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Hamiltonian flows in phase space Rn × Rn

Coordinates in Rn × Rn: p1, . . . , pn (momentum) and
q1, . . . , qn (position)

Smooth function H(p, q) gives rise to vector field

XH(p, q) := −
n∑

i=1

∂H

∂qi
(p, q)

∂

∂pi
+

n∑
i=1

∂H

∂pi
(p, q)

∂

∂qi

XH defines a flow on Rn × Rn

A single trajectory in the flow t 7→ (p(t), q(t)) satisfies

p′i (t) = −∂H

∂qi
(p(t), q(t)), and q′i (t) =

∂H

∂pi
(p(t), q(t))

For H = |p|2
2m + V (q), recover Newton’s equations, i.e. flow of

XH gives time evolution of position and momentum in
Newtonian mechanics with potential V (q).
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Special properties of Hamiltonian flows in Rn × Rn

(Liouville’s theorem) Volumes of regions in the phase space
are preserved, i.e. dp1 ∧ dq1 ∧ . . . ∧ dpn ∧ dqn is preserved.

(Hamilton, ..., Whittaker 1944) The skew-symmetric bilinear
form ω := dp1 ∧ dq1 + . . .+ dpn ∧ dqn is preserved - widely
used in numerical analysis of molecular dynamics, celestial
mechanics by way of symplectic integrators

(Gromov non-squeezing 1985) If A > 1, one cannot map

B2n(A) := {|p|2 + |q|2 < Aπ−1}

(A is the maximal area of a 2d cross section) into

Z 2n(1) := {p21 + q21 < π−1}

by a smooth embedding preserving ω, for example time
1-maps of Hamiltonian flows (with full domain)
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Hamiltonian diffeomorphisms in Rn × Rn

Compositions of time-1 maps of different Hamiltonian flows
are called Hamiltonian diffeomorphisms: Ham(R2n, ω) -
equivalent formulation using time dependent Hamiltonians (at
least in the compactly supported case)

(Katok 1973) For any A > 1, there does exist
ϕ ∈ Ham(R2n, ω) such that the part of ϕ(B2n(A)) that lies
outside Z 2n(1) has arbitrarily small volume

Katok’s construction (simplified version): divide B2n(A) into
small pieces by cutting along a grid so that each small piece
can be moved into Z 2n(1) by translations, use cut-off
Hamiltonian functions
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This is a move that one might like to use for the transportation
procedure. Try a Hamiltonian of the form −ρ(p1)p2. We get what
we want for the cubes, but we also get a quite large movement in
the q1 direction in the shaded region.
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Quantitative Gromov non-squeezing

Katok embedding suggests that Gromov non-squeezing might
be difficult to detect, for example in computer simulations?

(Guth) Can we bound the volume sticking out if we put a
bound on the Lipschitz constant?

(Sackel-Song-V.-Zhu) Yes! For n = 2, if the Lipschitz

constant is L, then c(A)
L2

volume needs to stick out, where
c(A) is asymptotic to const.A2 as A → ∞.

Optimal? Currently we have no construction that comes close.

This result easily follows from our obstructive result for the
Minkowski dimension question, where in some range of A we
can also prove optimality. I will focus on that question.
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Interlude: Symplectic manifolds

The following equation (which is true) characterizes XH fully:

ω(·,XH) = dH.

Note that the RHS is coordinate independent, so we don’t
need coordinates to turn H into XH , we only need ω.

If we had a space M constructed by gluing open subsets of
R2n where the gluing maps preserve ω, then we would be able
to consider Hamiltonian flows given by functions on M.

Denoting the glued 2-form on M by Ω, we have Ωn ̸= 0 and
dΩ = 0.

(Darboux theorem) Conversely, these two properties imply
that every point in M admits coordinate charts where Ω looks
like ω → modern definition of symplectic form
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Symplectic forms arise naturally in different contexts

T ∗X , X smooth manifold

Cn, CPn and their smooth complex submanifolds

Symplectic reduction - possible to start with a simple space
like R2n and end up with a globally interesting space by taking
quotients by Hamiltonian actions of Lie groups

Coadjoint orbits of Lie groups

Some moduli spaces ...

It seems to be the case that for finding symplectomorphism
trying to do things by hand (moving boxes, pushing things in
desired directions) does not capture what is really possible.
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Minkowski dimension question

Main question: what is the smallest Minkowski dimension of a
closed E ⊂ B2n(A) such that B2n(A) \ E symplectically
embeds into Z 2n(1)?

Here Minkowski dimension stands for the lower Minkowski
dimension of E ⊂ R2n - defined for any subset of B2n(A).

Heuristically, E ⊂ RN having Minkowski dimension d ∈ R
means that as ϵ → 0, the volume of the ϵ-neighborhood of E
behaves as cϵN−d , for some constant c > 0.

If S is a submanifold, then we recover the usual dimension.
The Minkowski dimension of the Cantor set is log(2)/log(3);
of {0} ∪ {1, 1/2, 1/3, . . .} is 1/2.

Let n = 2 and drop superscript 2n’s from notation from now
on. Our results currently do not extend to higher dimensions.
From the obstructive side the issue is lack positivity of
intersection for J-holomorphic curves.
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Constructive side I

CP2 with Fubini-Study form, RP2 the real part and
CP1 := {z3 = 0} ⊂ CP2 has area 2

(Oakley-Usher) CP2 \ RP2 admits a Hamiltonian torus action
with moment map image as shown

such that the preimage of the slope 1/2 edges is CP1 \ RP2

Using Karshon-Lerman’s extension of Delzant theorem to
open symplectic toric manifolds:

B(2) \ L ≃ CP2 \ (CP1 ∪ RP2) ≃ E (4, 1) \ Z ,

where L ⊂ R4 is a Lagrangian subspace, E (4, 1) is an ellipsoid
and Z = {p2 = q2 = 0}.
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Constructive side II

Theorem (SSVZ): B(2) \ L embeds into Z (1).

Explicit formula for the moment map in Remark 3.2 of OU.

Biran-Giroux decomposition: CP2 ≃ D∗RP2/bdry red.

Consider the spherical pendulum system with zero gravity:
T ∗S2 and (energy, angular momentum around a fixed
direction) gives an integrable system. Then take Z/2 quotient.

In the paper we find an explicit symplectomorphism using an
observation of Opshtein.

The discovery was made using an entirely different story
during conversations with Mikhalkin (next two slides).

The embedding of B(2) \ Nϵ(L) does not extend to a
symplectic embedding of B(2) into R4 for sufficiently small
(but not that small) ϵ.

Umut Varolgunes Quantitative Gromov non-squeezing



Toric degeneration of CP2 to CP2(1, 1, 4) I

The weighted projective space CP3(1, 1, 1, 2) has a single
orbifold point and in its complement there is a natural
symplectic form Ω.

Consider the pencil:

Ξ[t:s] := {tz1z2 − (t − s)z23 − sz4 = 0}

Doing a Nash blow-up and removing a fiber we obtain

w :=
s

t
: P − Ξ[1:0] → C.

w has no critical points if we exclude the orbifold point.

We have w−1(1) ≃ CP2 and w−1(0) ≃ CP2(1, 1, 4)

Moreover, these identifications can be made symplectic where
we use standard symplectic structures on the RHS.

Umut Varolgunes Quantitative Gromov non-squeezing



Toric degeneration of CP2 to CP2(1, 1, 4) II

Ω gives rise to an Ehressmann connection for w restricted to
non-orbifold points.

Therefore, we obtain a parallel transport symplectomorphism

w−1(1) \ (whatever converges to the orbifold point) ≃
w−1(0) \ (the orbifold point)

The singularity of w at the orbifold point is the simplest Wahl
singularity and its vanishing cycle (i.e. stuff that converges to
the orbifold point) is known to be a real projective plane.

One can also trace the image of a CP1(1, 4) ⊂ CP2(1, 1, 4)
and more or less see that it’s the one half a complex line in
CP2 which intersects our RP2 along an RP1.

This suggests the result we proved above
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Obstructive side I

Theorem (SSVZ): For A > 1, the Minkowski dimension of a
closed subset E such that B(A) \ E symplectically embeds
into Z (1) is at least 2.

The result is optimal for 2 ≥ A > 1 as our construction above
shows.

The proof has two main ingredients: the argument in the
proof of Gromov non-squeezing and Gromov’s waist inequality.
These are very substantial ingredients.

We also need an elementary bound on the volume of small
tubular neighborhoods of minimal surfaces (Heintze-Karcher
inequality).
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Obstructive side II

Take such an embedding Φ. We need to show that the volume
of the δ << 1 neighborhood of E behaves like const.δ2.

Fix δ << 1. For any ϵ < δ, a > 1 and α > 0, following the
argument in the proof of Gromov non-squeezing, we find a
continuous function

f : B(A− α) → R2

with the following properties
1 Outside of Nϵ(E ), f is smooth with no critical points.
2 For all y ∈ R2,

(B(A− α) \ Nϵ(E )) ∩ f −1(y)

is a complex submanifold of area less than a.

Let α′ := α+ 2(δ − ϵ)
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Obstructive side III

Gromov’s waist inequality will give us a special y ∈ R2 such
that the volume of the δ − ϵ neighborhood of f −1(y) in
B(A− α′) is at least π(A− α′)(δ − ϵ)2 + o((δ − ϵ)2).

The HK inequality and the area bound says that the volume
of the δ − ϵ tubular neighborhood of
(B(A− α) \ Nϵ(E )) ∩ f −1(y) in R4 is at most πa(δ − ϵ)2.

This tubular neighborhood and the δ-neighborhood of E in
B(A− α) cover the δ − ϵ neighborhood of f −1(y) in
B(A− α′) (next slide).

Hence we get a lower bound

π(A− α′)(δ − ϵ)2 − πa(δ − ϵ)2 + o((δ − ϵ)2)

on the volume of the δ neighborhood of E (in B(A− α) and
therefore also in R4)

Now, we let ϵ to 0, a to 1 and α to 0 to get the final result.
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Obstructive side IV

Let p ∈ B(A− α′) and dist(p, f −1(y)) ≤ δ − ϵ. If
dist(p,E ) ≤ δ, good. Otherwise, let z ∈ f −1(y) be a closest
point, which has to exist.

By triangle ineq. we have dist(z ,E ) > ϵ and therefore near z
f −1(y) is a submanifold.

We get that the straight line from z to p is perpendicular to
f −1(y) and therefore p is in the desired tubular neighborhood
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Gromov’s waist inequality

Theorem (Gromov): Let f : Sn → Rk be a continuous map
where n ≥ k . Here we are thinking of Sn as the unit sphere in
Rn+1. An example of such a map is prk , which projects to the
first k-coordinates. Then, there exists a y ∈ Rk such that

vol(Nt(f
−1(y)) ≥ vol(Nt(pr

−1
k (0)),

for every (!) t ≥ 0. (weak Borsuk-Ulam for n = k, t = π/2)

We need a similar result for the ball in our proof. This result
is deduced by Akopyan-Karasev using the Archimedes map
(prn with target replaced with its image):

Sn+1 → Bn,

which is measure preserving and contracting.

The inequality one gets is not optimal as under the
Archimedes map the image of the t-neighbhorhood does not
cover the t-neighborhood of the image. As t tends to 0, we
approach to optimality.
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Questions

Is the obstructive result optimal for A > 2?

Is our bound on the Minkowski content optimal?

What happens if we require the embedding to ”extend” to the
ball in the Minkowski dimension question?

The Gromov capacity of the ball is halved if we remove a
Lagrangian subspace. Due to results of Traynor, it stays the
same if we remove a complex subspace. What is the
symplecticity to capacity function?

Higher dimensions??

Lipschitz question???

Thank you for listening!
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