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The case of fence posets

Let α = (α1, α2, . . . , αs) be a composition of n. The fence poset
of α, denoted F (α) is the poset on x1, x2, . . . , xn+1 with the order
relations:

x1 ⪯ x2 ⪯ · · · ⪯ xα1+1 ⪰ xα1+2 ⪰ · · · ⪰ xα1+α2+1 ⪯ xα1+α2+2 ⪯ · · ·

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

For a composition of n, we get a poset of n + 1 nodes.
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An ideal of a fence is a down-closed subset: x ∈ I , y ⪯ x ⇒ y ∈ I .

#I = rank(I )

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, . . .

(1, 3, 5, 6, 6, 5, 3, 2, 1)← Rank sequence.

1+3q+3q2+5q3+6q4+6q5+5q6+3q7+2q8+q9←Rank polynomial.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 4 / 64



An ideal of a fence is a down-closed subset: x ∈ I , y ⪯ x ⇒ y ∈ I .

#I = rank(I )

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

1 ideal of rank 0,3 ideals of rank 1, 5 ideals of rank 2, . . .

(1, 3, 5, 6, 6, 5, 3, 2, 1)← Rank sequence.

1+3q+3q2+5q3+6q4+6q5+5q6+3q7+2q8+q9←Rank polynomial.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 7 / 64



An ideal of a fence is a down-closed subset: x ∈ I , y ⪯ x ⇒ y ∈ I .

#I = rank(I )

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, . . .

(1, 3, 5, 6, 6, 5, 3, 2, 1)← Rank sequence.

1+3q+3q2+5q3+6q4+6q5+5q6+3q7+2q8+q9←Rank polynomial.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 13 / 64



An ideal of a fence is a down-closed subset: x ∈ I , y ⪯ x ⇒ y ∈ I .

#I = rank(I )

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, . . .

(1, 3, 5, 6, 6, 5, 3, 2, 1)← Rank sequence.

1+3q+5q2+6q3+6q4+5q5+3q6+2q7+q8 ← Rank polynomial.
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We can also see ideals of a fence as sub-representations of a quiver
representation.

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

k k k k k k k k

This is a ”type A” quiver representation.
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We can also see ideals of a fence as sub-representations of a quiver
representation.

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

k k k k k k k k

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A subrepresentation is one that makes the diagram commute.
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We can also see ideals of a fence as sub-representations of a quiver
representation.

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

k k k k k k k k

0 0 0 0 0 0 0 0
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A q-deformation for rational numbers

Recently, a q-deformation rational numbers was introduced by
Morier-Genoud and Ovsienko1. Their definition has a convergence
property, which allows us to extend them to real numbers.

For a given rational number r/s, we first write it as a continued
fraction.

r

s
= a1 +

1

a2 +
1

a3 +
1

. . . +
1

a2m

= c1 −
1

c2 −
1

c3 −
1

. . . −
1

ck

ai ∈ Z, ai ≥ 1 for i ≥ 2 ci ∈ Z, ci ≥ 2 for i ≥ 2

1Morier-Genoud and Ovsienko, “q-deformed rationals and q-continued
fractions”.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 21 / 64



A q-deformation for rational numbers

Then we replace the expansion terms with q-integers (q−1-integers
for a2k), and the 1’s with powers of q.[ r
s

]
q
:= [a1]q +

qa1

[a2]q−1 +
q−a2

. . . +
qa2m−1

[a2m]q−1

= [c1]q −
qc1−1

[c2]q −
qc2−1

. . . −
qck−1−1

[ck ]q

A cool thing: The two expressions give the same q-deformation.

Another cool thing:
[ r
s

]
q
=

R(q)

S(q)
where R(q),S(q) ∈ Z[q] are

polynomials that evaluate to r and s respectively.

Also, when r
s ≥ 0 the coefficients are non-negative.
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Example

32

9
= 3 +

1

1 +
1

1 +
1

4

= 4−
1

3−
1

2−
1

2−
1

2

[
32

9

]
q

= [3]q +
q3

[1]q−1 +
q−1

[1]q +
q

[4]q−1

= [4]q −
q4

[3]q −
q3

[2]q −
q2

[2]q −
q2

[2]q

[
32

9

]
q

=
1+3q+5q2+6q3+6q4+5q5+3q6+2q7+q8

1+2q+2q2+2q3+q4+q5
.
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Example

[
32

9

]
q

= [3]q +
q3

[1]q−1 +
q−1

[1]q +
q

[4]q−1

= [4]q −
q4

[3]q −
q3

[2]q −
q2

[2]q −
q2

[2]q[ r
s

]
q
=

Rank polynomial for (2, 1, 1, 3)

Rank polynomial for (1, 3)

In general, if r/s corresponds to [a1, a2, . . . , a2m], we have[ r
s

]
q
=

Rank polynomial for (a1 − 1, a2, a3, . . . , a2m − 1)

Rank polynomial for (0, a2 − 1, a3, . . . , a2m − 1)
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A closer look at rank sequences for fences

(2, 1, 1, 3) → (1, 3, 5, 6, 6, 5, 3, 2, 1)

(3, 1, 1, 2) → (1, 2, 3, 5, 6, 6, 5, 3, 1)

(1, 2, 1, 3) → (1, 3, 5, 6, 6, 5, 4, 2, 1)

(1, 1, 2, 3) → (1, 3, 5, 7, 7, 5, 4, 2, 1)

(2, 2, 3) → (1, 2, 4, 5, 6, 6, 4, 2, 1)

(2, 3, 2) → (1, 2, 4, 6, 7, 6, 4, 2, 1)

(2, 1, 4) → (1, 2, 3, 3, 4, 4, 3, 2, 1)

(2, 1, 2, 1, 1) → (1, 3, 6, 7, 8, 7, 5, 3, 1)

Conjecture (Morier-Genoud, Ovsienko, 2020 )

The rank polynomials of fence posets are unimodal.
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What more can we say?

Consider (2, 1, 1, 3)→ (1, 3, 5, 6, 6, 5, 3, 2, 1).

We have 1 ≤ 1 ≤ 2 ≤ 3 ≤ 3 ≤ 5 ≤ 5 ≤ 6 ≤ 6.

We call such a sequence bottom-interlacing:

an ≤ a0 ≤ an−1 ≤ a1 ≤ . . . ≤ a⌊n/2⌋. (BI)

We call similarly have top-interlacing sequences:

a0 ≤ an ≤ a1 ≤ an−1 ≤ . . . ≤ a⌈n/2⌉. (TI)

For example, the rank sequence (1, 2, 4, 5, 6, 6, 4, 2, 1) of (2, 2, 3) is
top interlacing:

1 ≤ 1 ≤ 2 ≤ 2 ≤ 4 ≤ 4 ≤ 5 ≤ 6 ≤ 6.

Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 26 / 64



What more can we say?

Consider (2, 1, 1, 3)→ (1, 3, 5, 6, 6, 5, 3, 2, 1).

We have 1 ≤ 1 ≤ 2 ≤ 3 ≤ 3 ≤ 5 ≤ 5 ≤ 6 ≤ 6.

We call such a sequence bottom-interlacing:

an ≤ a0 ≤ an−1 ≤ a1 ≤ . . . ≤ a⌊n/2⌋. (BI)

We call similarly have top-interlacing sequences:

a0 ≤ an ≤ a1 ≤ an−1 ≤ . . . ≤ a⌈n/2⌉. (TI)

For example, the rank sequence (1, 2, 4, 5, 6, 6, 4, 2, 1) of (2, 2, 3) is
top interlacing:

1 ≤ 1 ≤ 2 ≤ 2 ≤ 4 ≤ 4 ≤ 5 ≤ 6 ≤ 6.
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What more can we say?

(2, 1, 1, 3) → (1, 3, 5, 6, 6, 5, 3, 2, 1)→ BI

(3, 1, 1, 2) → (1, 3, 5, 6, 6, 5, 3, 2, 1)→ BI

(1, 2, 1, 3) → (1, 3, 5, 6, 6, 5, 4, 2, 1)→ BI

(1, 1, 2, 3) → (1, 3, 5, 7, 7, 5, 4, 2, 1)→ BI

(2, 2, 3) → (1, 2, 4, 5, 6, 6, 4, 2, 1)→ TI

(2, 3, 2) → (1, 2, 4, 6, 7, 6, 4, 2, 1)→ BI,TI (symmetric)

(2, 1, 4) → (1, 2, 3, 3, 4, 4, 3, 2, 1)→ TI

(2, 1, 2, 1, 1) → (1, 3, 6, 7, 8, 7, 5, 3, 1)→ BI
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2Conjecture (McConville, Sagan, Smyth, 20212 )

Suppose α = (α1, α2, . . . , αs).
(a) If s = 1 then r(α) = (1, 1, . . . , 1) is symmetric.
(b) If s is even, then r(α) is bottom interlacing.
(c) If s ≥ 3 is odd we have:

(i) If α1 > αs then r(α) is bottom interlacing.
(ii) If α1 < αs then r(α) is top interlacing.
(iii) If α1 = αs then r(α) is symmetric, bottom interlacing, or

top interlacing depending on whether r(α2, α3, . . . , αs−1)
is symmetric, top interlacing, or bottom interlacing,
respectively.

2McConville, B. E. Sagan, and Smyth, On a rank-unimodality conjecture of
Morier-Genoud and Ovsienko.
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Idea

What if we close up the fence?

Example (α = (2, 1, 1, 3))

x1

x2

x3

x4

x5

x6

x7

x8

The circular fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1).

It is symmetric. Is this always so?

Answer: Yes, but it is not trivial to prove.
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3Theorem (Kantarcı Oğuz, Ravichandran, 20213)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: (k, 1, 1, . . . , 1).

We show that moving a node from one segment to the next does
not break symmetry.

>> Recent bijective proof by Sagan and Elizalde4.

3Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are
Unimodal.

4Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for
fences.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 32 / 64
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The next step

There are several natural ways to associate a circular fence to a
given fence.

Example (Adding the relation x1 ⪰ x8)

x1

x2

x3

x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7

x8∑
I

qrank(I ) =
∑

{I |x1∈I⇒x8∈I}

qrank(I ) +
∑

{I |x1∈I ,x8 /∈I}

qrank(I )

circular rank q× rank polynomial
polynomial for (1, 1)
(symmetric) (smaller, shifted center)
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What does this tell us about the rank polynomial?

symmetric piece (1, 2, 3, 5, 5, 5, 3, 2, 1) b0 = bn, b1 = bn−1,. . .
+ +

smaller piece, (0, 1, 2, 1, 1, 0, 0, 0, 0) c0 ≥ cn, c1 ≥ cn−1,. . .
shifted center

= =∑
I

qrank(I ) (1, 3, 5, 6, 6, 5, 3, 2, 1) a0 ≥ an, a1 ≥ an−1,. . .

This gives us half of the equations for being bottom interlacing:

an ≤ a0, an−1 ≤ a1, an−2 ≤ a2 an−3 ≤ a3, . . .

an ≤ a0 ≤ an−1 ≤ a1 ≤ an−2 ≤ a2 ≤ an−3 ≤ a3 ≤ . . . (BI)
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We can get the other half by associating another circular
fence.

Example (Connecting x8 and x1 by a minimal node x0)

x1

x2

x3

x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7

x8
x0∑

{I |x0∈I}

qrank(I ) =
∑
I

qrank(I ) −
∑

{I |x0 /∈I}

qrank(I )

q× rank circular rank rank polynomial
polynomial for (2, 1, 1, 3) polynomial for (0)

(symmetric, (smaller,

shifted center) shifted center)
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On the rank polynomial side

symmetric piece (1, 2, 3, 5, 6, 6, 5, 3, 2, 1) b0 = bn+1, b1 = bn,. . .
larger
− −

smaller piece, (1, 1, 0, 0, 0, 0, 0, 0, 0) c0 ≥ cn, c1 ≥ cn−1,. . .
shifted center

= =
(0, a0, a1, . . . , an) (0, 1, 3, 5, 6, 6, 5, 3, 2, 1) 0 ≤ an, a0 ≤ an−1 . . .

This gives us the other half of the bottom-interlacing equations:

an ≤ a0, an−1 ≤ a1, an−2 ≤ a2, an−3 ≤ a3, . . .

+

a0 ≤ an−1, a1 ≤ an−2, a2 ≤ an−3, . . .

=

an ≤ a0 ≤ an−1 ≤ a1 ≤ an−2 ≤ a2 ≤ an−3 ≤ a3 ≤ . . . (BI)

Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 36 / 64



On the rank polynomial side

symmetric piece (1, 2, 3, 5, 6, 6, 5, 3, 2, 1) b0 = bn+1, b1 = bn,. . .
larger
− −

smaller piece, (1, 1, 0, 0, 0, 0, 0, 0, 0) c0 ≥ cn, c1 ≥ cn−1,. . .
shifted center

= =
(0, a0, a1, . . . , an) (0, 1, 3, 5, 6, 6, 5, 3, 2, 1) 0 ≤ an, a0 ≤ an−1 . . .

This gives us the other half of the bottom-interlacing equations:

an ≤ a0, an−1 ≤ a1, an−2 ≤ a2, an−3 ≤ a3, . . .

+

a0 ≤ an−1, a1 ≤ an−2, a2 ≤ an−3, . . .

=

an ≤ a0 ≤ an−1 ≤ a1 ≤ an−2 ≤ a2 ≤ an−3 ≤ a3 ≤ . . . (BI)
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Theorem (Kantarcı Oğuz, Ravichandran, 2021)

Rank polynomials of fence posets are unimodal.

In particular, for α = (α1, α2, . . . , αs) we have:
(a) If s = 1 then r(α) = (1, 1, . . . , 1) is symmetric.
(b) If s is even, then r(α) is bottom interlacing.
(c) If s ≥ 3 is odd we have:

(i) If α1 > αs then r(α) is bottom interlacing.
(ii) If α1 < αs then r(α) is top interlacing.
(iii) If α1 = αs then r(α) is symmetric, bottom interlacing, or

top interlacing depending on whether r(α2, α3, . . . , αs−1)
is symmetric, top interlacing, or bottom interlacing,
respectively.
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What about the rank polynomials of circular fence posets?

Are they also unimodal?

Answer: Not always.

For the circular poset (1, a, 1, a) we get a small dip in the middle:

(1, 2, . . . , a, a+ 1, a, a+ 1, a, a− 1, . . . , 2, 1).

Nicer answer: Almost always.

Conjecture (Kantarcı Oğuz, Ravichandran, 2022)

For any α ̸= (1, k , 1, k) or (k , 1, k , 1) for some k , the rank
sequence R(α; q) is unimodal.
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What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset (1, a, 1, a) we get a small dip in the middle:

(1, 2, . . . , a, a+ 1, a, a+ 1, a, a− 1, . . . , 2, 1).

Nicer answer: Almost always.

Theorem (Kantarcı Oğuz, Ravichandran, Özel 2023)

For any α ̸= (1, k , 1, k) or (k , 1, k , 1) for some k, the rank
sequence R(α; q) is unimodal.
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Another Perspective

We can also see fences as intervals in the Young’s lattice.

Young’s Lattice is the lattice of Ferrers diagrams of Partitions
ordered by inclusion.

(Image from Wikipedia, created by David Eppstein)
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For any partition, we can look at the generating function of the
partitions that lay under it.

G (λ; q) :=
∑
µ⊂λ

q|µ|

G
(

; q
)
= q3 + 2q2 + q + 1

G
(

; q
)
= q4 + 2q3 + 2q2 + q + 1

We can also look at the interval
between two partitions.

G (λ/ν; q) :=
∑

ν⊂µ⊂λ

q|µ|−|ν|

G
(

/ ; q
)
= q2 + 2q + 1
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Unimodality of these polynomials were considered by Stanton in
19905.

Note that taking the transpose does not change the
polynomial we get, so we can think up to transpose.

←→

Conjecture (Stanton,1990)

The polynomials corresponding to self-dual partitions are unimodal.

5Stanton, “Unimodality and Young’s lattice”.
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The counter examples mainly occur in the case where we have 4
parts, where we only get a dip in the middle.

(Table from ”Unimodality and Young’s Lattice”, Stanton)

Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 43 / 64



The counter examples mainly occur in the case where we have 4
parts, where we only get a dip in the middle.

(Table from ”Unimodality and Young’s Lattice”, Stanton)
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Given a fence, we can see it as a difference of two partitions α/ν.

Example ((2, 1, 1, 3)→ (4, 4, 4, 4, 3)/(3, 3, 3, 2))

Note that the ideals of the fence coincide with the partitions that
lie between α and ν, so G (λ/ν) agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of
differences called ribbon diagrams, where we have no 2× 2 box.

Polynomials corresponding to ribbon diagrams are unimodal.

Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 44 / 64



Given a fence, we can see it as a difference of two partitions α/ν.

Example ((2, 1, 1, 3)→ (4, 4, 4, 4, 3)/(3, 3, 3, 2))

Note that the ideals of the fence coincide with the partitions that
lie between α and ν, so G (λ/ν) agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of
differences called ribbon diagrams, where we have no 2× 2 box.

Polynomials corresponding to ribbon diagrams are unimodal.
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 44 / 64



Given a fence, we can see it as a difference of two partitions α/ν.

Example ((2, 1, 1, 3)→ (4, 4, 4, 4, 3)/(3, 3, 3, 2))

Note that the ideals of the fence coincide with the partitions that
lie between α and ν, so G (λ/ν) agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of
differences called ribbon diagrams, where we have no 2× 2 box.

Polynomials corresponding to ribbon diagrams are unimodal.
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A generalization: Oriented Posets

We build posets from building blocks which we call oriented posets,
which come with 2× 2 rank matrices instead of rank polynomials.

xL

xR

Mq(P↗) :=

[
q + q2 + q3 + q4 1 + q + q2

q 1

]

We can read the rank polynomial directly from the rank matrix.
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Rank Matrices

Combining posets ⇔ Multiplying rank matrices.

xL

xR

P↗

Mq(P↗)

yL
yR

Q↗

Mq(Q↗)

⇒

xL yR
(P↗ Q)↗

Mq((P↗ Q)↗)
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Mq(P↗)

yL
yR

Q↗

Mq(Q↗)

⇒

xL yR
(P↗ Q)↗

Mq((P↗ Q)↗)
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Rank Matrices

Taking the trace ⇔ Combining the two ends of a poset

P↗

→

⟳(P↗)

R(⟳(P↗); q) = tr(Mw (P↗))
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In particular, for dealing with fence poset or circular fence posets,
two matrices are enough to give us all the structure.

A down step and an up step.

Mw (•↘) := D =

[
1 + q −q
1 0

]
, Mw (•↗) := U =

[
q 1
0 1

]
.

Example

Mq(F (2, 1, 1, 3)↘) = U · U · D · U · D · D · D · D.
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If we are dealing with fence poset or circular fence posets, two
matrices are enough to give us all the structure.

A down step and an up step.

Mw (•↘) := D =

[
1 + q −q
1 0

]
, Mw (•↗) := U =

[
q 1
0 1

]
.

Example

Mq(F (2, 1, 1, 3)↘) = U2 · D · U · D4.
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The case of fences

Theorem (Kantarcı Oğuz, 2022)

Consider the oriented poset F (α) corresponding to
α = (u1, d1, u2, d2, . . . , us , ds).
Then F (α) has rank matrices:

Mq(F (α)↘) = Uu1Dd1Uu2Dd2 · · ·Uus−1Dds−1UusDds+1,

Mq(F (α)↗) = Uu1Dd1Uu2Dd2 · · ·Uus−1Dds−1UusDdsU.

The circular fence poset F (α) has rank polynomial:

R(F (α); q) = trace(Uu1Dd1Uu2Dd2 · · ·Uus−1Dds−1UusDds ).
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Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 51 / 64



Application: Identities

We can use matrices to do fast calculations, conjecture and prove
identities.

Proposition (Kantarcı Oğuz, 2022)

Let X be a palindromic composition with an even number of parts.
For k ≥ 1, s ≥ 1 we have:

R((1, k , r + 1,X, r); q) = [k + 1]q · R((r + 2,X, r); q),

R((k , 1, k + r ,X, r); q) = [k + 1]q · R((k + r + 1,X, r); q).

←→

Illustration of (Id 1) with r = 1, k = 4,s = 2.
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Application: Recurrences

We can use matrix identities to get recurrences on fences.

U2 = (q + 1)U + q, D2 = (q + 1)D + q.

Proposition (Kantarcı Oğuz, Ravichandran, Özel, 2012)

We have the following recurrence relations on rank polynomials:

R((k + 2,X); q) = (q + 1)R((k + 1,X); q) + qR((k ,X); q),
R((k + 2,X); q) = (q + 1)R((k + 1,X); q) + qR((k ,X); q).
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Application: Recurrences

We can use matrix identities to get recurrences on fences.

DUD = DU + UD − U + D3 − D2.

Proposition (Kantarcı Oğuz, Özel, Ravichandran, 2022)

We have the following recurrence relation polynomials:

R((a, 1, b,X ); q) =R((a− 1, 1, b,X ); q) +R((a, 1, b − 1,X ); q)

−R((a− 1, 1, b − 1,X ); q)

+R((a+ b + 1,X ); q)−R((a+ b,X ); q).

Theorem (Kantarcı Oğuz, Özel, Ravichandran, 2022)

For any α ̸= (1, k , 1, k) or (k , 1, k , 1) for some k, the rank
sequence R(α; q) is unimodal.
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Application: Calculations on Cluster Algebras

We can also keep track of the actual vertices in each ideal. We
only need to substitute wi for q in the matrices. We can use that
to calculate expansion formulas for arcs in trianglated surfaces.
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We get a weight matrix where the top left entry gives us the
generating polynomials of the ideals.

⟳↗

([
1 + w1 −w1

1 0

] [
1 + w2 −w2

1 0

] [
w3 1
0 1

] [
w4 1
0 1

])[
w5 1
0 1

] [
1 + w6 −w6

1 0

]
.
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1 + w3 + w5 + w2w3 + w3w5 + w5w6 + w2w3w5 + w3w4w5

+ w3w5w6 + w2w3w4w5 + w2w3w5w6 + w3w4w5w6

+ w1w2w3w4w5 + w2w3w4w5w6 + w1w2w3w4w5w6.

We than plug in the weights (and more) to obtain the expansion
formula of the arc:

xγ =
x(M−)

cross(γ,T )
R(Pγ ; xy) =

x1x2x
2
4x6x9

x1x2x3x4x5x6
R(Pγ ; xy)

=
x4x9
x3x5

+
x1x9x15
x2x3x5

y3 +
x9x11x14
x3x5x6

y5 +
x9x10
x2x5

y2y3 +
x1x9x11x14x15
x2x3x4x5x6

y3y5

+
x7x14
x3x6

y5y6 +
x9x10x11x14
x2x4x5x6

y2y3y5 +
x9x11x15
x2x4x6

y3y4y5 +
x1x7x14x15
x2x3x4x6

y3y5y6

+
x3x9x10x11
x1x2x4x6

y2y3y4y5 +
x7x10x14
x2x4x6

y2y3y5y6 +
x5x7x15
x2x4x6

y3y4y5y6

+
x9x11
x1x6

y1y2y3y4y5 +
x3x5x7x10
x1x2x4x6

y2y3y4y5y6 +
x5x7
x1x6

y1y2y3y4y5y6.
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Markov Numbers

Markov triples are positive integer solutions of the Markov
Diophantine equation:

x2 + y2 + z2 = 3xyz .

Each number in a Markov triple is a Markov number.

The maximums of Markov triples are in one-to-one correspondence
with minimums of quadratic forms.

Frobenius conjectured that these maximums are in bijection with
all Markov numbers:

Conjecture

Uniqueness Conjecture (Frobenius, 1913) Each Markov number is
the largest member of exactly one Markov triple.

(see the book Markov’s Theorem and 100 Years of the Uniqueness
Conjecture by M. Aigner for more details) .

All solution triples can be recursively calculated recursively from
(1, 1, 1) via permutations and the operation
(a, b, c)→ (a, b, 3ab − c). They have a binary tree structure and
have a natural bijection with fence posets.
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Markov Numbers

One can also calculate Markov numbers using Christoffel words.
We take the corresponding Cohn matrix for each word, then divide
the trace by 3.

Recently, q-deformed Markov numbers were defined using
q-deformed Cohn matrices and dividing by [3]q instead.

Observations:

The q-deformed Cohn matrices are rank matrices of certain
posets.

The division by [3]q can be dealt with via the identity:

R((1, k , r + 1,X, r); q) = [k + 1]q · R((r + 2,X, r); q).
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Oriented posets give a combinatorial model for q-deformed Markov
Numbers.

Algorithm: For a given Markov Number N,

Take the corresponding Christoffel word w .

Delete leftmost and rightmost letters of w .

Replace each a by 1, 1, each b by 2, 2.

Prepend by 3, 1 to get a composition α(N).

The q-deformation of N is given by the rank polynomial of α(N).

For the Markov number 13 we get:

13→ aab → a→ 1, 1→ (3, 1, 1, 1) = α(13)

. The q-deformations given by R(F (3, 1, 1, 1); q):

trace(U3 · D · U · D) = 1 + 2q + 2q2 + 3q3 + 2q4 + 2q5 + 1.
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Thank you for listening!

Kantarcı Oğuz, E. & Ravichandran, M. Rank Polynomials of Fence Posets
are Unimodal. Discrete Math.. 346 (2023).

Kantarcı Oğuz, E. Oriented Posets. (2022).

Morier-Genoud, S. & Ovsienko, V. q-deformed rationals and q-continued
fractions. Forum Math. Sigma. 8 pp. Paper No. e13, 55 (2020).

McConville, T., Sagan, B. & Smyth, C. On a rank-unimodality conjecture
of Morier-Genoud and Ovsienko. Discrete Math.. 344 pp. 13 (2021).

Elizalde, S. & Sagan, B. Partial rank symmetry of distributive lattices for
fences. (2022).

Kantarcı Oğuz, E. & Yıldırım, E. Cluster Algebras and Oriented Posets.
(2022).

Kantarcı Oğuz, E. & Özel, C. Y.& Ravichandran, M. Fence Posets and
Ehrhart-Equivalence. (2022).
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Extra: Rank Matrix Calculations

Mq(P↘) :=

[
R −R|xR∈I
R|xL /∈I −R|xR∈I

xL /∈I

]
Mq(P↗) :=

[
R|xR∈I R|xR /∈I
R|xR∈I

xL /∈I
R|xR /∈I

xL /∈I

]

Example

xL

xR

Mq(P↘) :=

[
1 + 2q + 2q2 + q3 + q4 −q − q2 − q3 − q4

1 + q −q

]
.

Mq(P↗) :=

[
q + q2 + q3 + q4 1 + q + q2

q 1

]
.
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R|xR /∈I

xL /∈I

]

Example

xL

xR

Mq(P↘) :=

[
1 + 2q + 2q2 + q3 + q4 −q − q2 − q3 − q4

1 + q −q

]
.

Mq(P↗) :=

[
q + q2 + q3 + q4 1 + q + q2

q 1

]
.

Ezgi KANTARCI OĞUZ Oriented Posets and Rank Matrices 62 / 64



Extra: Rank Matrix Calculations

Mq(P↘) :=

[
R −R|xR∈I
R|xL /∈I −R|xR∈I

xL /∈I

]
Mq(P↗) :=

[
R|xR∈I R|xR /∈I
R|xR∈I

xL /∈I
R|xR /∈I

xL /∈I

]

Example

xL

xR

Mq(P↘) :=

[
1 + 2q + 2q2 + q3 + q4 −q − q2 − q3 − q4

1 + q −q

]
.

Mq(P↗) :=

[
q + q2 + q3 + q4

1 + q + q2

q 1

]
.
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