#### Quantitative Gromov non-squeezing

Umut Varolgunes

University of Edinburgh

February 6, 2022

joint work with Kevin Sackel, Antoine Song and Jonathan Zhu

### Hamiltonian flows in phase space $\mathbb{R}^n \times \mathbb{R}^n$

- Coordinates in  $\mathbb{R}^n \times \mathbb{R}^n$ :  $p_1, \ldots, p_n$  (momentum) and  $q_1, \ldots, q_n$  (position)
- Smooth function H(p,q) gives rise to vector field

$$X_H(p,q) := -\sum_{i=1}^n \frac{\partial H}{\partial q_i}(p,q) \frac{\partial}{\partial p_i} + \sum_{i=1}^n \frac{\partial H}{\partial p_i}(p,q) \frac{\partial}{\partial q_i}$$

- $X_H$  defines a flow on  $\mathbb{R}^n \times \mathbb{R}^n$
- A single trajectory in the flow  $t \mapsto (p(t), q(t))$  satisfies

$$p_i'(t) = -rac{\partial H}{\partial q_i}(p(t),q(t)), ext{ and } q_i'(t) = rac{\partial H}{\partial p_i}(p(t),q(t))$$

For H = \frac{|p|^2}{2m} + V(q), recover Newton's equations, i.e. flow of X<sub>H</sub> gives time evolution of position and momentum in Newtonian mechanics with potential V(q).

## Special properties of Hamiltonian flows in $\mathbb{R}^n \times \mathbb{R}^n$

- (Liouville's theorem) Volumes of regions in the phase space are preserved, i.e. dp<sub>1</sub> ∧ dq<sub>1</sub> ∧ ... ∧ dp<sub>n</sub> ∧ dq<sub>n</sub> is preserved.
- (Hamilton, ..., Whittaker 1944) The skew-symmetric bilinear form ω := dp<sub>1</sub> ∧ dq<sub>1</sub> + ... + dp<sub>n</sub> ∧ dq<sub>n</sub> is preserved - widely used in numerical analysis of molecular dynamics, celestial mechanics by way of symplectic integrators
- (Gromov non-squeezing 1985) If A > 1, one cannot map

$$B^{2n}(A) := \{|p|^2 + |q|^2 < A\pi^{-1}\}$$

(A is the maximal area of a 2d cross section) into

$$Z^{2n}(1) := \{p_1^2 + q_1^2 < \pi^{-1}\}$$

by a smooth embedding preserving  $\omega$ , for example time 1-maps of Hamiltonian flows (with full domain)

## Hamiltonian diffeomorphisms in $\mathbb{R}^n \times \mathbb{R}^n$

- Compositions of time-1 maps of different Hamiltonian flows are called Hamiltonian diffeomorphisms: Ham(ℝ<sup>2n</sup>, ω) equivalent formulation using time dependent Hamiltonians (at least in the compactly supported case)
- (Katok 1973) For any A > 1, there does exist
   φ ∈ Ham(ℝ<sup>2n</sup>, ω) such that the part of φ(B<sup>2n</sup>(A)) that lies outside Z<sup>2n</sup>(1) has arbitrarily small volume
- Katok's construction (simplified version): divide B<sup>2n</sup>(A) into small pieces by cutting along a grid so that each small piece can be moved into Z<sup>2n</sup>(1) by translations, use cut-off Hamiltonian functions



This is a move that one might like to use for the transportation procedure. Try a Hamiltonian of the form  $-\rho(p_1)p_2$ . We get what we want for the cubes, but we also get a quite large movement in the  $q_1$  direction in the shaded region.

#### Quantitative Gromov non-squeezing

- Katok embedding suggests that Gromov non-squeezing might be difficult to detect, for example in computer simulations?
- (Guth) Can we bound the volume sticking out if we put a bound on the Lipschitz constant?
- (Sackel-Song-V.-Zhu) Yes! For n = 2, if the Lipschitz constant is L, then  $\frac{c(A)}{L^2}$  volume needs to stick out, where c(A) is asymptotic to const. $A^2$  as  $A \to \infty$ .
- Optimal? Currently we have no construction that comes close.
- This result easily follows from our obstructive result for the Minkowski dimension question, where in some range of A we can also prove optimality. I will focus on that question.

## Interlude: Symplectic manifolds

• The following equation (which is true) characterizes  $X_H$  fully:

$$\omega(\cdot, X_H) = dH.$$

Note that the RHS is coordinate independent, so we don't need coordinates to turn H into  $X_H$ , we only need  $\omega$ .

- If we had a space *M* constructed by gluing open subsets of <sup>2n</sup> where the gluing maps preserve ω, then we would be able to consider Hamiltonian flows given by functions on *M*.
- Denoting the glued 2-form on M by  $\Omega$ , we have  $\Omega^n \neq 0$  and  $d\Omega = 0$ .
- (Darboux theorem) Conversely, these two properties imply that every point in M admits coordinate charts where  $\Omega$  looks like  $\omega \rightarrow$  modern definition of symplectic form

- T\*X, X smooth manifold
- $\mathbb{C}^n$ ,  $\mathbb{C}P^n$  and their smooth complex submanifolds
- Symplectic reduction possible to start with a simple space like ℝ<sup>2n</sup> and end up with a globally interesting space by taking quotients by Hamiltonian actions of Lie groups
- Coadjoint orbits of Lie groups
- Some moduli spaces ...
- It seems to be the case that for finding symplectomorphism trying to do things by hand (moving boxes, pushing things in desired directions) does not capture what is really possible.

### Minkowski dimension question

- Main question: what is the smallest Minkowski dimension of a closed E ⊂ B<sup>2n</sup>(A) such that B<sup>2n</sup>(A) \ E symplectically embeds into Z<sup>2n</sup>(1)?
- Here Minkowski dimension stands for the lower Minkowski dimension of E ⊂ ℝ<sup>2n</sup> - defined for any subset of B<sup>2n</sup>(A).
- Heuristically, E ⊂ ℝ<sup>N</sup> having Minkowski dimension d ∈ ℝ means that as ε → 0, the volume of the ε-neighborhood of E behaves as cε<sup>N-d</sup>, for some constant c > 0.
- If S is a submanifold, then we recover the usual dimension. The Minkowski dimension of the Cantor set is log(2)/log(3); of {0} ∪ {1,1/2,1/3,...} is 1/2.
- Let n = 2 and drop superscript 2n's from notation from now on. Our results currently do not extend to higher dimensions. From the obstructive side the issue is lack positivity of intersection for *J*-holomorphic curves.

# Constructive side I

- $\mathbb{CP}^2$  with Fubini-Study form,  $\mathbb{RP}^2$  the real part and  $\mathbb{CP}^1 := \{z_3 = 0\} \subset \mathbb{CP}^2$  has area 2
- (Oakley-Usher)  $\mathbb{CP}^2 \setminus \mathbb{RP}^2$  admits a Hamiltonian torus action with moment map image as shown



such that the preimage of the slope 1/2 edges is  $\mathbb{CP}^1\setminus\mathbb{RP}^2$ 

• Using Karshon-Lerman's extension of Delzant theorem to open symplectic toric manifolds:

$$B(2) \setminus L \simeq \mathbb{CP}^2 \setminus (\mathbb{CP}^1 \cup \mathbb{RP}^2) \simeq E(4,1) \setminus Z,$$

where  $L \subset \mathbb{R}^4$  is a Lagrangian subspace, E(4,1) is an ellipsoid and  $Z = \{p_2 = q_2 = 0\}.$ 

### Constructive side II

- Theorem (SSVZ):  $B(2) \setminus L$  embeds into Z(1).
- Explicit formula for the moment map in Remark 3.2 of OU.
- Biran-Giroux decomposition:  $\mathbb{CP}^2 \simeq D^* \mathbb{RP}^2 / bdry red.$
- Consider the spherical pendulum system with zero gravity: *T*\**S*<sup>2</sup> and (energy, angular momentum around a fixed direction) gives an integrable system. Then take Z/2 quotient.
- In the paper we find an explicit symplectomorphism using an observation of Opshtein.
- The discovery was made using an entirely different story during conversations with Mikhalkin (next two slides).
- The embedding of B(2) \ N<sub>e</sub>(L) does not extend to a symplectic embedding of B(2) into ℝ<sup>4</sup> for sufficiently small (but not that small) ε.

# Toric degeneration of $\mathbb{CP}^2$ to $\mathbb{CP}^2(1,1,4)$ |

- The weighted projective space CP<sup>3</sup>(1, 1, 1, 2) has a single orbifold point and in its complement there is a natural symplectic form Ω.
- Consider the pencil:

$$\Xi_{[t:s]} := \{ tz_1 z_2 - (t-s) z_3^2 - s z_4 = 0 \}$$

• Doing a Nash blow-up and removing a fiber we obtain

$$w:=\frac{s}{t}:P-\Xi_{[1:0]}\to\mathbb{C}.$$

- w has no critical points if we exclude the orbifold point.
- We have  $w^{-1}(1)\simeq \mathbb{CP}^2$  and  $w^{-1}(0)\simeq \mathbb{CP}^2(1,1,4)$
- Moreover, these identifications can be made symplectic where we use standard symplectic structures on the RHS.

# Toric degeneration of $\mathbb{CP}^2$ to $\mathbb{CP}^2(1,1,4)$ II

- Ω gives rise to an Ehressmann connection for *w* restricted to non-orbifold points.
- Therefore, we obtain a parallel transport symplectomorphism

 $w^{-1}(1)\setminus ( ext{whatever converges to the orbifold point})\simeq w^{-1}(0)\setminus ( ext{the orbifold point})$ 

- The singularity of *w* at the orbifold point is the simplest Wahl singularity and its vanishing cycle (i.e. stuff that converges to the orbifold point) is known to be a real projective plane.
- One can also trace the image of a  $\mathbb{CP}^1(1,4) \subset \mathbb{CP}^2(1,1,4)$ and more or less see that it's the one half a complex line in  $\mathbb{CP}^2$  which intersects our  $\mathbb{RP}^2$  along an  $\mathbb{RP}^1$ .
- This suggests the result we proved above

### Obstructive side I

- Theorem (SSVZ): For A > 1, the Minkowski dimension of a closed subset E such that B(A) \ E symplectically embeds into Z(1) is at least 2.
- The result is optimal for 2 ≥ A > 1 as our construction above shows.
- The proof has two main ingredients: the argument in the proof of Gromov non-squeezing and Gromov's waist inequality. These are very substantial ingredients.
- We also need an elementary bound on the volume of small tubular neighborhoods of minimal surfaces (Heintze-Karcher inequality).

## Obstructive side II

- Take such an embedding Φ. We need to show that the volume of the δ << 1 neighborhood of E behaves like const.δ<sup>2</sup>.
- Fix  $\delta << 1$ . For any  $\epsilon < \delta$ , a > 1 and  $\alpha > 0$ , following the argument in the proof of Gromov non-squeezing, we find a continuous function

$$f:B(A-\alpha)\to\mathbb{R}^2$$

with the following properties

Outside of N<sub>ϵ</sub>(E), f is smooth with no critical points.
For all y ∈ ℝ<sup>2</sup>,

$$(B(A - \alpha) \setminus \overline{N_{\epsilon}(E)}) \cap f^{-1}(y)$$

is a complex submanifold of area less than a.

• Let 
$$\alpha' := \alpha + 2(\delta - \epsilon)$$

# Obstructive side III

- Gromov's waist inequality will give us a special  $y \in \mathbb{R}^2$  such that the volume of the  $\delta \epsilon$  neighborhood of  $f^{-1}(y)$  in  $B(A \alpha')$  is at least  $\pi(A \alpha')(\delta \epsilon)^2 + o((\delta \epsilon)^2)$ .
- The HK inequality and the area bound says that the volume of the δ − ε tubular neighborhood of
   (B(A − α) \ N<sub>ε</sub>(E)) ∩ f<sup>-1</sup>(y) in ℝ<sup>4</sup> is at most πa(δ − ε)<sup>2</sup>.
- This tubular neighborhood and the  $\delta$ -neighborhood of E in  $B(A \alpha)$  cover the  $\delta \epsilon$  neighborhood of  $f^{-1}(y)$  in  $B(A \alpha')$  (next slide).
- Hence we get a lower bound

$$\pi(A - \alpha')(\delta - \epsilon)^2 - \pi a(\delta - \epsilon)^2 + o((\delta - \epsilon)^2)$$

on the volume of the  $\delta$  neighborhood of E (in  $B(A - \alpha)$  and therefore also in  $\mathbb{R}^4$ )

• Now, we let  $\epsilon$  to 0, a to 1 and  $\alpha$  to 0 to get the final result.

• 3 b

# Obstructive side IV



- Let p ∈ B(A − α') and dist(p, f<sup>-1</sup>(y)) ≤ δ − ε. If dist(p, E) ≤ δ, good. Otherwise, let z ∈ f<sup>-1</sup>(y) be a closest point, which has to exist.
- By triangle ineq. we have  $dist(z, E) > \epsilon$  and therefore near  $z = f^{-1}(y)$  is a submanifold.
- We get that the straight line from z to p is perpendicular to  $f^{-1}(y)$  and therefore p is in the desired tubular neighborhood

# Gromov's waist inequality

Theorem (Gromov): Let f : S<sup>n</sup> → ℝ<sup>k</sup> be a continuous map where n ≥ k. Here we are thinking of S<sup>n</sup> as the unit sphere in ℝ<sup>n+1</sup>. An example of such a map is pr<sub>k</sub>, which projects to the first k-coordinates. Then, there exists a y ∈ ℝ<sup>k</sup> such that

$$vol(N_t(f^{-1}(y)) \ge vol(N_t(pr_k^{-1}(0)),$$

for every (!)  $t \ge 0$ . (weak Borsuk-Ulam for n = k,  $t = \pi/2$ )

• We need a similar result for the ball in our proof. This result is deduced by Akopyan-Karasev using the Archimedes map (*pr<sub>n</sub>* with target replaced with its image):

$$S^{n+1} \to B^n$$
,

which is measure preserving and contracting.

 The inequality one gets is not optimal as under the Archimedes map the image of the *t*-neighborhood does not cover the *t*-neighborhood of the image. As *t* tends to 0, we approach to optimality.

## Questions

- Is the obstructive result optimal for A > 2?
- Is our bound on the Minkowski content optimal?
- What happens if we require the embedding to "extend" to the ball in the Minkowski dimension question?
- The Gromov capacity of the ball is halved if we remove a Lagrangian subspace. Due to results of Traynor, it stays the same if we remove a complex subspace. What is the symplecticity to capacity function?
- Higher dimensions??
- Lipschitz question???
- Thank you for listening!