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Outline
● Results from 2 papers: 

● Milad Ahanjideh, Tınaz Ekim and Mehmet Akif Yıldız, Maximum 
size of a triangle-free graph with bounded maximum degree and 
matching number, under revision, 2022, arXiv:2207.02271.

● Ali Erdem Banak, Tınaz Ekim, Z.Caner Taşkın, Constructing 
extremal triangle-free graphs using integer programming, Discrete 
Optimization, 50 (2023), 100802, 

● Content: 
● Description of the extremal problem
● Structural graph theoretical results
● Integer Programming formulations and Conjectures
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Extremal Graph Theory
How large or small can a graph parameter be under a 
given set of conditions?
Turán's theorem (special case): The max number of 
edges in a triangle-free graph G with n vertices is 
⎣n2/4⎦; it is achieved by a balanced complete bipartite 
graph.
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 ⎣n/2⎦  ⎡n/2⎤



Koç University - Jan 2024

How many edges can a graph have at most, under 
restrictions on its maximum degree and matching 
number?

Edge-extremal Problem

max number of edges
  s.t. maximum degree ≤ d                                                                   

matching number ≤ m

max  |E(G)|
 s.t. ∆(G) ≤ d                                                                                                 

ν(G) ≤ m
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d(1)=3
d(6)=4
∆(G)=d(9)=6

ν(G) = 4
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A graph of degree at most d and matching number 
at most m and having a maximum number of edges 
is called (edge-) extremal. 
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Q1: Find the opt value

Q2: Find/characterize all extremal graphs 

Q3: In which cases the extremal graphs are unique?

Edge-extremal Problem
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max |E(G)|
  s.t.  ∆(G) ≤ d 

Edge-extremal Problem
max |E(G)|
   s.t. ν(G) ≤ m

Tınaz Ekim

For |E(G)| to be finite, we need to bound both ∆(G) and ν(G).
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Literature
● Erdös, Rado, 1960 : a more general problem about set 

systems
● Chvátal, Hanson, 1976 : answers our question for 

general graphs and finds some extremal graphs (LP 
ideas and Berge’s matching formula)

● Balachandran, Khare, 2009 : alternative proof with 
structural approach ! construction of extremal 
graphs (but no information about their uniqueness 
apart from a few cases)
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Edge-extremal General Graphs
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: All graphs G in the class C s.t. ∆(G) ≤ d and ν(G) ≤ m 

: maximum number of edges in a graph in 

: size of an edge-extremal graph in C (for d and m) 

Vizing’s Theorem: 

This upper bound is met when some divisibility conditions 
for d and m hold, and we are pretty close otherwise.
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Edge-extremal General Graphs
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: Class of general graphs

Thm (Balachandran, Khare, 2009):

Moreover, an edge-extremal graph can be obtained by 
taking
disjoint union of d-stars, complete graphs Kd+1 (if d even) 
and ‘‘almost complete’’ graphs K'd+1 (if d odd).

An edge-extremal graph for d=4, m=5 An edge-extremal graph for d=5, m=5
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What if we restrict the structure of extremal graphs? 
Can the same upper bound be still achieved?

●(Dibek, E., Heggernes, 2017):        
d small enough ➔ Max |E(G)| 
remains the same; d large enough 
➔ max|E(G)| decreases
●(Blair, Heggernes, Lima, 
Lokshtanov, 2020) (more restricted 
than C4-free graphs): the general 
bound not achieved.
●(Maland, 2015):  Bipartite graphs, 
split graphs, unit interval graphs 
● Open question: T-free graphs? 
fΔ(d, m) = ?

General 
Result

Kd+1  or K'd+1  (contain C4)   +  stars

Triangle (K3)

claw (K1,3)
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~ chordal
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Edge-extremal T-free graphs with d≥m
● Thm: fΔ(d, m) = dm for d > m ≥ 1.  (m many d-stars)

● Thm: fΔ(1, 1) = 1 and fΔ(d, d) = d2 +1 for d ≥ 2.
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Ad : Blow-up of C5
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● Thm: fΔ(1, m)=m for all m ≥ 1. (m independent edges)

● Key Result: Let G be an edge-extremal T-free graph with ∆(G) 
≤ d, ν(G) ≤ m having a maximum number of d-star 
components. Then every component H of G that is not a d-
star 
● factor-critical (thus |V(H)|= 2ν(H)+1) 
● with d ≤  ν(H) ≤  Z(d), and 
● edge-extremal for d and ν(H) (|E(H)|=fΔ(d, ν(H)))
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Edge-extremal T-free graphs with d<m

! Assume d ≥ 2
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● Def: For any d ≥2, let Z(d) be the smallest natural number 
n s.t. there exists a d-regular (if d is even) or almost d-
regular (if d is odd) T-free and factor-critical graph G with 
ν(G) = n.

● Lemma: For every d ≥ 2, the value Z(d) and a T-free 
factor-critical (almost) d-regular graph Bd with matching 
number Z(d) exist.

● The value of Z(d) is crucial: 
● Z(d) known for d ≤ 6; 
● Z(d) = ⎣5d/4⎦ if d ≥ 2 even; 
● Z(d) =  ⎣5(d-1)/4⎦ ≤ Z(d) ≤ ⎣5(d+1)/4⎦ if d ≥ 2 odd.
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Edge-extremal T-free graphs with d<m
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Thm (idea): Take as many Bd as possible, complete the 
matching number with d-stars ! dm+ ⎣ d/2 ⎦ edges
                  m=kZ(d)+r
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Edge-extremal T-free graphs with d<m  
and Z(d) ≤ m < 2d

Bd Bd 

Matching number = k Z(d)
# edges = (2Z(d)+1) d/2

r many d-stars  
matching number = r
# edges = (m-Z(d))d
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Main Theorem
Let d and m be natural numbers with d ≥ 2, let k and r be 
nonnegative integers such that m = kZ(d) + r with 0 ≤ r < Z(d). 
Then, for all the cases with 
● d ≥ m
● d < m and d ≤ 6 
● d < m and Z(d) ≤ m < 2d
we have, 

where an extremal graph can be constructed as the disjoint 
union of k copies of Bd and 
(i) Ad if r ≥ d, 
(ii) r copies of d-stars if r < d.Tınaz Ekim 16
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Deviation from general extremal graphs
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● Open cases: 7 ≤ d < m and either m < Z(d) or m ≥ 2d
● Reminder (Key result): Every component H of an edge-

extremal graph G that is not a d-star is edge-extremal T-free 
graph for d and ν(H) where d ≤  ν(H) ≤ Z(d)          ➔ 
extremal components

● Decision variable xi = # of extremal components of G whose 
matching number is i where d ≤  i ≤  Z(d).    

● How many of each extremal component with matching 
number i (xi) for each d ≤ i ≤ Z(d)?

● How many d-stars?
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Integer Programming formulation
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d-stars

Extremal components

Knapsack formulation

volumes

utilities

Effic
iently 

solved
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Conjectures for open cases
● Conj 1: Main thm also holds for 6<d<m<Z(d); for i s.t. 

6<d<i<Z(d) we have fΔ(d,i)=di+i-d+1.

● Prop: If Conj 1 true then (using fΔ(d,Z(d))= dZ(d)+ ⎣d/2⎦ ) IP 
equivalent to the following formulation which admits an opt. 
sol. where xZ(d) is maximized and there is at most one other 
extremal component with smaller matching number.
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Interpretation! New conjecture
● If Conj 1 holds, fΔ(d,i) edges can be achieved by 

taking the graph Bd  as much as possible and adding 
either one extremal component for d and r; or r many 
d-stars, depending on r  ≥ d where r = remainder of 
m when divided by Z(d). (Just like in the main Thm)

●Conj 2:

●Conj 3: For d≥21 and odd, we have Z(d)= ⎣5(d+1)/4⎦.

Tınaz Ekim 21



Koç University - Jan 2024

New IP for extremal components fΔ(d,i)
● IP formulations for constructing extremal components 

for i s.t. 6<d<i<Z(d) ➔ missing parameters for 
Knapsack

● Decision var. xij = edge ij exists or not
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Using IP for 
constructing graphs 
with structure 

High symmetry!

    Max ∑ xij 
    s.t.   T-free

∆(G) ≤ d                                                                             
ν(G) ≤ m
xij binary

Key Lemma
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Methodology
1. Basic Formulation + CPLEX symmetry breaking 5
2. Orbital Branching to eliminate isomorphisms in the 

branch&cut tree: find symmetry / automorphism groups 
-> variable orbits and constraint orbits (equivalence 
classes). Reducing symmetry 

3. Iterative formulation: Set all degrees to d, then all but 
one to d, etc. searching for a feasible solution, until 
UB=LB. Reducing the feasible region.

4. Combination of Orbital Branching and Iterative 
Approach
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Computational experiments
● Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz with 32 

GB RAM using CPLEX 20.1.0 on 10 threads. 
● CPLEX 20.1.0 with C++ to implement the methods 
● A limit of 1800 seconds for each run 
●Orbital Branching and Iterative Method with callback 

mechanism of CPLEX. Orbits found by nauty 2.7r3 
software library to compute automorphism groups 
[McKay, Piperno, 2014]
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Main findings with IP
● We construct all extremal components for d=7,8,9,10 and 

d<m<Z(d) with IP + some for d=11,12 and 13.
● We solve the Knapsack Formulation for d=7,8,9,10 and any m 

value
● All our findings support Conjectures 1, 2.
● All extremal graphs have a max number of xZ(d) and at most 

one other extremal component.
● As a byproduct (checking the degrees), we obtain new values 

for Z(d): Z(7)=9, Z(9)=13, Z(11)=15, and Z(13)=17. (By 
definition of Z(d) and checking the degrees)
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Best computational results
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Bottlenecks:
1) Computing the 

orbits
2) Decreasing the UB
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Pattern for extremal components 
suggested by IP
● Prop: For all i = d + t such that d < i < Z(d), the graph 

Bd,d+t is an extremal graph if Conjecture 1 holds (with di+i-
d+1 edges, ∆(Bd,d+t ) = d and ν(Bd,d+t ) = d + t = i)
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- H independent set
- F complete bipartite – t distinct 
perfect matching
- Opposite parts of F and H are 
completely linked
Generalizes the extremal graph Ad  
for fΔ(d, d) 
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Knapsack formulation
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No practical 
limit: d = 10 
and m = 
10000 takes 
0.2 sec.

2d < m ≤ 3d

d=8 and 
m≥2d
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Conclusion
● IP methods 

● shed some light on the open cases 
● provides more motivation to search for a formal proof
● but they can never settle all open cases

● Structural proofs for the conjectures require more 
powerful techniques 

● Nice combination of IP and structural graph theory
● Opens the way to use IP to construct graphs with 

desired properties
Tınaz Ekim 29
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Future Work
● What if we forbid k-star?  (k≥4)     Can 

we find an explicit formula in terms of d, 
m, and k, for the maximum number of 
edges that a graph G can have where 
∆(G) ≤ d, ν(G) ≤ m and where G does not 
contain k-star as an induced subgraph?

● What if we forbid k-clique?         What is 
the maximum number of edges of a 
graph G where ∆(G) ≤ d, ν(G) ≤ m and 
ω(G)<k?

● What if we require connectivity for 
general edge-extremal graphs?

General 
Result

complete graphs  
(or almost-complete)

  +    stars

triangle (K3) claw (K1,3)
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Thank you for listening
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A question inspired by IP
● IP for extremal components: |V(H)|=2 ν(H) +1 but we do 

not explicitly force that H is factor-critical. 
● However, it turns out that all extremal components 

resulting from IP are factor-critical. 
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QUESTION: Is it true that a 
triangle-free extremal graph 
G with matching number m 
and maximum degree d 
such that d < m < Z(d) and 
having 2m + 1 vertices is 
factor-critical?
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Relation to Ramsey Numbers
Observation: Let G be a graph, let L(G) be the line graph of G, 
and let d ≥ 4 and j ≥ 1 be two integers. Then G has a vertex of 
degree at least d if and only if L(G) has a clique of size d. 
Moreover, G has a matching of size m if and only if L(G) has an 
independent set of size m.

Graph G 

 max  number of edges 
  s.t.  maximum degree ≤ d                                                                   
 matching number ≤ m 
  

Graph L(G) 

 max  number of vertices 

  s.t.  clique number ≤ d                                                                    
 independence number ≤ m  
  

Max number of edges in G = R(d+1,m+1) - 1 for L(G)
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