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Introduction

In Diophantine geometry, height functions measure the “size” of rational
points on algebraic varieties.

Such functions play a central role in defining
and computing several interesting invariants in arithmetic geometry.

For a prime number p, a p-adic height function can be regarded as a local
analogue of a classical height function.

⋉ There are several p-adic height function constructions in the literature.
⋉ Question 1. How are the different constructions related?

⋊ Algorithms for computing p-adic heights

allow one to compute p-adic regulators, some of which fit into p-adic
versions of Birch and Swinnerton–Dyer conjecture, and

play a crucial role in carrying out the quadratic Chabauty method to
determine rational points on curves of genus at least two.

⋊ Question 2. How can one compute them numerically?
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Introduction

Goal

Take you on a journey into the world of p-adic heights.

In particular, we will briefly discuss

the relationships among some p-adic height constructions, and

algorithms to compute them numerically in special cases.

Warning. To make this talk less technical,

the base field will be Q, though it could be any number field,

we will give definitions and present results for Jacobian varieties,
though most of them are valid for general abelian varieties, and

time to time, I’ll cheat a bit...
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§1.1. p-adic numbers

Kurt Hensel (1861-1941) discovered or invented the p-adic numbers
around the end of the nineteenth century. - A. M. Robert

The p-adic valuation of r ∈ Q \ {0} is defined as

vp(r) =

{
max{k ∈ Z≥0 : p

k | r} if r ∈ Z,
vp(m)− vp(n) if r = m/n, m, n ∈ Z.

The p-adic absolute value of r ∈ Q is defined as

|r |p =

{
0 if r = 0,

p−vp(r) if r ̸= 0.

Example. For n ∈ Z,

vp(p
n) = n, |pn|p = p−n.

Then |pn|p is small when n is large; pn → 0 (p-adically!).
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§1.1. p-adic numbers

Lemma: (Q, | · |p) satisfies the following properties:

|r |p = 0 ⇐⇒ r = 0,

|r · s|p = |r |p · |s|p, and
|r + s|p ≤ max{|r |p, |s|p}.

Fact: Q is not complete with respect to | · |p. The completion Qp is
called the field of p-adic numbers.

Qp ≈ p-adic analogue of R.

Fact: Qp is not algebraically closed. Let Qp be an algebraic closure. It is
not complete. The completion Cp is algebraically closed.

Cp ≈ p-adic analogue of C.

There is a general philosophy in Number Theory that “all completions are
created equal” and should have the same rights. - M. Stoll
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§1.2. Elliptic curves

Definition. An elliptic curve is a curve of the form

y2 = c3x
3 + c2x

2 + c1x + c0 (NO repeated roots).

Such a curve admits the structure of an abelian group:

Elliptic curves are NOT

just geometric objects,

but also algebraic objects.

It is possible to write endlessly on elliptic curves. (This is not a threat.) -
S. Lang
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§1.2. Abelian varieties

Definition.

abelian varieties =
higher dimensional analogues

of elliptic curves

Remarks.

Each abelian variety has a dimension, and

abelian varietes of dimension 1 = elliptic curves.

Abelian varieties carry the structure of an abelian group.

Theorem (Mordell–Weil). For an abelian variety A/Q, the group A(Q)
of rational points of A is a finitely-generated abelian group; that is,

A(Q) ≃ Zr ⊕ A(Q)tors

for some r ∈ Z≥0, called the algebraic rank of A/Q.
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§1.3. Curves

Let C/Q be a smooth curve of genus g .

Set

Div0(C ) =
formal integer combinations

of points in C of degree 0.

Example. The curve

y2 = c2g+1x
2g+1 + · · ·+ c1x + c0 (NO repeated roots)

is a hyperelliptic curve of genus g .

P − Q

P − 2Q + R

−P + 3Q − 2R

are in Div0(C )

Enis Kaya p-adic heights December 19, 2023 9 / 34



§1.3. Curves

Let C/Q be a smooth curve of genus g . Set

Div0(C ) =
formal integer combinations

of points in C of degree 0.

Example. The curve

y2 = c2g+1x
2g+1 + · · ·+ c1x + c0 (NO repeated roots)

is a hyperelliptic curve of genus g .

P − Q

P − 2Q + R

−P + 3Q − 2R

are in Div0(C )

Enis Kaya p-adic heights December 19, 2023 9 / 34



§1.3. Curves

Let C/Q be a smooth curve of genus g . Set

Div0(C ) =
formal integer combinations

of points in C of degree 0.

Example. The curve

y2 = c2g+1x
2g+1 + · · ·+ c1x + c0 (NO repeated roots)

is a hyperelliptic curve of genus g .

P − Q

P − 2Q + R

−P + 3Q − 2R

are in Div0(C )

Enis Kaya p-adic heights December 19, 2023 9 / 34



§1.3. Curves

Let C/Q be a smooth curve of genus g . Set

Div0(C ) =
formal integer combinations

of points in C of degree 0.

Example. The curve

y2 = c2g+1x
2g+1 + · · ·+ c1x + c0 (NO repeated roots)

is a hyperelliptic curve of genus g .

P − Q

P − 2Q + R

−P + 3Q − 2R

are in Div0(C )

Enis Kaya p-adic heights December 19, 2023 9 / 34



§1.3. Curves

We may assume that C is defined by a polynomial with integer
coefficients.

For a prime p, consider C mod Fp. If this curve is

smooth, then p is called a good prime;

singular, then p is called a bad prime.

Example. If C is given by

y2 = x(x + 1)(x + p)

then C mod Fp is

y2 = x2(x + 1)

(repeated root!!!)
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§1.3. Curves

Example. If C is given by

y2 = c5x
5 + · · ·+ c1x + c0 (NO repeated roots),

then C mod Fp can be one of the following:

(picture taken from Liu’s Algebraic Geometry and Arithmetic Curves book)

Remark. Instead of C mod Fp, we should say “the special fiber of its
stable model”.

Algebraic curves were created by God and algebraic surfaces by the Devil.
- M. Noether
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§1.3. Jacobians of curves

Theorem (Faltings). The set C (Q) is finite if g ≥ 2.

Remark. Finding these points is an industry in number theory...

There exists an abelian variety J/Q of dimension g such that

points in J = Div0(C )
/
∼ .

The variety J is called the Jacobian variety of C . For a fixed point
O ∈ C , we have an embedding

ι : C ↪→ J

P 7→ P − O
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§2.1. Size of points

One of the fundamental tools required for the study of rational and
integral points on an algebraic variety is a means of measuring the “size”
of a point. - Hindry–Silverman

For r = m
n ∈ Q with gcd(m, n) = 1, set

h(r) = max{|m|, |n|}.

Example. For the rational numbers,

r1 =
1

2
and r2 =

1010000

2 · 1010000 + 1
,

|r1| and |r2| are very close, but

h(r1) and h(r2) are very far.
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§2.1. Néron–Tate height pairing

The naive height is

hnaive : Pn(Q) → R, x 7→ log
(
max

{
|x0|, |x1|, . . . , |xn|

})
where x = (x0 : x1 : · · · : xn), xi ∈ Z and gcd(x0, x1, . . . , xn) = 1.

The Néron–Tate height is

hNT : J(Q) → R, P 7→ lim
n→∞

1

n2
hnaive(ι(nP))

where ι : J/± ↪→ P2g−1.

The Néron–Tate height pairing is

⟨·, ·⟩NT : J(Q)×J(Q) → R, (P,Q) 7→ 1

2

(
hNT(P+Q)−hNT(P)−hNT(Q)

)
.
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The Néron–Tate height pairing is

⟨·, ·⟩NT : J(Q)×J(Q) → R, (P,Q) 7→ 1

2

(
hNT(P+Q)−hNT(P)−hNT(Q)

)
.

Enis Kaya p-adic heights December 19, 2023 14 / 34
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§2.2. BSD conjecture for abelian varieties

Conjecture. Let r denote the algebraic rank of J/Q.

We have

r = order of vanishing of the L-function L(J, s) at s = 1.

Moreover,

lim
s→1

(s − 1)−rL(J, s) =
ΩJ · |X(J/Q)| · Reg(J/Q) ·

∏
v cv

|J(Q)tors|2
.

Here, Reg(J/Q) is the canonical regulator, i.e.,

Reg(J/Q) =

∣∣∣∣∣∣∣det
⟨P1,P1⟩NT ⟨P1,P2⟩NT · · · ⟨P1,Pr ⟩NT

...
...

. . .
...

⟨Pr ,P1⟩NT ⟨Pr ,P2⟩NT · · · ⟨Pr ,Pr ⟩NT


∣∣∣∣∣∣∣ ∈ R

where P1, . . . ,Pr is a basis for J(Q)/J(Q)tors.

This remarkable conjecture relates the behavior of a function L, at a point
where it is not at present known to be defined, to the order of a group X,
which is not known to be finite. - J. Tate
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§3.1. p-adic heights and motivation

Fix a prime number p. A p-adic height pairing is a function

⟨·, ·⟩ : J(Q)× J(Q) → Qp

which can be regarded as a p-adic analogue of the Néron–Tate height
pairing.

In the literature, there are several p-adic height pairings. Some of them
were constructed by Coleman–Gross, Mazur–Tate and Schneider.

Algorithms for computing p-adic heights

play a crucial role in carrying out the quadratic Chabauty method to
determine rational points on curves of genus ≥ 2.

The p-adic height pairing constructed by Schneider is particularly
important because

the corresponding p-adic regulator fits into p-adic versions of Birch
and Swinnerton-Dyer conjecture.
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play a crucial role in carrying out the quadratic Chabauty method to
determine rational points on curves of genus ≥ 2.

The p-adic height pairing constructed by Schneider is particularly
important because

the corresponding p-adic regulator fits into p-adic versions of Birch
and Swinnerton-Dyer conjecture.
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§3.2. Coleman–Gross height pairing

The pairing
⟨·, ·⟩CG : Div0(C )× Div0(C ) → Qp

is defined as

⟨·, ·⟩CG =
∑

q∈{prime numbers}

⟨·, ·⟩CGq

= ⟨·, ·⟩CGp +
∑
q ̸=p

⟨·, ·⟩CGq .

The local components away from p are described using “arithmetic
intersection theory”, and

⟨D1,D2⟩CGp :=
Vol∫

D2

ωD1

where

ωD1 is a “canonical” differential form attached to D1, and
Vol∫

is the Vologodsky integration.
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§3.2. p-adic integration theories

Fix a smooth curve X over Qp.

Let ω be a differential form on X , let
P,Q ∈ X (Qp). To this data, Vologodsky associated an integral

Vol∫ Q

P
ω ∈ Qp

which satisfy the expected properties. We call this integral the
Vologodsky integral.

To X , one can associate a Berkovich space X an. Pick a path γ in X an

from P to Q. To this data, Berkovich associated an integral

BC∫
γ
ω ∈ Cp

which satisfy the expected properties. We call this integral the
Berkovich–Coleman integral.
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§3.2. p-adic integration theories

Example: Consider the hyperelliptic curve X/Q5 given by

y2 = (x2 − x − 1)(x4 + x3 − 6x2 + 5x − 5).

p = 5 is a prime of bad reduction for X , and X mod F5 is as follows:

(0, 0) (2, 0) (3, 0)
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§3.2. p-adic integration theories

Remarks

If X has good reduction, then
Vol∫ y

x ω =
BC∫

γ ω.

The Berkovich–Coleman integral is local, i.e., if U ⊂ X an is a
subdomain containing γ, then the integral

BC∫
γ ω can be computed

from U, ω|U and γ.

BC∫
γ
ω : BC-integral on X an

=
BC∫

γ
ω|U : BC-integral on U
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§3.2. p-adic integration theories

BC∫
is generally path-dependent and hence disagrees with

Vol∫
.

What is
the difference?

Theorem (Katz–K, K.)

We have
Vol∫ Q

P
ω =

BC∫
γ
ω −

∑
i

(
ci ·

BC∫
γi

ω

)
where

γi ’s are the “loops” in X an, and

ci ’s are certain “tropical” integrals.

Algorithm (Katz–K, K.)

Compute Vologodsky integrals on hyperelliptic curves using this formula
and the fact that the Berkovich–Coleman integral is local.
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§3.2. Computing Coleman–Gross height pairing

An algorithm to compute the local heights away from p was provided by
Müller. Remark. A different, but similar, algorithm was developed
independently by Holmes.

An algorithm to compute the local height at p in the case of good
reduction was provided by Balakrishnan–Besser.

Algorithm (Bianchi–K.–Müller)

Compute the Coleman–Gross p-adic height pairing on Jacobians of
hyperelliptic curves of arbitrary reduction type.

Remark. Recall that

⟨D1,D2⟩CGp =
Vol∫

D2

ωD1 .

Determining ωD1 from D1 is tricky...

Enis Kaya p-adic heights December 19, 2023 22 / 34



§3.2. Computing Coleman–Gross height pairing

An algorithm to compute the local heights away from p was provided by
Müller. Remark. A different, but similar, algorithm was developed
independently by Holmes.

An algorithm to compute the local height at p in the case of good
reduction was provided by Balakrishnan–Besser.

Algorithm (Bianchi–K.–Müller)

Compute the Coleman–Gross p-adic height pairing on Jacobians of
hyperelliptic curves of arbitrary reduction type.

Remark. Recall that

⟨D1,D2⟩CGp =
Vol∫

D2

ωD1 .

Determining ωD1 from D1 is tricky...

Enis Kaya p-adic heights December 19, 2023 22 / 34



§3.2. Computing Coleman–Gross height pairing

An algorithm to compute the local heights away from p was provided by
Müller. Remark. A different, but similar, algorithm was developed
independently by Holmes.

An algorithm to compute the local height at p in the case of good
reduction was provided by Balakrishnan–Besser.

Algorithm (Bianchi–K.–Müller)

Compute the Coleman–Gross p-adic height pairing on Jacobians of
hyperelliptic curves of arbitrary reduction type.

Remark. Recall that

⟨D1,D2⟩CGp =
Vol∫

D2

ωD1 .

Determining ωD1 from D1 is tricky...

Enis Kaya p-adic heights December 19, 2023 22 / 34



§3.2. Computing Coleman–Gross height pairing

An algorithm to compute the local heights away from p was provided by
Müller. Remark. A different, but similar, algorithm was developed
independently by Holmes.

An algorithm to compute the local height at p in the case of good
reduction was provided by Balakrishnan–Besser.

Algorithm (Bianchi–K.–Müller)

Compute the Coleman–Gross p-adic height pairing on Jacobians of
hyperelliptic curves of arbitrary reduction type.

Remark. Recall that

⟨D1,D2⟩CGp =
Vol∫

D2

ωD1 .

Determining ωD1 from D1 is tricky...

Enis Kaya p-adic heights December 19, 2023 22 / 34



§3.2. Computing Coleman–Gross height pairing

An algorithm to compute the local heights away from p was provided by
Müller. Remark. A different, but similar, algorithm was developed
independently by Holmes.

An algorithm to compute the local height at p in the case of good
reduction was provided by Balakrishnan–Besser.

Algorithm (Bianchi–K.–Müller)

Compute the Coleman–Gross p-adic height pairing on Jacobians of
hyperelliptic curves of arbitrary reduction type.

Remark. Recall that

⟨D1,D2⟩CGp =
Vol∫

D2

ωD1 .

Determining ωD1 from D1 is tricky...
Enis Kaya p-adic heights December 19, 2023 22 / 34



§3.3. Mazur–Tate height pairing

The pairing
⟨·, ·⟩MT : Div0(C )× Div0(C ) → Qp

is defined using the theory of “biextensions”. Computing this pairing
directly from the definition does NOT seem feasible...

But, it is known that

⟨·, ·⟩CG = ⟨·, ·⟩MT

so one can compute the global Mazur–Tate height pairing.

This height pairing is also sums of local pairings:

⟨·, ·⟩MT =
∑

q∈{prime numbers}

⟨·, ·⟩MT
q .

The real-valued Néron–Tate height pairing ⟨·, ·⟩NT can be decomposed
into a sum of “Néron” functions. Here is a p-adic analogue:
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§3.3. Mazur–Tate height pairing

Theorem (Bianchi–K.–Müller)

For each q, there exists a p-adic “Néron function” λq such that the local
pairing ⟨·, ·⟩MT

q can be expressed in terms of λq.

Here is a direct local comparison of Coleman–Gross and Mazur–Tate
heights in a special case:

Theorem (Bianchi–K.–Müller)

Let C be a hyperelliptic curve of genus 2. For each prime q, we have
⟨·, ·⟩CGq = ⟨·, ·⟩MT

q . As a corollary, we get ⟨·, ·⟩CG = ⟨·, ·⟩MT.

Algorithm (Bianchi–K.–Müller)

Compute the Mazur–Tate p-adic height pairing on Jacobians of
hyperelliptic curves of genus 2 using the “theta expression” of λq.
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§3.4. Schneider height pairing

The pairing
⟨·, ·⟩Sch : Div0(C )× Div0(C ) → Qp

exists under a certain condition on the prime p.

Remarks.

Recall that this pairing is particularly important as the corresponding
regulator fits into p-adic versions of BSD conjecture.

In general, ⟨·, ·⟩Sch ̸= ⟨·, ·⟩CG.
Computing ⟨·, ·⟩Sch directly from definition does NOT seem feasible...

It can also be written as sums of local pairings:

⟨·, ·⟩Sch =
∑

q∈{prime numbers}

⟨·, ·⟩Schq .

As usual, the local pairing ⟨·, ·⟩Schp is more tricky to define... But, a nice a
formula was given by Werner in the case where C/Qp is a Mumford curve.
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§3.4. Mumford curves

Definition. C/Qp is called a Mumford curve if C mod Fp is a union of
curves of genus 0.

Example. A curve C of the form

y2 = c5x
5 + · · ·+ c1x + c0 (NO repeated roots)

is a Mumford curve if C mod Fp is one of the following:

Assume from now on C/Qp is a Mumford curve. Then it admits a p-adic
uniformization: there exists a p-adic “Schottky” group Γ together with a
“p-adic analytic” isomorphism

C ≃ Ω/Γ

where Ω = P1(Cp) \ P1(Qp), the p-adic upper half plane.
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§3.4. Werner’s formula for ⟨·, ·⟩Schp

Fix two parameters a, b ∈ Ω, and define the theta function on Ω:

Θ(a, b; z) :=
∏
γ∈Γ

z − γ(a)

z − γ(b)
, z ∈ Ω.

This is a remarkable “automorphic” form.

Now take D,E ∈ Div0(C ). The pairing ⟨·, ·⟩Schp is additive in both
arguments, so we can assume that

D = (x)− (y) and E = (z)− (w)

for some x , y , z ,w ∈ C = Ω/Γ.

Theorem (Werner). Choose preimages x ′, y ′, z ′,w ′ in Ω. We then have

⟨D,E ⟩Schp = logp

(
Θ(x ′, y ′; z ′)

Θ(x ′, y ′;w ′)

)
−

another function

in terms of Θ.
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§3.4. Computing Schneider height pairing

Algorithm (K.–Masdeu–Müller–van der Put (in progress))

Compute the Schneider p-adic height pairing on Jacobians of hyperelliptic
Mumford curves.

There are three main steps:

determining a Schottky group Γ such that C ≃ Ω/Γ: a special case is
due to Kadziela, we extended it.
computing theta functions Θ: a special case is due to Morrison–Ren,
we extended it.
lifting points from the curve C to Ω: this requires, among other
things, constructing a function which represent the “y -coordinate in
the function field of the curve”.

Theorem (K.–Masdeu–Müller–van der Put)

H(z) := Θ(a, γ(a); z) ·
∏g

i=0Θ(ai , b; z) ·Θ(bi , s0(b); z), z ∈ Ω

is such a function.
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§4.1. A dream: quadratic Chabauty at bad primes

If g ≥ 2, then the set C (Q) is known to be finite, however at present NO
general algorithm for the computation of X (Q) is known.

The abelian Chabauty method is a p-adic method that attempts to
determine C (Q) under the condition that r < g . An approach to
circumvent this limitation is Kim’s non-abelian Chabauty, of which
quadratic Chabauty is a special case.

Working with primes of bad reduction for the abelian Chabauty method
might have some practical advantages. It is a natural question whether
this is also the case for quadratic Chabauty.

For some “modular” curves, the current quadratic Chabauty algorithms
might need MONTHS to terminate. I expect that working with primes of
bad reduction makes the computations significantly faster.

There are no bad primes, really. - N. Dogra
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this is also the case for quadratic Chabauty.

For some “modular” curves, the current quadratic Chabauty algorithms
might need MONTHS to terminate. I expect that working with primes of
bad reduction makes the computations significantly faster.

There are no bad primes, really. - N. Dogra
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§4.2. p-adic BSD for abelian varieties

A p-adic analogue of the BSD conjecture for an elliptic curve over Q was
given in Mazur–Tate–Teitelbaum (MTT) when p is a prime of good
“ordinary” or “multiplicative” reduction.

It also seemed, at the outset, that this would be a relatively routine
project. The project has proved to be anything but routine, ... -
Mazur–Tate–Teitelbaum

Balakrishnan–Müller–Stein formulated a generalization of the MTT
conjecture in the good ordinary case to higher dimensional abelian
varieties.

On the other hand, the MTT conjecture in the case of split multiplicative
reduction, the “exceptional” case, is of special interest. One might expect
that a generalization of this conjecture to higher dimensional abelian
varieties in the case of “split purely toric” reduction can be formulated.

Enis Kaya p-adic heights December 19, 2023 30 / 34



§4.2. p-adic BSD for abelian varieties

A p-adic analogue of the BSD conjecture for an elliptic curve over Q was
given in Mazur–Tate–Teitelbaum (MTT) when p is a prime of good
“ordinary” or “multiplicative” reduction.

It also seemed, at the outset, that this would be a relatively routine
project. The project has proved to be anything but routine, ... -
Mazur–Tate–Teitelbaum

Balakrishnan–Müller–Stein formulated a generalization of the MTT
conjecture in the good ordinary case to higher dimensional abelian
varieties.

On the other hand, the MTT conjecture in the case of split multiplicative
reduction, the “exceptional” case, is of special interest. One might expect
that a generalization of this conjecture to higher dimensional abelian
varieties in the case of “split purely toric” reduction can be formulated.

Enis Kaya p-adic heights December 19, 2023 30 / 34



§4.2. p-adic BSD for abelian varieties

A p-adic analogue of the BSD conjecture for an elliptic curve over Q was
given in Mazur–Tate–Teitelbaum (MTT) when p is a prime of good
“ordinary” or “multiplicative” reduction.

It also seemed, at the outset, that this would be a relatively routine
project. The project has proved to be anything but routine, ... -
Mazur–Tate–Teitelbaum

Balakrishnan–Müller–Stein formulated a generalization of the MTT
conjecture in the good ordinary case to higher dimensional abelian
varieties.

On the other hand, the MTT conjecture in the case of split multiplicative
reduction, the “exceptional” case, is of special interest. One might expect
that a generalization of this conjecture to higher dimensional abelian
varieties in the case of “split purely toric” reduction can be formulated.

Enis Kaya p-adic heights December 19, 2023 30 / 34



§4.2. p-adic BSD for abelian varieties

A p-adic analogue of the BSD conjecture for an elliptic curve over Q was
given in Mazur–Tate–Teitelbaum (MTT) when p is a prime of good
“ordinary” or “multiplicative” reduction.

It also seemed, at the outset, that this would be a relatively routine
project. The project has proved to be anything but routine, ... -
Mazur–Tate–Teitelbaum

Balakrishnan–Müller–Stein formulated a generalization of the MTT
conjecture in the good ordinary case to higher dimensional abelian
varieties.

On the other hand, the MTT conjecture in the case of split multiplicative
reduction, the “exceptional” case, is of special interest.

One might expect
that a generalization of this conjecture to higher dimensional abelian
varieties in the case of “split purely toric” reduction can be formulated.

Enis Kaya p-adic heights December 19, 2023 30 / 34



§4.2. p-adic BSD for abelian varieties

A p-adic analogue of the BSD conjecture for an elliptic curve over Q was
given in Mazur–Tate–Teitelbaum (MTT) when p is a prime of good
“ordinary” or “multiplicative” reduction.

It also seemed, at the outset, that this would be a relatively routine
project. The project has proved to be anything but routine, ... -
Mazur–Tate–Teitelbaum

Balakrishnan–Müller–Stein formulated a generalization of the MTT
conjecture in the good ordinary case to higher dimensional abelian
varieties.

On the other hand, the MTT conjecture in the case of split multiplicative
reduction, the “exceptional” case, is of special interest. One might expect
that a generalization of this conjecture to higher dimensional abelian
varieties in the case of “split purely toric” reduction can be formulated.

Enis Kaya p-adic heights December 19, 2023 30 / 34



with Katz, Columbus (2019)
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with Masdeu and Müller, Benasque (2022)
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with Bianchi and Müller, Groningen (2023)
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The journey has ended :-) Teşekkürler!

Diophantine Geometry: An Introduction - Hindry–Silverman
Fundamentals of Diophantine Geometry - Lang

p-adic heights on curves - Coleman–Gross
Canonical height pairings via biextensions - Mazur–Tate
p-adic height pairings I - Schneider
Local Heights on Mumford Curves - Werner
Computational tools for quadratic Chabauty - Balakrishnan–Müller

Algorithms for Schneider heights on Mumford curves (in progress) -
K.–Masdeu–Müller–van der Put
Algorithms for Coleman–Gross Heights on Hyperelliptic Curves (in
preparation) - Bianchi–K.–Müller
Coleman–Gross heights and p-adic Néron functions on Jacobians of
genus 2 curves - Bianchi–K.–Müller
Explicit Vologodsky integration for hyperelliptic curves - K.
p-adic Integration on bad reduction hyperelliptic curves - Katz–K.
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