvalues. On the other hand the negative isometry above
has 1 and −1 as eigenvalues with perpendicular non-zero eigenvectors!

Here is a geometric way to see what these eigenvectors are. We assume that v1

is in the first quadrant - other cases can be dealt with in similar manner. Take the
unit vector w that bisects the angle from e1 to v1 in the first quadrant. It is easy
to see that reflection along x-axis and then rotation by θ brings w back to itself.
Now rotate w positively π/2 degrees to get w′. It is slightly harder but still easy
to see that reflection along x-axis and then rotation by θ brings w′ to −w′. Hence,
with respect to the ON basis w,w′ the matrix becomes(

1 0
0 −1

)
.

Summing it all, all positive isometries of R2 are rotations and all negative isome-
tries of R2 are reflections.

Before we go to n = 3, let us discuss reflections in all dimensions. On Rn one can
reflect along any n− 1 dimensional subspace (a hyperplane). The most convenient
way to describe a hyperplane is through a normal vector (or the normal line). Given
a unit vector v ∈ Rn, define

Hv := span(v)⊥.

Any hyperplane is of this form as its orthogonal complement has to be one dimen-
sional and Hv = Hw if and only if w = ±v.

First notice that projection Rn → Hv is given by

u 7→ u− (u · v)v.

This agrees with our preconception of what this projection should be.
Using this it is easy to see that we can define the reflection Rn → Rn along Hv

by

u 7→ u− 2(u · v)v.

Exercise 77. Check that reflection along any hyperplane is a negative isometry.
Show that with respect to some ON basis of Rn, the matrix of a reflection along a
hyperplane is diagonal with all entries equal to 1 but the last one, which is equal
to −1. �
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Note that the composition of two reflections (along possibly different hyper-
planes) is a positive isometry.

Let us now go back to isometries of R3. Of course we have all the reflections that
we just described, but we have a lot more. Choose a one dimensional subspace (a
line) l ⊂ R3. We can write any vector in R3 uniquely as v + w, where v ∈ l and w
is orthogonal to l. We define the θ radian rotation along l operator on R3 as

v + w 7→ v + rotθ(w),

where rotθ is defined using any ON basis on l⊥.

Exercise 78. Think about what the θ radian rotation along l does and make sure
it deserves the name. Check that it is a positive isometry. �

There is one more class of isometries of R3. These are the ones where you follow
a rotation along an axis with a reflection along the plane perpendicular to the same
axis. In particular, all positive isometries of R3 are rotations along an axis. We will
deduce the classification of the isometries of R3 into three classes (which were...?)
from the following theorem that holds in all dimensions.

Theorem 13. Let V be a finite dimensional vector space over R equipped with an
inner product < ·, · > and T be an isometry on V . Then we can find an ON basis
v1, . . . , vn of V such that

M(T, v1, . . . , vn)

is of the form 
A 0
0 Rotθ1

...
Rotθk

 .

Here all the non-diagonal blocks have all zero entries, A is a diagonal matrix with all
entries equal to 1 or −1, and Rotθk are 2× 2 rotation matrices for all i = 1, . . . , k.

Note that even though I preferred stating everything for the dot product until
now, I switched to the abstract framework for the theorem. Here is the reason:
when you take a subspace W of Rn and, using the dot product, equip W with an
inner product, it is not canonically an Rk with the dot product. It becomes one if
you choose an ON basis, but that is a choice and it does not need be made.

Exercise 79. Show that Theorem 13 implies what we claimed about the isometries
of R3. Check also that it reproduces what we proved by hand for n = 1, 2. �

The final covers up to here. Next lecture I will finish the proof. This will be the
last lecture of the course.

27. Lecture 27: Proof of the normal form theorem for isometries,
polar decomposition, SVD

Let us finish the proof from last time.

Proof of Theorem 13. All we need to prove is that T either has ±1 as an eigenvalue
or has a two dimensional invariant subspace U . In the latter option, we already
know that T |U : U → U has to be either a rotation or a reflection in an arbitrary
ON basis of U (using column vector representations via Proposition 18 and our
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analysis of the isometries of (R2, ·)) We then finish using Lemma 28 and Corollary
8.

We use the argument that we used for the proof of real spectral theorem. We
find that there exists p1, . . . , ps, b1, c1, . . . br, cr ∈ R such that 4ci > b2i and

(T − p1Id) ◦ . . . ◦ (T − psId) ◦ (T 2 + b1T + c1Id) ◦ . . . ◦ (T 2 + brT + crId)

is not an isomorphism.
If T − piId is not an isomorphism for some i = 1, . . . , s, then it follows that T

has an eigenvalue. Because T is an isometry this eigenvalue has to be 1 or −1, so
we are done.

If T 2 + biT + ciId is not an isomorphism for some i = 1, . . . , r, then we obtain
that for some v ∈ V ,

T 2v + biTv + civ = 0.

This implies that span(v, Tv) is an invariant subspace, which ends the proof. �

I want to now briefly explain polar decomposition for operators on real vectors
spaces with inner products.

Let V be a finite dimensional vector space over R equipped with an inner product
< ·, · > and T be an operator on V .

Lemma 37. There exists a unique operator T ∗ on V , which satisfies

< Tv,w >=< v, T ∗w >,

for all v, w ∈ V

Proof. There are many ways to prove this but I will tell you the one that is most
concrete (not the best proof). We choose an orthonormal basis v1, . . . , vn of V . Let
M be the matrix of T with respect to v1, . . . , vn. One then easily sees that if there
is an operator T ∗ as in the statement then its matrix with respect to v1, . . . , vn has
to be the transpose of M . Defining the unique operator T ∗ with matrix M t, we
also prove the existence. �

Definition 37. Let V be a finite dimensional vector space over R equipped with an
inner product < ·, · > and T be an operator on V . The unique operator T ∗ on V ,
which satisfies

< Tv,w >=< v, T ∗w >,

for all v, w ∈ V , is called the adjoint of T . �

Remark 23. We called T self-adjoint above if T = T ∗. We had used the little
computation above on the relationship between the matrices of T and T ∗ when we
showed that the matrix of a self-adjoint operator with respect to an ON basis is
symmetric. �

Exercise 80. Prove that T is an isometry if and only if T ◦ T ∗ = Id. �

Exercise 81. Prove that if T and S are operators on V as above, then (T ◦ S)∗ =
S∗ ◦ T ∗. �

Let us make one more definition.

Definition 38. Let V be a finite dimensional vector space over R equipped with an
inner product < ·, · > and T be an operator on V . We call T positive semi-definite,
if < Tv, v >≥ 0 for all v ∈ V . We call it positive definite, if in addition equality
implies v = 0. �
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Here is the statement of polar decomposition. I will not give a full proof.

Theorem 14. Let V be a finite dimensional vector space over R equipped with an
inner product < ·, · > and T be an operator on V . Then, there exists a unique
positive semi-definite self-adjoint operator P and an isometry U such that

T = P ◦ U.

If T is an isomorphism, then P is positive-definite and U too is unique.

One easily sees that T = P ◦ U implies:

T ◦ T ∗ = P ◦ U ◦ U∗ ◦ P ∗ = P 2.

T ◦T ∗ is a positive semi-definite self-adjoint operator which is positive definite if
and only if T is an isomorphism (check this!) One needs to show that there exists
a unique positive definite self-adjoint P that satisfies this equality.

By the spectral theorem we can find an ON basis v1, . . . , vn of V such that

(T ◦ T ∗)vi = λivi,

with λi ≥ 0 (inequalities are strict if T is an isomorphism). It immediately follows
that there exists a square root P , since we can define it by

Pvi =
√
λivi,

for all i = 1, . . . , n. Uniqueness is easy when λi are all distinct and the general case
follows by a continuity argument.

When T is an isomorphism, we need to choose

U = P−1 ◦ T.

Using that P−1 is also self-adjoint, one shows that U is an isometry. When T is
not an isomorphism more analysis is required to choose U .

Note that a positive semi-definite self-adjoint operator P is an operator that
stretches or contracts in its orthonormal eigenbasis directions by the spectral theo-
rem. Hence, polar decomposition says that every operator is an isometry composed
with such an operator.

Let’s think about the case Rn with the dot product and restate the combination
above of polar decomposition and spectral theorem in terms of matrices. Any
square matrix with real entries can be written as

ODOtU,

where D is a diagonal matrix with non-negative entries, UU t = I and OOt =
I (matrices satisfying this equality are called orthogonal matrices). Combining
OtU into a single orthogonal matrix, we obtain what is called the singular value
decomposition of a real square matrix. SVD generalizes to non-square matrices as
well, which requires more care.

28. Some problems

28.1. Constructing the rational numbers.
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i) We can construct Q as a set using an equivalence relation on Z × (Z − {0}).
Namely, let (a, b) ∼ (c, d) if and only if ad = bc. Then define Q := Z × (Z −
{0})/ ∼.

It is customary to denote the equivalence class of an element (a, b) in
Z × (Z − {0})/ ∼ by a

b . Make sure you understand why. Where does this
equivalence relation come from?

ii) Define the field operations + and · on Q as they should be using the intuition
you have. Check that these definitions indeed make Q a field.

28.2. Finite fields. Let F be a finite field.

i) Prove that there must exist a positive integer n such that

n times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

Define cF to be the smallest such n.

ii) Prove that cF must divide |F|, the number of elements in k. Feel free to look up
Lagrange’s theorem and use it (without proving) for this problem. Everything
else, including the fact that the theorem applies, needs to be proven of course.

iii) Now assume that |F| = p, where p is a prime number. Prove that cF = p.

iv) Prove that there exists exactly one field with p elements.
(Hint: To do this, first show that at least one field with p elements exists.

We have already constructed two operations on a set of p elements in class.
You only need to check that the field axioms are satisfied. Secondly, you will
need to show that this is the only field with p elements. For this part, start by
representing the elements of the field as 1 + 1 + · · ·+ 1)

28.3. Subfields.

i) Let k be a field and F ⊂ k be a subset. Assume that:
• 0, 1 ∈ F .
• If a ∈ F , then −a ∈ F .
• If a ∈ F − {0}, then a−1 ∈ F .
• If a, b ∈ F , then a+ b ∈ F .
• If a, b ∈ F , then a · b ∈ F .

Prove that if one endows F with the same operations as k, then F is itself a
field. We call F a subfield of k.

ii) Inside C, we have the set of purely real numbers:

A := {a+ i · 0 | a ∈ R} ⊂ C.

We also have the set of purely imaginary numbers:

B := {0 + i · b | b ∈ R} ⊂ C.

Which of A and B are subfields of C?

28.4. Solving an equation over different fields. For which of the following
fields does the equation x2 + 2x+ 2 = 0 have a solution? Q, R, C, Fp with p prime
(Note: By x2 we mean x · x, and by 2 we mean 1 + 1 where 1 is the multiplicative
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identity in whichever field we are considering.)

You can use the following fact without proof. For every prime p, there exists an
element g in Fp such that the smallest positive integer k so that gk = 1 is k = p−1.

28.5. A weird vector space. We can make R into a vector space over Q. The
vector addition is the usual addition in R, and scalar multiplication is given by
multiplying a real number with a rational number in the usual way.

i) Prove that this makes R a vector space over Q.
ii) Prove that Q ⊂ R is a subspace of R as a vector space over Q.

iii) Find a subspace V such that Q ( V ( R. You can use without proof that
√

2,√
3, and

√
6 are not rational numbers.

iv) Can you find infinitely many subspaces V1, V2, . . . of R such that for every pos-
itive integer i, Vi ( Vi+1? You do not need to rigorously prove your statement
but indicate why you think your answer is true. If you think the answer is
yes, you should at least provide a candidate example. Feel free to read about
transcendental numbers, and use that there exists transcendental numbers for
this part.

28.6. Subspaces of F5
2.

i) Let V ⊂ F5
2 be a subspace. What are the possible values of |V |?

ii) Find subspaces V1, V2, V3 of F5
2 such that V1 ∩ V2 = V2 ∩ V3 = V1 ∩ V3 = {0}

but V1 + V2 + V3 is not a direct sum.

28.7. When do we consider two vector spaces to be the same? Let F be a
field and let V,W be two vector spaces over F. An isomorphism from V to W is
a bijective (meaning one-to-one and onto) map φ : V → W such that φ(v + v′) =
φ(v) + φ(v′) for all v, v′ ∈ V and φ(c · v) = c · φ(v) for all c ∈ F and all v ∈ V .

i) Prove that if there is an isomorphism V →W then there is also an isomorphism
W → V . In this case we say that V and W are isomorphic.

In the following two parts, F means the vector space F1.
ii) Prove that the subspace {(t, t, t) | t ∈ F} ⊂ F3 and F are isomorphic.

iii) Prove that F and F2 are not isomorphic.
iv) Find subspaces U,U ′, V, V ′ ⊂ R3 such that no two of them are isomorphic as

vector spaces, but U+U ′ and V +V ′ are isomorphic. You can use your intuition
about lines and planes in three dimensional space as long as you understand
their connection to our definitions in this problem. Example of the kind of fact
you can use: if you have a point p on a line, then the line contains other points
which are not equal to p.

28.8. Polynomial and functional vector spaces. Let F be a field and P (F) be
the vector space of polynomials as explained in pg. 30-31 of your book. For a set
S, we defined in class the vector space FS of maps S → F, also described in pg. 14
of your book.

i) Let Z be the set of integers. Prove that FZ is not finite dimensional.
ii) Is P (F) finite dimensional? Give four subspaces of P (F) which are not isomor-

phic as vector spaces (pairwise). Can you find finitely many finite dimensional
subspaces of P (F) whose sum equals P (F)?

iii) If FS is finite dimensional, what can you say about S? Prove your result.
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iv) Let N be the set of nonnegative integers. Do you think FN is isomorphic to
P (F)? Think about it and make an educated guess. You don’t need to justify
your guess. (Worth 5% of the homework.)

28.9. Matrix multiplication. Let A be an m×n matrix and B be a k×m matrix.
Consider the linear maps TA : Fn → Fm and TB : Fm → Fk as defined in Lecture
11. Prove that

TB ◦ TA = TBA

as linear maps Fn → Fk, where we BA is the matrix multiplication of B and A.

28.10. Finite fields revisited. Let F be a field with finitely many elements. Recall
the definition of cF from your first problem set before you proceed.

i) Prove that cF must be a prime number.
ii) Let cF = p. Show that F can be equipped with a scalar multiplication and

vector addition which makes it a vector space over Fp. (Hint: You might try
to find Fp as a subfield inside F in order to define the vector space structure,
similar to how R was a vector space over Q in PSet 2.)

iii) Show that |F| = pn for some positive integer n.
iv) Construct a field with 4 elements.

Remarks (You do not have to prove these statements, they are just remarks)

• There is exactly one field with pn elements for each prime p and positive
integer n.

• The fields where

m times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0 for some m > 1 are called finite char-

acteristic fields. They do not have to have finitely many elements. One can
again show that the smallest such m has to be a prime p. Therefore, if the
field is not finite, we have an infinite dimensional vector space over Fp.
• If you have free time, you might want to think or read about fields with pn

elements or infinite fields with finite characteristic.

28.11. Matrix represenations of linear maps. Let V be an n-dimensional vec-
tor space over F. Think of the elements of Fn as column vectors. Choosing a basis
v1, . . . , vn of V determines a way of representing vectors of V as column vectors
as well. Namely, let T : V → Fn be the unique linear map such that Tvi = ei
(the i-th standard basis vector of Fn). The representation of v as a column vector
is given by Tv. Let v′1, . . . , v

′
n be another basis for V . This gives rise to another

representation of the vectors in V as column vectors, now via

T ′ : V → kn

v′i 7→ ei.

• Prove that there exists an n×n matrix A such that for every v ∈ V , the two
column vector representations Tv = (a1, . . . , an)ᵀ and T ′v = (a′1, . . . , a

′
n)ᵀ

satisfy

A ·

a1

...
an

 =

a
′
1
...
a′n

 .
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You might want to do this by considering a diagram of linear maps of the
form

V

kn kn.

T T ′

I call the matrix A is the change of basis matrix. Other people have
other conventions.
• Let S be an operator on V . Express the relationship between

M(S, v1, . . . , vn) and M(S, v′1, . . . , v
′
n)

using the change of basis matrix.

Here is how I think about the second part of this problem. I am spelling it out
in case it helps anyone.

Let T : V → Fn as in the problem. An alternative way to think aboutM(S, v1, . . . , vn)
is the following. This is similar to my suggestion about how to think of A from the
first part. Consider

V V

Fn Fn
T

S

T

Since all three arrows are isomorphisms, there is unique bottom horizontal arrow
that makes this diagram commutative. The matrix of that unique linear map with
respect to the standard basis is precisely M(S, v1, . . . , vn) (check please!).

Of course, we can consider the same diagram for the primed versions. We can
put everything together in one diagram:

V V

Fn Fn

Fn Fn

The vertical square face is the square diagram we had above. The slanted square
face is the same for T ′ instead of T . The triangular faces are the diagram that
I gave you in the suggestion for the first part of the problem. The bottom face
therefore is the commutative diagram:

Fn Fn

Fn Fn
A

M

A

M ′
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Here the labels of the arrows denote the matrices that give the corresponding linear
maps and I defined

M := M(S, v1, . . . , vn) and M ′ := M(S, v′1, . . . , v
′
n).

The commutative diagram says M ′A = AM or equivalently

M ′ = AMA−1.

The point here is that we had

V V

Fn Fn

Fn Fn

where all the maps were isomorphisms. Therefore we could complete this dia-
gram to the one above by adding isomorphisms for the edges of the bottom square
face so that the slanted and horizontal square faces and the triangular faces become
commutative. We then get for free (check please!) that the bottom face is also a
commutative diagram.


	1. Lecture 1: Some remarks on mathematical rigor, sets, operations, fields
	2. Lecture 2: Isomorphisms of fields, equivalence relations, Examples of fields: F2, Fp, C
	3. Lecture 3: Geometric interpretation of complex numbers and its operations, first examples of vector spaces
	4. Lecture 4: Vector spaces, subspaces
	5. Lecture 5: Sums and direct sums of subspaces, linear combinations, span of a list of vectors, finite dimensionality
	6. Lecture 6: More on the span of a list of vectors, linear dependence
	7. Lecture 7: Our first theorem
	8. Lecture 8: Basis and dimension for finite dimensional vector spaces
	9. Lecture 9: Dimension of a subspace, characterizations of bases, dimensions of sums of subspaces
	10. Lecture 10: Linear maps
	11. Lecture 11: Column vectors and matrices, invertible maps, composition of linear maps
	12. Lecture 12: Rank-nullity Theorem
	13. Lecture 13: Determinant of a matrix
	14. Lecture 14: Polynomials
	15. Lecture 15: Matrix of a linear map with respect to bases, operators
	16. Lecture 16: Eigenvalues/vectors, invariant subspaces
	17. Lecture 17: Existence of eigenvalues over complex numbers
	18. Lecture 18: Splittings and block matrices, triangular matrices for operators over complex numbers
	19. Lecture 19: Eigenspaces, Jordan blocks, generalized eigenvectors/spaces
	20. Lecture 20: Proof of Jordan normal form theorem I
	21. Lecture 21: Proof of Jordan normal form theorem II: Nilpotent operators
	22. Lecture 22: Inner product spaces, orthonormal bases
	23. Lecture 23: Projection formula, self-adjoint operators, isometries
	24. Lecture 24: Spectral theorem
	25. Lecture 25: Hermitian inner products on complex vector spaces, eigenvalues of self-adjoint operators, isometries as distance preserving maps
	26. Lecture 26: Multiplicativity of determinants, orientations, isometries of (Rn,)
	27. Lecture 27: Proof of the normal form theorem for isometries, polar decomposition, SVD
	28. Some problems
	28.1. Constructing the rational numbers
	28.2. Finite fields
	28.3. Subfields
	28.4. Solving an equation over different fields
	28.5. A weird vector space
	28.6. Subspaces of F25
	28.7. When do we consider two vector spaces to be the same?
	28.8. Polynomial and functional vector spaces
	28.9. Matrix multiplication
	28.10. Finite fields revisited
	28.11. Matrix represenations of linear maps


