Extremal Triangle-Free Graphs

Tınaz Ekim

Boğaziçi University, Department of Industrial Engineering, Turkey TÜBİTAK Grant 118F397 and 122M452

Outline

Results from 2 papers:

- Milad Ahanjideh, Tınaz Ekim and Mehmet Akif Yıldız, Maximum size of a triangle-free graph with bounded maximum degree and matching number, under revision, 2022, arXiv:2207.02271.
- Ali Erdem Banak, Tınaz Ekim, Z.Caner Taşkın, Constructing extremal triangle-free graphs using integer programming, Discrete Optimization, 50 (2023), 100802,

Content:

- Description of the extremal problem
- Structural graph theoretical results
- Integer Programming formulations and Conjectures

Extremal Graph Theory

How large or small can a graph parameter be under a given set of conditions?

Turán's theorem (special case): The max number of edges in a triangle-free graph G with n vertices is $[n^2/4]$; it is achieved by a balanced complete bipartite graph.

Edge-extremal Problem

How many edges can a graph have at most, under restrictions on its maximum degree and matching number?

max number of edges
s.t. maximum degree ≤ d
matching number ≤ m

max	E(G)
s.t.	$\Delta(G) \leq c$
	$v(G) \leq n$

$$d(1)=3$$

 $d(6)=4$
 $\Delta(G)=d(9)=6$

Tınaz Ekim

Edge-extremal Problem

A graph of degree at most *d* and matching number at most *m* and having a maximum number of edges is called (*edge-*) *extremal*.

- Q1: Find the opt value
- Q2: Find / characterize all extremal graphs
- Q3: In which cases the extremal graphs are unique?

Edge-extremal Problem

max | E(G) |
s.t. $\Delta(G) \le d$

 $\max |E(G)|$
s.t. $\nu(G) \le m$

For |E(G)| to be finite, we need to bound both $\Delta(G)$ and $\nu(G)$.

Literature

- Erdös, Rado, 1960 : a more general problem about set systems
- Chvátal, Hanson, 1976 : answers our question for general graphs and finds some extremal graphs (LP ideas and Berge's matching formula)
- Balachandran, Khare, 2009 : alternative proof with structural approach → construction of extremal graphs (but no information about their uniqueness apart from a few cases)

Edge-extremal General Graphs

 $\mathbb{M}_{\mathbf{C}}(d, m)$: All graphs G in the class **C** s.t. $\Delta(G) \leq d$ and $\nu(G) \leq m$ $f_{\mathbf{C}}(d, m)$: maximum number of edges in a graph in $\mathbb{M}_{\mathbf{C}}(d, m)$: size of an edge-extremal graph in C (for d and m)

Vizing's Theorem: $\chi'(G) \leq \Delta(G) + 1$

$$|E(G)| \le (\Delta(G) + 1)\nu(G) \le dm + m$$

This upper bound is met when some divisibility conditions for d and m hold, and we are pretty close otherwise.

Tınaz Ekim

Edge-extremal General Graphs

 \mathcal{GEN} : Class of general graphs

Thm (Balachandran, Khare, 2009): $f_{\mathcal{GEN}}(d,m) = dm + \left|\frac{d}{2}\right| \left|\frac{m}{\left\lceil\frac{d}{2}\right\rceil}\right|$

Moreover, an edge-extremal graph can be obtained by taking

disjoint union of d-stars, complete graphs K_{d+1} (if d even)

An edge-extremal graph for d=4, m=5

An edge-extremal graph for d=5, m=5

What if we restrict the structure of extremal graphs? Can the same upper bound be still achieved?

•(Dibek, E., Heggernes, 2017): d small enough \rightarrow Max |E(G)| remains the same; d large enough \rightarrow max | E(G) | decreases •(Blair, Heggernes, Lima, Lokshtanov, 2020) (more restricted than C₄-free graphs): the general bound not achieved.

•(Maland, 2015): Bipartite graphs, split graphs, unit interval graphs

• Open question: T-free graphs? $f_{\Lambda}(d, m) = ?$

Edge-extremal T-free graphs with d≥m

• Thm: $f_{\Delta}(d, m) = dm$ for $d > m \ge 1$. (m many d-stars)

• Thm: $f_{\Delta}(1, 1) = 1$ and $f_{\Lambda}(d, d) = d^2 + 1$ for $d \ge 2$.

 A_d : Blow-up of C_5

Tınaz Ekim

Edge-extremal T-free graphs with d<m

- Thm: $f_{\Delta}(1, m) = m$ for all $m \ge 1$. (m independent edges)
 - \rightarrow Assume d \geq 2
- Key Result: Let G be an edge-extremal T-free graph with Δ(G) ≤ d, ν(G) ≤ m having a maximum number of d-star
 <u>components</u>. Then every component H of G that is not a d-star
 - factor-critical (thus $|V(H)| = 2\nu(H)+1$)

•••

- with $d \le v(H) \le Z(d)$, and
- edge-extremal for d and $\nu(H) (|E(H)| = f_{\Delta}(d, \nu(H)))$

Edge-extremal T-free graphs with d<m

- Def: For any $d \ge 2$, let Z(d) be the smallest natural number n s.t. there exists a d-regular (if d is even) or almost dregular (if d is odd) T-free and factor-critical graph G with v(G) = n.
- Lemma: For every d ≥ 2, the value Z(d) and a T-free factor-critical (almost) d-regular graph B_d with matching number Z(d) exist.
- The value of Z(d) is crucial:
 - Z(d) known for $d \le 6$;
 - $Z(d) = \lfloor 5d/4 \rfloor$ if $d \ge 2$ even;
 - $Z(d) = \lfloor 5(d-1)/4 \rfloor \le Z(d) \le \lfloor 5(d+1)/4 \rfloor$ if $d \ge 2$ odd.

Tınaz Ekim

Koç University - Jan 2024

14

Main Theorem

Let d and m be natural numbers with $d \ge 2$, let k and r be nonnegative integers such that m = kZ(d) + r with $0 \le r < Z(d)$. Then, for all the cases with

- $d \ge m$
- d < m and $d \le 6$

• d < m and $Z(d) \le m < 2d$ we have, $f_{\triangle}(d,m) = \begin{cases} dm + k\lfloor d/2 \rfloor & \text{if } r < d, \\ dm + k\lfloor d/2 \rfloor + r - d + 1 & \text{if } r \ge d, \end{cases}$

where an extremal graph can be constructed as the disjoint union of k copies of B_{d} and

(i) A_d if $r \ge d$, (ii) $r_{\text{Imaz Ekim}} copies of d_{\text{Koc}University} r_{Jan 2024}$

Deviation from general extremal graphs

 $h_{\Delta}(d,m) = \begin{cases} 0, & \text{if } m < \lfloor d/2 \rfloor, \\ \lfloor d/2 \rfloor, & \text{if } \lfloor d/2 \rfloor \le m < d \\ d, & \text{if } d = m \text{ and } d \text{ is even}, \\ \lfloor d/2 \rfloor, & \text{if } d = m \text{ and } d \text{ is odd}, \\ 0, & \text{if } 1 = d < m, \\ m - \lfloor m/2 \rfloor, & \text{if } 2 = d < m, \\ \lfloor m/2 \rfloor - \lfloor m/3 \rfloor, & \text{if } 3 = d < m, \\ 2 \lfloor m/2 \rfloor - 2 \lfloor m/5 \rfloor, & \text{if } 4 = d < m \text{ and } m + 1 \text{ is not divisible by 5}, \\ 2 \lfloor m/2 \rfloor - 2 \lfloor m/5 \rfloor - 1, & \text{if } 4 = d < m \text{ and } m + 1 \text{ is not divisible by 5}, \\ 2 \lfloor m/3 \rfloor - 2 \lfloor m/6 \rfloor, & \text{if } 5 = d < m \text{ and } m + 1 \text{ is not divisible by 6}, \\ 3 \lfloor m/3 \rfloor - 2 \lfloor m/6 \rfloor - 1, & \text{if } 5 = d < m \text{ and } m + 1 \text{ is not divisible by 6}, \\ 3 \lfloor m/3 \rfloor - 3 \lfloor m/7 \rfloor, & \text{if } 6 = d < m \text{ and } m + 1 \text{ is not divisible by 7}, \\ \lfloor d/2 \rfloor, & \text{if } d \ge 7 \text{ and } Z(d) \le m < 3 \lceil d/2 \rceil, \\ 2 \lfloor d/2 \rfloor, & \text{if } d \ge 7 \text{ and } 3 \lceil d/2 \rceil \le m < 2d. \end{cases}$ if m < |d/2|,

Tınaz Ekim

Integer Programming formulation

- Open cases: $7 \le d < m$ and either m < Z(d) or $m \ge 2d$
- Reminder (Key result): Every component H of an edgeextremal graph G that is not a d-star is edge-extremal T-free graph for d and v(H) where $d \le v(H) \le Z(d) \rightarrow$ extremal components
- Decision variable x_i = # of extremal components of G whose matching number is i where d ≤ i ≤ Z(d).
- How many of each extremal component with matching number i (x_i) for each d ≤ i ≤ Z(d)?
- How many d-stars?

Knapsack formulation

Conjectures for open cases

- Conj 1: Main thm also holds for 6 < d < m < Z(d); for i s.t. 6 < d < i < Z(d) we have $f_{\Delta}(d,i) = di + i d + 1$.
- Prop: If Conj 1 true then (using $f_{\Delta}(d,Z(d)) = dZ(d) + \lfloor d/2 \rfloor$) IP equivalent to the following formulation which admits an opt. sol. where $\underline{x}_{Z(d)}$ is maximized and there is at most one other extremal component with smaller matching number.

$$\max \lfloor d/2 \rfloor x_{Z(d)} + \sum_{i=d}^{Z(d)-1} (i-d+1)x_i$$

subject to
$$\sum_{i=d}^{Z(d)} ix_i \le m$$
$$x_i \ge 0, x_i \in \mathbb{Z}$$

Tınaz Ekim

Interpretation → New conjecture

If Conj 1 holds, f_Δ(d,i) edges can be achieved by taking the graph B_d as much as possible and adding either one extremal component for d and r; or r many d-stars, depending on r ≥ d where r = remainder of m when divided by Z(d). (Just like in the main Thm)
Conj 2: . Let m = kZ(d) + r for some 0 ≤ r < Z(d). Then, we have

$$f_{\Delta}(d,m) = \begin{cases} dm + k\lfloor d/2 \rfloor & \text{if } r < d\\ dm + k\lfloor d/2 \rfloor + r - d + 1 & \text{if } r \ge d. \end{cases}$$

• Conj 3: For d>21 and odd, we have $Z(d) = \lfloor 5(d+1)/4 \rfloor$.

New IP for extremal components $f_{\Lambda}(d,i)$

• IP formulations for constructing extremal components for i s.t. $6 < d < i < Z(d) \rightarrow$ missing parameters for Knapsack

22

• Decision var. x_{ij} = edge ij exists or not

 $Max \sum x_{ij}$ Key Lemma s.t. T-free $\max \sum x_{ij}$ $i, i \in V$ $\Delta(G) \leq d$ s.t. $x_{ij} + x_{jk} + x_{ik} \le 2 \quad \forall i, j, k \in V$ $\nu(G) \le m$ $\sum x_{ij} \le d \quad \forall i \in V$ x_{ii} binary $j \in V$ $x_{ij} \in \{0,1\} \quad \forall i, j \in V$ Using IP for constructing graphs High symmetry! with structure Koç University - Jan 2024 Tınaz Ekim

Methodology

- 1. Basic Formulation + CPLEX symmetry breaking 5
- Orbital Branching to eliminate isomorphisms in the branch&cut tree: find symmetry / automorphism groups -> variable orbits and constraint orbits (equivalence classes). Reducing symmetry
- 3. Iterative formulation: Set all degrees to d, then all but one to d, etc. searching for a feasible solution, until UB=LB. Reducing the feasible region.
- 4. Combination of Orbital Branching and Iterative Approach

Computational experiments

- Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz with 32 GB RAM using CPLEX 20.1.0 on 10 threads.
- CPLEX 20.1.0 with C++ to implement the methods
- A limit of 1800 seconds for each run
- Orbital Branching and Iterative Method with callback mechanism of CPLEX. Orbits found by nauty 2.7r3 software library to compute automorphism groups [McKay, Piperno, 2014]

Main findings with IP

- We construct all extremal components for d=7,8,9,10 and d<m<Z(d) with IP + some for d=11,12 and 13.
- We solve the Knapsack Formulation for d=7,8,9,10 and any m value
- All our findings support Conjectures 1, 2.
- All extremal graphs have a max number of x_{Z(d)} and at most one other extremal component.
- As a byproduct (checking the degrees), we obtain new values for Z(d): Z(7)=9, Z(9)=13, Z(11)=15, and Z(13)=17. (By definition of Z(d) and checking the degrees)

Best computational results

Parameters			Iterative + Orbital Branching				
d	\boldsymbol{m}	PreUB	LB	UB	Gap	Time	Node
7	8	59	58	58	0.00%	0	57
7	9	66	66	66	0.00%	0	0
8	9	76	74	74	0.00%	4	2794
8	10	84	84	84	0.00%	0	0
9	10	94	92	92	0.00%	11	1990
9	11	103	102	102	0.00%	36	4170
9	12	112	112	112	0.00%	368	229
10	11	115	112	112	0.00%	79	10114
10	12	125	125	125	0.00%	2	0
11	12	137	134	134	0.00%	146	15106
11	13	148	146	146	0.00%	355	371215
11	14	159	158	159	0.63%	1800	706832
11	15	170	170	170	0.00%	1	0
12	13	162	158	158	0.00%	1623	2020924
12	14	174	171	172	0.58%	1800	1101510
12	15	186	186	186	0.00%	0	0
13	14	188	184	185	0.54%	1800	2294463
13	15	201	198	200	1.01%	1800	935875
13	16	214	212	213	0.47%	1800	577438
13	17	227	227	227	0.00%	72	543
Avg			1.38.45	138.75	0.22%	585	402163

Bottlenecks:

- 1) Computing the orbits
- 2) Decreasing the UB

Tınaz Ekim

Pattern for extremal components suggested by IP

• **Prop:** For all i = d + t such that d < i < Z(d), the graph $B_{d,d+t}$ is an extremal graph if Conjecture 1 holds (with di+i-d+1 edges. $\Lambda(B_{1,111}) = d$ and $\nu(B_{d,d+t}) = d + t = i$)

- H independent set
- F complete bipartite t distinct perfect matching
- Opposite parts of F and H are completely linked

Generalizes the extremal graph A_d for $f_{\Delta}(d, d)$

Knapsack formulation

d	m	edge count	#d-star	#Z(d)	#other	
7	15	108	6	1	0	
7	16	116	0	1	1	
7	17	124	0	1	1	
7	18	132	0	2	0	No practical
7	19	139	1	2	0	No practical
7	20	146	2	2	0	limit $d = 10$
7	21	153	3	2	0	
8	17	140	7	1	0	and m =
8	18	148	8	1	0	
8	19	158	0	1	1	10000 takes
8	20	168	0	2	0	0.0
8	21	176	1	2	0	0.2 sec.
8	22	184	2	2	0	
8	23	192	3	2	0	
8	24	200	4	2	0	
9	19	175	7	1	0	
9	20	184	8	1	0	
9	21	194	0	1	1	
9	22	204	0	1	1	2d < m < 3d
9	23	214	0	1	1	
9	24	224	0	2	0	
9	25	233	1	2	0	
9	26	242	2	2	0	
9	27	251	3	2	0	d O and
10	21	215	9	1	0	u=o anu
10	22	226	0	1	1	m~2d
10	23	237	0	1	1	mezu
10	24	250	0	2	0	
10	25	260	1	2	0	
10	26	270	2	2	0	
10	27	280	3	2	0	
10	28	290	4	2	0	
10	29	300	5	2	0	
10	30	310	6	2	0	
00000	1000			1000 ¥2000	÷+++++++++++++++++++++++++++++++++++++	T 0001

d	m	edge count	d-star	comp_8	comp_9	comp_10
8	15	124	5	0	0	1
8	16	132	6	0	0	1
8	17	140	7	0	0	1
8	18	149	0	1	0	1
8	19	158	0	0	1	1
8	20	168	0	0	0	2
8	21	176	1	0	0	2
8	22	184	2	0	0	2
8	23	192	3	0	0	2
8	24	200	4	0	0	2
8	25	208	5	0	0	2
8	26	216	6	0	0	2
8	27	224	7	0	0	2
8	28	233	0	1	0	2
8	29	242	0	0	1	2
8	30	252	0	0	0	3
8	31	260	1	0	0	3
8	32	268	2	0	0	3
8	33	276	3	0	0	3
8	34	284	4	0	0	3
8	35	292	5	0	0	3
8	36	300	6	0	0	3
8	37	308	7	0	0	3
8	38	317	0	1	0	3
8	39	326	0	0	1	3
8	40	336	0	0	0	4
8	41	344	1	0	0	4
8	42	352	2	0	0	4
8	43	360	3	0	0	4
8	44	368	4	0	0	4
8	45	376	5	0	0	4
8	46	384	6	0	0	4
8	47	392	7	0	0	4

Tınaz Ekim

Conclusion

• IP methods

- shed some light on the open cases
- provides more motivation to search for a formal proof
- but they can never settle all open cases
- Structural proofs for the conjectures require more powerful techniques
- Nice combination of IP and structural graph theory
- Opens the way to use IP to construct graphs with desired properties

Future Work

- What if we forbid k-star? (k≥4) Can we find an explicit formula in terms of d, m, and k, for the maximum number of edges that a graph G can have where Δ(G) ≤ d, ν(G) ≤ m and where G does not contain k-star as an induced subgraph?
- What if we forbid k-clique? What is the maximum number of edges of a graph G where Δ(G) ≤ d, ν(G) ≤ m and ω(G)<k?
- What if we require connectivity for general edge-extremal graphs?

Thank you for listening

Tınaz Ekim

A question inspired by IP

- IP for extremal components: |V(H)|=2v(H)+1 but we do not explicitly force that H is factor-critical.
- However, it turns out that all extremal components resulting from IP are factor-critical.

$$\begin{aligned} \max \sum_{i,j \in V} x_{ij} \\ \text{s.t.} \quad x_{ij} + x_{jk} + x_{ik} &\leq 2 \quad \forall i, j, k \in V \\ \sum_{j \in V} x_{ij} &\leq d \quad \forall i \in V \\ x_{ij} \in \{0,1\} \quad \forall i, j \in V \end{aligned}$$

QUESTION: Is it true that a triangle-free extremal graph G with matching number m and maximum degree d such that d < m < Z(d) and having 2m + 1 vertices is factor-critical?

Relation to Ramsey Numbers

Observation: Let G be a graph, let L(G) be the line graph of G, and let $d \ge 4$ and $j \ge 1$ be two integers. Then G has a vertex of degree at least d if and only if L(G) has a clique of size d. Moreover, G has a matching of size m if and only if L(G) has an independent set of size *m*.

Graph G

Graph L(G)

max	number of edges	max	number of vertices
s.t.	maximum degree ≤ d	s.t.	clique number $\leq d$
	matching number $\leq m$		independence number $\leq m$

Max number of edges in G = R(d+1,m+1) - 1 for L(G)