Oriented Posets and Rank Matrices

(partially based on joint work with Mohan Ravichandran, Emine Yıldırım and Cem Yalım Özel)

Ezgi KANTARCI OĞUZ

Galatasaray University
İstanbul, Turkey

November 30, 2023

The case of fence posets

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ be a composition of n. The fence poset of α, denoted $F(\alpha)$ is the poset on $x_{1}, x_{2}, \ldots, x_{n+1}$ with the order relations:

$$
x_{1} \preceq x_{2} \preceq \cdots \preceq x_{\alpha_{1}+1} \succeq x_{\alpha_{1}+2} \succeq \cdots \succeq x_{\alpha_{1}+\alpha_{2}+1} \preceq x_{\alpha_{1}+\alpha_{2}+2} \preceq \cdots
$$

Example $(\alpha=(2,1,1,3))$

For a composition of n, we get a poset of $n+1$ nodes.

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$ $(1,3,5,6,6,5,3,2,1) \leftarrow$ Rank sequence.

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$
$(1,3,5,6,6,5,3,2,1) \leftarrow$ Rank sequence.
$1+3 q+5 q^{2}+6 q^{3}+6 q^{4}+5 q^{5}+3 q^{6}+2 q^{7}+q^{8} \leftarrow$ Rank polynomial.

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

This is a "type A" quiver representation.

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

A subrepresentation is one that makes the diagram commute.

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

$\mathbb{k} \longleftarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k}$

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

$\mathbb{k} \longleftarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k}$

$\longrightarrow \mathbb{K} \longleftarrow 0 \longrightarrow 0 \longrightarrow$	

We can also see ideals of a fence as sub-representations of a quiver representation.

Example $(\alpha=(2,1,1,3))$

$\mathbb{k} \longleftarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longleftarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k} \longrightarrow \mathbb{k}$

$\longrightarrow \mathbb{k} \longleftarrow 0 \longrightarrow 0 \longrightarrow \mathbb{k} \longrightarrow \mathbb{k}$	

A q-deformation for rational numbers

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko ${ }^{1}$. Their definition has a convergence property, which allows us to extend them to real numbers.

[^0]
A q-deformation for rational numbers

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko ${ }^{1}$. Their definition has a convergence property, which allows us to extend them to real numbers.

For a given rational number r / s, we first write it as a continued fraction.

$$
\begin{aligned}
\frac{r}{s}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{2 m}}}} & =c_{1}-\frac{1}{c_{2}-\frac{1}{a_{2}}} \\
a_{i} \in \mathbb{Z}, a_{i} \geq 1 \text { for } i \geq 2 & c_{i} \in \mathbb{Z}, c_{i} \geq 2 \text { for } i \geq 2
\end{aligned}
$$

[^1] fractions".

A q-deformation for rational numbers

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A q-deformation for rational numbers

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation.

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation. Another cool thing: $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that ively.

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation.
Another cool thing: $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that at $q=1$, evaluate to r and s respectively.

Also, when $\frac{r}{s} \geq 0$ the coefficients are non-negative.

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=\frac{1+3 q+5 q^{2}+6 q^{3}+6 q^{4}+5 q^{5}+3 q^{6}+2 q^{7}+q^{8}}{1+2 q+2 q^{2}+2 q^{3}+q^{4}+q^{5}}
$$

Example

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\frac{r}{s}\right]_{q}=\frac{\text { Rank polynomial for }(2,1,1,3)}{\text { Rank polynomial for }(1,3)}
$$

Example

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\frac{r}{s}\right]_{q}=\frac{\text { Rank polynomial for }(2,1,1,3)}{\text { Rank polynomial for }(1,3)}
$$

In general, if r / s corresponds to $\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]$, we have

$$
\left[\frac{r}{s}\right]_{q}=\frac{\text { Rank polynomial for }\left(a_{1}-1, a_{2}, a_{3}, \ldots, a_{2 m}-1\right)}{\text { Rank polynomial for }\left(0, a_{2}-1, a_{3}, \ldots, a_{2 m}-1\right)}
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \\
(3,1,1,2) & \rightarrow(1,2,3,5,6,6,5,3,1) \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1)
\end{aligned}
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \\
(3,1,1,2) & \rightarrow(1,2,3,5,6,6,5,3,1) \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1)
\end{aligned}
$$

Conjecture (Morier-Genoud, Ovsienko, 2020)

The rank polynomials of fence posets are unimodal.

What more can we say?
Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

We call similarly have top-interlacing sequences:

$$
\begin{equation*}
a_{0} \leq a_{n} \leq a_{1} \leq a_{n-1} \leq \ldots \leq a_{\lceil n / 2\rceil} . \tag{TI}
\end{equation*}
$$

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

We call similarly have top-interlacing sequences:

$$
\begin{equation*}
a_{0} \leq a_{n} \leq a_{1} \leq a_{n-1} \leq \ldots \leq a_{\lceil n / 2\rceil} \tag{TI}
\end{equation*}
$$

For example, the rank sequence $(1,2,4,5,6,6,4,2,1)$ of $(2,2,3)$ is top interlacing:

$$
1 \leq 1 \leq 2 \leq 2 \leq 4 \leq 4 \leq 5 \leq 6 \leq 6
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
(3,1,1,2) & \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \rightarrow \mathrm{BI} \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \rightarrow \mathrm{BI} \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \rightarrow \mathrm{TI} \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \rightarrow \mathrm{BI}, \mathrm{TI} \text { (symmetric) } \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \rightarrow \mathrm{TI} \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

$$
\begin{aligned}
& (2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
& (3,1,1,2) \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
& (1,2,1,3) \rightarrow(1,3,5,6,6,5,4,2,1) \rightarrow \mathrm{BI} \\
& (1,1,2,3) \rightarrow(1,3,5,7,7,5,4,2,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

$$
\begin{aligned}
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \rightarrow \mathrm{TI} \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \rightarrow \mathrm{BI}, \mathrm{TI} \text { (symmetric) } \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \rightarrow \mathrm{TI} \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

Conjecture (McConville, Sagan, Smyth, 2021²)

Suppose $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$.
(a) If $s=1$ then $r(\alpha)=(1,1, \ldots, 1)$ is symmetric.
(b) If s is even, then $r(\alpha)$ is bottom interlacing.
(c) If $s \geq 3$ is odd we have:
(i) If $\alpha_{1}>\alpha_{s}$ then $r(\alpha)$ is bottom interlacing.
(ii) If $\alpha_{1}<\alpha_{s}$ then $r(\alpha)$ is top interlacing.
(iii) If $\alpha_{1}=\alpha_{s}$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s-1}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

[^2]What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence $(1,2,3,4,4,3,2,1)$.

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence ($1,2,3,4,4,3,2,1$).
It is symmetric. Is this always so?

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1).
It is symmetric. Is this always so?
Answer: Yes, but it is not trivial to prove.

Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

[^3]
Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: $(k, 1,1, \ldots, 1)$.

We show that moving a node from one segment to the next does not break symmetry.

[^4]
Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: $(k, 1,1, \ldots, 1)$.

We show that moving a node from one segment to the next does not break symmetry.
$\geq>$ Recent bijective proof by Sagan and Elizalde ${ }^{4}$.
${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

circular rank polynomial (symmetric)
$q \times$ rank polynomial for $(1,1)$
(smaller, shifted center)
symmetric piece $+$ smaller piece, shifted center

$$
\sum_{l} q^{\operatorname{rank}(I)}
$$

symmetric piece
$\underset{\stackrel{+}{+}}{\stackrel{+}{\text { smaller piece, }}}$ shifted center

$$
\sum_{I} q^{\operatorname{rank}(I)} \quad(1,3,5,6,6,5,3,2,1) \quad a_{0} \geq a_{n}, a_{1} \geq a_{n-1}, \ldots
$$

$(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \ldots$

$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$

This gives us half of the equations for being bottom interlacing:

$$
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2} \quad a_{n-3} \leq a_{3}, \ldots
$$

symmetric piece

$$
(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \ldots
$$

$\stackrel{+}{+}$

$$
+
$$

$$
(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots
$$ shifted center

$$
\begin{array}{cc}
= & = \\
\sum_{I} q^{\operatorname{rank}(I)} & (1,3,5,6,6,5,3,2,1) \quad a_{0} \geq a_{n}, a_{1} \geq a_{n-1}, \ldots
\end{array}
$$

$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$

This gives us half of the equations for being bottom interlacing:

$$
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2} \quad a_{n-3} \leq a_{3}, \ldots
$$

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq a_{2} \leq a_{n-3} \leq a_{3} \leq \ldots \tag{BI}
\end{equation*}
$$

We can get the other half by associating another circular fence.

Example (Connecting x_{8} and x_{1} by a minimal node x_{0})

$$
\sum_{\left\{I \mid x_{0} \in I\right\}} q^{\operatorname{rank}(I)}=\sum_{I} q^{\text {rank }(I)}-\sum_{\left\{I \mid x_{0} \notin I\right\}} q^{\text {rank }(I)}
$$

$q \times$ rank
polynomial for $(2,1,1,3)$
circular rank polynomial (symmetric, shifted center)
rank polynomial for (0)
(smaller, shifted center)

On the rank polynomial side

symmetric piece $\quad(1,2,3,5,6,6,5,3,2,1) \quad b_{0}=b_{n+1}, b_{1}=b_{n}, \ldots$ larger
smaller piece, shifted center
$\left(0, a_{0}, a_{1}, \ldots, a_{n}\right)$
$(0,1,3,5,6,6,5,3,2,1)$
$0 \leq a_{n}, a_{0} \leq a_{n-1} \ldots$

On the rank polynomial side

symmetric piece $\quad(1,2,3,5,6,6,5,3,2,1) \quad b_{0}=b_{n+1}, b_{1}=b_{n}, \ldots$ larger
smaller piece, shifted center
$\left(0, a_{0}, a_{1}, \ldots, a_{n}\right)$
$(0,1,3,5,6,6,5,3,2,1)$
$0 \leq a_{n}, a_{0} \leq a_{n-1} \ldots$

This gives us the other half of the bottom-interlacing equations:

$$
\begin{gather*}
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2}, \quad a_{n-3} \leq a_{3}, \ldots \\
+ \\
a_{0} \leq a_{n-1}, \quad a_{1} \leq a_{n-2}, \quad a_{2} \leq a_{n-3}, \cdots \tag{BI}\\
= \\
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq a_{2} \leq a_{n-3} \leq a_{3} \leq \ldots
\end{gather*}
$$

Theorem (Kantarcı Oğuz, Ravichandran, 2021)

Rank polynomials of fence posets are unimodal.
In particular, for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ we have:
(a) If $s=1$ then $r(\alpha)=(1,1, \ldots, 1)$ is symmetric.
(b) If s is even, then $r(\alpha)$ is bottom interlacing.
(c) If $s \geq 3$ is odd we have:
(i) If $\alpha_{1}>\alpha_{s}$ then $r(\alpha)$ is bottom interlacing.
(ii) If $\alpha_{1}<\alpha_{s}$ then $r(\alpha)$ is top interlacing.
(iii) If $\alpha_{1}=\alpha_{s}$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s-1}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

What about the rank polynomials of circular fence posets?

Are they also unimodal?

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.
For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.
For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.

Conjecture (Kantarcı Oğuz, Ravichandran, 2022)

For any $\alpha \neq(1, k, 1, k)$ or $(k, 1, k, 1)$ for some k, the rank sequence $\overline{\mathcal{R}}(\alpha ; q)$ is unimodal.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.
For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.

Theorem (Kantarcı Oğuz, Ravichandran, Özel 2023)

For any $\alpha \neq(1, k, 1, k)$ or $(k, 1, k, 1)$ for some k, the rank sequence $\overline{\mathcal{R}}(\alpha ; q)$ is unimodal.

Another Perspective

We can also see fences as intervals in the Young's lattice.
Young's Lattice is the lattice of Ferrers diagrams of Partitions ordered by inclusion.

(Image from Wikipedia, created by David Eppstein)

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\square ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\square ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

We can also look at the interval between two partitions.

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\square ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

We can also look at the interval between two partitions.

$$
\begin{aligned}
& G(\lambda / \nu ; q):=\sum_{\nu \subset \mu \subset \lambda} q^{|\mu|-|\nu|} \\
& G(\boxminus / \boxminus ; q)=q^{2}+2 q+1
\end{aligned}
$$

Unimodality of these polynomials were considered by Stanton in 1990^{5}.

Unimodality of these polynomials were considered by Stanton in 1990^{5}. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

[^5]Unimodality of these polynomials were considered by Stanton in 1990^{5}. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

Conjecture (Stanton,1990)

The polynomials corresponding to self-dual partitions are unimodal.
${ }^{5}$ Stanton, "Unimodality and Young's lattice".

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

TABLE I

Partition	Values	Partition		i		Values
8844	15	313031	111166	21	676667	
10944	17	464546	141344	21	767576	
101044	17	464546	161244	23	919091	
121044	19	616061	141444	21	767576	
121144	19	616061	121284	23	818081	
121244	19	616061	121086	23	828182	
141144	21	767576	888642	23	141140141	
111165	21	676667	886644	23	144143144	
141244	21	767576				

(Table from "Unimodality and Young's Lattice", Stanton)

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called ribbon diagrams, where we have no 2×2 box.

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called ribbon diagrams, where we have no 2×2 box.

Polynomials corresponding to ribbon diagrams are unimodal.

A generalization: Oriented Posets

We build posets from building blocks which we call oriented posets, which come with 2×2 rank matrices instead of rank polynomials.

A generalization: Oriented Posets

We build posets from building blocks which we call oriented posets, which come with 2×2 rank matrices instead of rank polynomials.

$$
\mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right]
$$

A generalization: Oriented Posets

We build posets from building blocks which we call oriented posets, which come with 2×2 rank matrices instead of rank polynomials.

$$
\mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right]
$$

We can read the rank polynomial directly from the rank matrix.

A generalization: Oriented Posets

We build posets from building blocks which we call oriented posets, which come with 2×2 rank matrices instead of rank polynomials.

$$
\mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right]
$$

We can read the rank polynomial directly from the rank matrix.

Rank Matrices

Combining posets \Leftrightarrow Multiplying rank matrices.

Combining posets \Leftrightarrow Multiplying rank matrices.

Combining posets \Leftrightarrow Multiplying rank matrices.

Combining posets \Leftrightarrow Multiplying rank matrices.

Rank Matrices

Taking the trace \Leftrightarrow Combining the two ends of a poset

Taking the trace \Leftrightarrow Combining the two ends of a poset

$$
\mathcal{R}(\circlearrowright(\mathbf{P} \nearrow) ; q)=\operatorname{tr}\left(\mathcal{M}_{w}(\mathbf{P} \nearrow)\right)
$$

In particular, for dealing with fence poset or circular fence posets, two matrices are enough to give us all the structure.

> A down step and an up step.

In particular, for dealing with fence poset or circular fence posets, two matrices are enough to give us all the structure.

A down step and an up step.

$$
\mathcal{M}_{w}(\bullet \searrow):=D=\left[\begin{array}{cc}
1+q & -q \\
1 & 0
\end{array}\right], \quad \mathcal{M}_{w}(\bullet \nearrow):=U=\left[\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right]
$$

In particular, for dealing with fence poset or circular fence posets, two matrices are enough to give us all the structure.

A down step and an up step.

$$
\mathcal{M}_{w}(\bullet \searrow):=D=\left[\begin{array}{cc}
1+q & -q \\
1 & 0
\end{array}\right], \quad \mathcal{M}_{w}(\bullet \nearrow):=U=\left[\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right]
$$

Example

If we are dealing with fence poset or circular fence posets, two matrices are enough to give us all the structure.

A down step and an up step.

$$
\mathcal{M}_{w}(\bullet \searrow):=D=\left[\begin{array}{cc}
1+q & -q \\
1 & 0
\end{array}\right], \quad \mathcal{M}_{w}(\bullet \nearrow):=U=\left[\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right] .
$$

Example

Theorem (Kantarcı Oğuz, 2022)

Consider the oriented poset $F(\alpha)$ corresponding to
$\alpha=\left(u_{1}, d_{1}, u_{2}, d_{2}, \ldots, u_{s}, d_{s}\right)$.
Then $F(\alpha)$ has rank matrices:

$$
\begin{aligned}
& \mathcal{M}_{q}(F(\alpha) \searrow)=U^{u_{1}} D^{d_{1}} U^{u_{2}} D^{d_{2}} \cdots U^{u_{s-1}} D^{d_{s-1}} U^{u_{s}} D^{d_{s}+1} \\
& \mathcal{M}_{q}(F(\alpha) \nearrow)=U^{u_{1}} D^{d_{1}} U^{u_{2}} D^{d_{2}} \ldots U^{u_{s-1}} D^{d_{s-1}} U^{u_{s}} D^{d_{s}} U .
\end{aligned}
$$

Theorem (Kantarcı Oğuz, 2022)

Consider the oriented poset $F(\alpha)$ corresponding to
$\alpha=\left(u_{1}, d_{1}, u_{2}, d_{2}, \ldots, u_{s}, d_{s}\right)$.
Then $F(\alpha)$ has rank matrices:

$$
\begin{aligned}
& \mathcal{M}_{q}(F(\alpha) \searrow)=U^{u_{1}} D^{d_{1}} U^{u_{2}} D^{d_{2}} \ldots U^{u_{s-1}} D^{d_{s-1}} U^{u_{s}} D^{d_{s}+1} \\
& \mathcal{M}_{q}(F(\alpha) \nearrow)=U^{u_{1}} D^{d_{1}} U^{u_{2}} D^{d_{2}} \ldots U^{u_{s}-1} D^{d_{s-1}} U^{u_{s}} D^{d_{s}} U
\end{aligned}
$$

The circular fence poset $\bar{F}(\alpha)$ has rank polynomial:

$$
\mathcal{R}(\bar{F}(\alpha) ; q)=\operatorname{trace}\left(U^{u_{1}} D^{d_{1}} U^{u_{2}} D^{d_{2}} \cdots U^{u_{s-1}} D^{d_{s}-1} U^{u_{s}} D^{d_{s}}\right)
$$

Application: Identities

We can use matrices to do fast calculations, conjecture and prove identities.

Application: Identities

We can use matrices to do fast calculations, conjecture and prove identities.

Proposition (Kantarcı Oğuz, 2022)

Let \mathbf{X} be a palindromic composition with an even number of parts. For $k \geq 1, s \geq 1$ we have:

$$
\begin{aligned}
& \overline{\mathcal{R}}((1, k, r+1, \mathbf{X}, r) ; q)=[k+1]_{q} \cdot \overline{\mathcal{R}}((r+2, \mathbf{X}, r) ; q), \\
& \overline{\mathcal{R}}((k, 1, k+r, \mathbf{X}, r) ; q)=[k+1]_{q} \cdot \overline{\mathcal{R}}((k+r+1, \mathbf{X}, r) ; q) .
\end{aligned}
$$

Illustration of (Id 1) with $r=1, k=4, s=2$.

Application: Recurrences

We can use matrix identities to get recurrences on fences.

$$
U^{2}=(q+1) U+q, \quad D^{2}=(q+1) D+q .
$$

Application: Recurrences

We can use matrix identities to get recurrences on fences.

$$
U^{2}=(q+1) U+q, \quad D^{2}=(q+1) D+q .
$$

Proposition (Kantarcı Oğuz, Ravichandran, Özel, 2023)

We have the following recurrence relations on rank polynomials:

$$
\begin{aligned}
& \mathcal{R}((k+2, \mathbf{X}) ; q)=(q+1) \mathcal{R}((k+1, \mathbf{X}) ; q)+q \mathcal{R}((k, \mathbf{X}) ; q), \\
& \overline{\mathcal{R}}((k+2, \mathbf{X}) ; q)=(q+1) \overline{\mathcal{R}}((k+1, \mathbf{X}) ; q)+q \overline{\mathcal{R}}((k, \mathbf{X}) ; q) .
\end{aligned}
$$

Application: Recurrences

We can use matrix identities to get recurrences on fences.

$$
D U D=D U+U D-U+D^{3}-D^{2} .
$$

Application: Recurrences

We can use matrix identities to get recurrences on fences.

$$
D U D=D U+U D-U+D^{3}-D^{2} .
$$

Proposition (Kantarcı Oğuz, Özel, Ravichandran, 2022)

We have the following recurrence relation polynomials:

$$
\begin{aligned}
\overline{\mathcal{R}}((a, 1, b, X) ; q) & =\overline{\mathcal{R}}((a-1,1, b, X) ; q)+\overline{\mathcal{R}}((a, 1, b-1, X) ; q) \\
& -\overline{\mathcal{R}}((a-1,1, b-1, X) ; q) \\
& +\overline{\mathcal{R}}((a+b+1, X) ; q)-\overline{\mathcal{R}}((a+b, X) ; q) .
\end{aligned}
$$

Application: Recurrences

We can use matrix identities to get recurrences on fences.

$$
D U D=D U+U D-U+D^{3}-D^{2} .
$$

Proposition (Kantarcı Oğuz, Özel, Ravichandran, 2022)

We have the following recurrence relation polynomials:

$$
\begin{aligned}
\overline{\mathcal{R}}((a, 1, b, X) ; q) & =\overline{\mathcal{R}}((a-1,1, b, X) ; q)+\overline{\mathcal{R}}((a, 1, b-1, X) ; q) \\
& -\overline{\mathcal{R}}((a-1,1, b-1, X) ; q) \\
& +\overline{\mathcal{R}}((a+b+1, X) ; q)-\overline{\mathcal{R}}((a+b, X) ; q) .
\end{aligned}
$$

Theorem (Kantarcı Oğuz, Özel, Ravichandran, 2022)
For any $\alpha \neq(1, k, 1, k)$ or $(k, 1, k, 1)$ for some k, the rank sequence $\overline{\mathcal{R}}(\alpha ; q)$ is unimodal.

Application: Calculations on Cluster Algebras

We can also keep track of the actual vertices in each ideal. We only need to substitute w_{i} for q in the matrices. We can use that to calculate expansion formulas for arcs in trianglated surfaces.

We get a weight matrix where the top left entry gives us the generating polynomials of the ideals.
$\circlearrowright \nearrow\left(\left[\begin{array}{cc}1+w_{1} & -w_{1} \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}1+w_{2} & -w_{2} \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}w_{3} & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}w_{4} & 1 \\ 0 & 1\end{array}\right]\right)\left[\begin{array}{cc}w_{5} & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1+w_{6} & -w_{6} \\ 1 & 0\end{array}\right]$.

$$
\begin{aligned}
1 & +w_{3}+w_{5}+w_{2} w_{3}+w_{3} w_{5}+w_{5} w_{6}+w_{2} w_{3} w_{5}+w_{3} w_{4} w_{5} \\
& +w_{3} w_{5} w_{6}+w_{2} w_{3} w_{4} w_{5}+w_{2} w_{3} w_{5} w_{6}+w_{3} w_{4} w_{5} w_{6} \\
& +w_{1} w_{2} w_{3} w_{4} w_{5}+w_{2} w_{3} w_{4} w_{5} w_{6}+w_{1} w_{2} w_{3} w_{4} w_{5} w_{6}
\end{aligned}
$$

We than plug in the weights (and more) to obtain the expansion formula of the arc:

$$
\begin{gathered}
x_{\gamma}=\frac{x\left(M_{-}\right)}{\operatorname{cross}(\gamma, T)} \mathcal{R}\left(P_{\gamma} ; x y\right)=\frac{x_{1} x_{2} x_{4}^{2} x_{6} x_{9}}{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}} \mathcal{R}\left(P_{\gamma} ; x y\right) \\
=\frac{x_{4} x_{9}}{x_{3} x_{5}}+\frac{x_{1} x_{9} x_{15}}{x_{2} x_{3} x_{5}} y_{3}+\frac{x_{9} x_{11} x_{14}}{x_{3} x_{5} x_{6}} y_{5}+\frac{x_{9} x_{10}}{x_{2} x_{5}} y_{2} y_{3}+\frac{x_{1} x_{9} x_{11} x_{14} x_{15}}{x_{2} x_{3} x_{4} x_{5} x_{6}} y_{3} y_{5} \\
+\frac{x_{7} x_{14}}{x_{3} x_{6}} y_{5} y_{6}+\frac{x_{9} x_{10} x_{11} x_{14}}{x_{2} x_{4} x_{5} x_{6}} y_{2} y_{3} y_{5}+\frac{x_{9} x_{11} x_{15}}{x_{2} x_{4} x_{6}} y_{3} y_{4} y_{5}+\frac{x_{1} x_{7} x_{14} x_{15}}{x_{2} x_{3} x_{4} x_{6}} y_{3} y_{5} y_{6} \\
+\frac{x_{3} x_{9} x_{10} x_{11}}{x_{1} x_{2} x_{4} x_{6}} y_{2} y_{3} y_{4} y_{5}+\frac{x_{7} x_{10} x_{14}}{x_{2} x_{4} x_{6}} y_{2} y_{3} y_{5} y_{6}+\frac{x_{5} x_{7} x_{15}}{x_{2} x_{4} x_{6}} y_{3} y_{4} y_{5} y_{6} \\
+\frac{x_{9} x_{11}}{x_{1} x_{6}} y_{1} y_{2} y_{3} y_{4} y_{5}+\frac{x_{3} x_{5} x_{7} x_{10}}{x_{1} x_{2} x_{4} x_{6}} y_{2} y_{3} y_{4} y_{5} y_{6}+\frac{x_{5} x_{7}}{x_{1} x_{6}} y_{1} y_{2} y_{3} y_{4} y_{5} y_{6}
\end{gathered}
$$

Markov Numbers

Markov triples are positive integer solutions of the Markov Diophantine equation:

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Each number in a Markov triple is a Markov number.

Markov Numbers

Markov triples are positive integer solutions of the Markov Diophantine equation:

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Each number in a Markov triple is a Markov number.
The maximums of Markov triples are in one-to-one correspondence with minimums of quadratic forms.

Markov Numbers

Markov triples are positive integer solutions of the Markov Diophantine equation:

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Each number in a Markov triple is a Markov number.
The maximums of Markov triples are in one-to-one correspondence with minimums of quadratic forms.

Frobenius conjectured that these maximums are in bijection with all Markov numbers:

Conjecture

Uniqueness Conjecture (Frobenius, 1913) Each Markov number is the largest member of exactly one Markov triple.
(see the book Markov's Theorem and 100 Years of the Uniqueness Conjecture by M. Aigner for more details)

Markov Numbers

Markov triples are positive integer solutions of the Markov Diophantine equation:

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Each number in a Markov triple is a Markov number.
The maximums of Markov triples are in one-to-one correspondence with minimums of quadratic forms.

Frobenius conjectured that these maximums are in bijection with all Markov numbers:

Conjecture

Uniqueness Conjecture (Frobenius, 1913) Each Markov number is the largest member of exactly one Markov triple.
(see the book Markov's Theorem and 100 Years of the Uniqueness Conjecture by M. Aigner for more details) .

All solution triples can be recursively calculated recursively from

One can also calculate Markov numbers using Christoffel words. We take the corresponding Cohn matrix for each word, then divide the trace by 3 .

One can also calculate Markov numbers using Christoffel words. We take the corresponding Cohn matrix for each word, then divide the trace by 3 .

Recently, q-deformed Markov numbers were defined using q-deformed Cohn matrices and dividing by $[3]_{q}$ instead.

One can also calculate Markov numbers using Christoffel words. We take the corresponding Cohn matrix for each word, then divide the trace by 3 .

Recently, q-deformed Markov numbers were defined using q-deformed Cohn matrices and dividing by $[3]_{q}$ instead.

Observations:

One can also calculate Markov numbers using Christoffel words. We take the corresponding Cohn matrix for each word, then divide the trace by 3 .

Recently, q-deformed Markov numbers were defined using q-deformed Cohn matrices and dividing by $[3]_{q}$ instead.

Observations:

The q-deformed Cohn matrices are rank matrices of certain posets.

Markov Numbers

One can also calculate Markov numbers using Christoffel words. We take the corresponding Cohn matrix for each word, then divide the trace by 3 .

Recently, q-deformed Markov numbers were defined using q-deformed Cohn matrices and dividing by $[3]_{q}$ instead.

Observations:

The q-deformed Cohn matrices are rank matrices of certain posets.

The division by $[3]_{q}$ can be dealt with via the identity:

$$
\overline{\mathcal{R}}((1, k, r+1, \mathbf{X}, r) ; q)=[k+1]_{q} \cdot \overline{\mathcal{R}}((r+2, \mathbf{X}, r) ; q)
$$

Oriented posets give a combinatorial model for q-deformed Markov Numbers.

Oriented posets give a combinatorial model for q-deformed Markov Numbers.

Algorithm: For a given Markov Number N,
Take the corresponding Christoffel word w.
Delete leftmost and rightmost letters of w.
Replace each a by 1,1 , each b by 2,2 .
Prepend by 3,1 to get a composition $\alpha(N)$.
The q-deformation of N is given by the rank polynomial of $\alpha(N)$.

Oriented posets give a combinatorial model for q-deformed Markov Numbers.

Algorithm: For a given Markov Number N,
Take the corresponding Christoffel word w.
Delete leftmost and rightmost letters of w.
Replace each a by 1,1 , each b by 2,2 .
Prepend by 3,1 to get a composition $\alpha(N)$.
The q-deformation of N is given by the rank polynomial of $\alpha(N)$.

For the Markov number 13 we get:

$$
13 \rightarrow a a b \rightarrow a \rightarrow 1,1 \rightarrow(3,1,1,1)=\alpha(13)
$$

The q-deformations given by $\mathcal{R}(\bar{F}(3,1,1,1) ; q)$:

$$
\operatorname{trace}\left(U^{3} \cdot D \cdot U \cdot D\right)=1+2 q+2 q^{2}+3 q^{3}+2 q^{4}+2 q^{5}+1
$$

Thank you for listening!

Kantarcı Oğuz, E. \& Ravichandran, M. Rank Polynomials of Fence Posets are Unimodal. Discrete Math.. 346 (2023).

R Kantarcı Oğuz, E. Oriented Posets. (2022).
R Morier-Genoud, S. \& Ovsienko, V. q-deformed rationals and q-continued fractions. Forum Math. Sigma. 8 pp. Paper No. e13, 55 (2020).

R McConville, T., Sagan, B. \& Smyth, C. On a rank-unimodality conjecture of Morier-Genoud and Ovsienko. Discrete Math.. 344 pp. 13 (2021).

Elizalde, S. \& Sagan, B. Partial rank symmetry of distributive lattices for fences. (2022).

Kantarcı Oğuz, E. \& Yıldırım, E. Cluster Algebras and Oriented Posets. (2022).
. Kantarcı Oğuz, E. \& Özel, C. Y.\& Ravichandran, M. Fence Posets and Ehrhart-Equivalence. (2022).

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{L} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I & x_{L} \notin I
\end{array}\right]
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{L} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I & x_{L} \notin I
\end{array}\right]
$$

Example

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{L} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I & x_{L} \notin I
\end{array}\right]
$$

Example

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[1+2 q+2 q^{2}+q^{3}+q^{4}\right.
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x^{\prime} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I \\
x_{L} \notin I
\end{array}\right]
$$

Example

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{ll}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4}
\end{array}\right.
$$

Extra: Rank Matrix Calculations

Example

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cl}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q
\end{array}\right.
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{ll}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{2} \in I} & \left.\mathcal{R}\right|_{x_{2} \notin I} \\
x_{L} \notin I \\
x_{l} \notin I
\end{array}\right]
$$

Example

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] .
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{ll}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{2} \in I} & \left.\mathcal{R}\right|_{x_{2} \notin I} \\
x_{L} \notin I \\
x_{l} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} &
\end{array} .\right.
\end{aligned}
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{L} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I & x_{L} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2}
\end{array}\right.
\end{aligned}
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{ll}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{2} \in I} & \left.\mathcal{R}\right|_{x_{2} \notin I} \\
x_{L} \notin I \\
x_{l} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q &
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2}
\end{array}\right. \\
& q
\end{aligned}
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{ll}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{2} \in I} & \left.\mathcal{R}\right|_{x_{2} \notin I} \\
x_{L} \notin I \\
x_{l} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right] .
\end{aligned}
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{L} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I \\
x_{L} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right] .
\end{aligned}
$$

Extra: Rank Matrix Calculations

$$
\mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
\mathcal{R} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
\left.\mathcal{R}\right|_{x_{L} \notin I} & -\left.\mathcal{R}\right|_{x_{R} \in I} \\
x_{l} \notin I
\end{array}\right] \quad \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
\left.\mathcal{R}\right|_{x_{R} \in I} & \left.\mathcal{R}\right|_{x^{\prime} \notin I} \\
\left.\mathcal{R}\right|_{x^{\prime} \in I} & \left.\mathcal{R}\right|_{x_{R} \notin I} \\
x_{L} \notin I \\
x_{L} \notin I
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathcal{M}_{q}(\mathbf{P} \searrow):=\left[\begin{array}{cc}
1+2 q+2 q^{2}+q^{3}+q^{4} & -q-q^{2}-q^{3}-q^{4} \\
1+q & -q
\end{array}\right] . \\
& \mathcal{M}_{q}(\mathbf{P} \nearrow):=\left[\begin{array}{cc}
q+q^{2}+q^{3}+q^{4} & 1+q+q^{2} \\
q & 1
\end{array}\right] .
\end{aligned}
$$

[^0]: ${ }^{1}$ Morier-Genoud and Ovsienko, " q-deformed rationals and q-continued fractions".

[^1]: ${ }^{1}$ Morier-Genoud and Ovsienko, " q-deformed rationals and q-continued

[^2]: ${ }^{2}$ McConville, B. E. Sagan, and Smyth, On a rank-unimodality conjecture of Morier-Genoud and Ovsienko.

[^3]: ${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
 ${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

[^4]: ${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
 ${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

[^5]: ${ }^{5}$ Stanton, "Unimodality and Young's lattice".

