Extremal Triangle-Free Graphs

Tinaz Ekim

Boğaziçi University, Department of Industrial Engineering, Turkey
TÜBİTAK Grant 118F397 and 122M452

Outline

- Results from 2 papers:
- Milad Ahanjideh, Tınaz Ekim and Mehmet Akif Yıldız, Maximum size of a triangle-free graph with bounded maximum degree and matching number, under revision, 2022, arXiv:2207.02271.
- Ali Erdem Banak, Tınaz Ekim, Z.Caner Taşkın, Constructing extremal triangle-free graphs using integer programming, Discrete Optimization, 50 (2023), 100802,
- Content:
- Description of the extremal problem
- Structural graph theoretical results
- Integer Programming formulations and Conjectures

Extremal Graph Theory

How large or small can a graph parameter be under a given set of conditions?
Turán's theorem (special case): The max number of edges in a triangle-free graph G with n vertices is $\left\lfloor\mathrm{n}^{2} / 4\right\rfloor$; it is achieved by a balanced complete bipartite graph.

Edge-extremal Problem

How many edges can a graph have at most, under restrictions on its maximum degree and matching number?

max	number of edges	\max	$\|E(G)\|$
s.t.	maximum degree $\leq \mathrm{d}$	s.t.	$\Delta(G) \leq \mathrm{d}$
	matching number $\leq \mathrm{m}$		$v(G) \leq \mathrm{m}$

$$
\begin{aligned}
& \mathrm{d}(1)=3 \\
& \mathrm{~d}(6)=4
\end{aligned}
$$

$$
v(\mathrm{G})=4
$$

Edge-extremal Problem

A graph of degree at most d and matching number at most m and having a maximum number of edges is called (edge-) extremal.

Q1: Find the opt value
Q2: Find/characterize all extremal graphs
Q3: In which cases the extremal graphs are unique?

Edge-extremal Problem

$\max |E(G)|$
s.t. $\Delta(G) \leq \mathrm{d}$
$\max |E(G)|$
s.t. $v(G) \leq m$

For $|E(G)|$ to be finite, we need to bound both $\Delta(G)$ and $v(G)$.

Literature

- Erdös, Rado, 1960 : a more general problem about set systems
- Chvátal, Hanson, 1976 : answers our question for general graphs and finds some extremal graphs (LP ideas and Berge's matching formula)
- Balachandran, Khare, 2009 : alternative proof with structural approach \rightarrow construction of extremal graphs (but no information about their uniqueness apart from a few cases)

Edge-extremal General Graphs

$\mathbb{M}_{\mathbf{C}}(d, m)$: All graphs G in the class \mathbf{C} s.t. $\Delta(\mathrm{G}) \leq \mathrm{d}$ and $v(\mathrm{G}) \leq m$ $f_{\mathbf{C}}(d, m)$: maximum number of edges in a graph in $\mathbb{M}_{\mathbf{C}}(d, m)$
: size of an edge-extremal graph in C (for d and m)
Vizing's Theorem: $\chi^{\prime}(G) \leq \Delta(G)+1$
$|E(G)| \leq(\Delta(G)+1) \nu(G) \leq d m+m$
This upper bound is met when some divisibility conditions for d and m hold, and we are pretty close otherwise.

Edge-extremal General Graphs

$\mathcal{G E N}$: Class of general graphs
Thm (Balachandran, Khare, 2009): $f_{\mathcal{G E N}}(d, m)=d m+\left\lfloor\frac{d}{2}\right\rfloor\left\lfloor\frac{m}{\left\lceil\frac{d}{2}\right\rceil}\right\rfloor$
Moreover, an edge-extremal graph can be obtained by taking disjoint union of d-stars, complete graphs $\mathrm{K}_{\mathrm{d}+1}$ (if d even)

An edge-extremal graph for $\mathrm{d}=4, \mathrm{~m}=5$

An edge-extremal graph for $d=5, m=5$

What if we restrict the structure of extremal graphs?

 Can the same upper bound be still achieved?-(Dibek, E., Heggernes, 2017):

claw $\left(\mathrm{K}_{1,3}\right)$ bound not achieved.
-(Maland, 2015): Bipartite graphs, split graphs, unit interval graphs

- Open question: T-free graphs?

$$
\mathrm{f}_{\Delta}(\mathrm{d}, \mathrm{~m})=?
$$

Edge-extremal T-free graphs with $\mathrm{d} \geq \mathrm{m}$

- Thm: $\mathrm{f}_{\Delta}(\mathrm{d}, \mathrm{m})=\mathrm{dm}$ for $\mathrm{d}>\mathrm{m} \geq 1$. (m many d-stars)

- Thm: $\mathrm{f}_{\Delta}(1,1)=1$ and $\mathrm{f}_{\wedge}(\mathrm{d}, \mathrm{d})=\mathrm{d}^{2}+1$ for $\mathrm{d} \geq 2$.

Edge-extremal T-free graphs with d<m

- Thm: $\mathrm{f}_{\Delta}(1, \mathrm{~m})=\mathrm{m}$ for all $\mathrm{m} \geq 1$. (m independent edges)
|| ||

$$
\rightarrow \quad \text { Assume } d \geq 2
$$

- Key Result: Let G be an edge-extremal T-free graph with $\Delta(\mathrm{G})$ $\leq \mathrm{d}, \mathrm{v}(\mathrm{G}) \leq \mathrm{m}$ having a maximum number of d -star components. Then every component H of G that is not a dstar
- factor-critical (thus $|\mathrm{V}(\mathrm{H})|=2 v(\mathrm{H})+1$)
- with $d \leq v(H) \leq Z(d)$, and
- edge-extremal for d and $v(\mathrm{H})\left(|\mathrm{E}(\mathrm{H})|=\mathrm{f}_{\Delta}(\mathrm{d}, v(\mathrm{H}))\right)$

Edge-extremal T-free graphs with d<m

- Def: For any $d \geq 2$, let $\mathbb{Z}(d)$ be the smallest natural number n s.t. there exists a d-regular (if d is even) or almost d regular (if d is odd) T-free and factor-critical graph G with $v(G)=n$.
- Lemma: For every $d \geq 2$, the value $Z(d)$ and a T-free factor-critical (almost) d-regular graph B_{d} with matching number $Z(d)$ exist.
- The value of $Z(d)$ is crucial:
- $Z(d)$ known for $d \leq 6$;
- $Z(d)=\lfloor 5 d / 4\rfloor$ if $d \geq 2$ even;
- $\mathrm{Z}(\mathrm{d})=\lfloor 5(\mathrm{~d}-1) / 4\rfloor \leq \mathrm{Z}(\mathrm{d}) \leq\lfloor 5(\mathrm{~d}+1) / 4\rfloor$ if $\mathrm{d} \geq 2$ odd.

Figure 2: The graph B_{d} for $d \geq 2$ depending on $d(\bmod 4)$.

Edge-extremal T-free graphs with $\mathrm{d}<\mathrm{m}$

 and $Z(\mathrm{~d}) \leq \mathrm{m}<2 \mathrm{~d}$Thm (idea): Take as many B_{d} as possible, complete the matching number with d-stars $\rightarrow d m+\lfloor d / 2\rfloor$ edges

Matching number $=k Z(d)$ \# edges $=(2 Z(d)+1) d / 2$

r many d-stars matching number $=r$ \# edges $=(m-Z(d)) d$

Main Theorem

Let d and m be natural numbers with $d \geq 2$, let k and r be nonnegative integers such that $\mathrm{m}=\mathrm{kZ}(\mathrm{d})+\mathrm{r}$ with $0 \leq \mathrm{r}<\mathrm{Z}(\mathrm{d})$. Then, for all the cases with

- $d \geq m$
- $\mathrm{d}<\mathrm{m}$ and $\mathrm{d} \leq 6$
- $\mathrm{d}<\mathrm{m}$ and $\mathrm{Z}(\mathrm{d}) \leq \mathrm{m}<2 \mathrm{~d}$ we have,

$$
f_{\Delta}(d, m)= \begin{cases}d m+k\lfloor d / 2\rfloor & \text { if } r<d \\ d m+k\lfloor d / 2\rfloor+r-d+1 & \text { if } r \geq d\end{cases}
$$

where an extremal graph can be constructed as the disjoint union of k copies of B_{d} and
(i) A_{d} if $\mathrm{r} \geq \mathrm{d}$,

Deviation from general extremal graphs

Integer Programming formulation

- Open cases: $7 \leq \mathrm{d}<\mathrm{m}$ and either $\mathrm{m}<\mathrm{Z}$ (d) or $\mathrm{m} \geq 2 \mathrm{~d}$
- Reminder (Key result): Every component H of an edgeextremal graph G that is not a d-star is edge-extremal T-free graph for d and $v(\mathrm{H})$ where $\mathrm{d} \leq v(\mathrm{H}) \leq \mathrm{Z}(\mathrm{d})$
extremal components
- Decision variable $x_{i}=\#$ of extremal components of G whose matching number is i where $d \leq i \leq Z(d)$.
- How many of each extremal component with matching number $\mathrm{i}\left(\mathrm{x}_{\mathrm{i}}\right)$ for each $\mathrm{d} \leq \mathrm{i} \leq \mathrm{Z}(\mathrm{d})$?
- How many d-stars?

Knapsack formulation

$$
\sum_{i=d}^{z(i)} i x_{i} \leq m
$$

Extremal components

$$
f_{\Delta}(d, m)=d\left(m-\sum_{i=d}^{Z(d)} i x_{i}\right)+\sum_{i=d}^{Z(d)} f_{\Delta}(d, i) x_{i}
$$

Conjectures for open cases

- Conj 1: Main thm also holds for $6<\mathrm{d}<\mathrm{m}<\mathrm{Z}(\mathrm{d})$; for i s.t. $6<d<i<Z(d)$ we have $f_{\Delta}(d, i)=d i+i-d+1$.
- Prop: If Conj 1 true then (using $\left.f_{\Delta}(d, Z(d))=d Z(d)+\lfloor d / 2\rfloor\right)$ IP equivalent to the following formulation which admits an opt. sol. where $\mathrm{x}_{\mathrm{Z}(\mathrm{d})}$ is maximized and there is at most one other extremal component with smaller matching number.

$$
\begin{gathered}
\max \lfloor d / 2\rfloor x_{Z(d)}+\sum_{i=d}^{Z(d)-1}(i-d+1) x_{i} \\
\text { subject to } \sum_{i=d}^{Z(d)} i x_{i} \leq m \\
x_{i} \geq 0, x_{i} \in \mathbb{Z}
\end{gathered}
$$

Interpretation \rightarrow New conjecture

- If Conj 1 holds, $\mathrm{f}_{\Delta}(\mathrm{d}, \mathrm{i})$ edges can be achieved by taking the graph B_{a} as much as possible and adding either one extremal component for d and r; or r many d -stars, depending on $\mathrm{r} \geq \mathrm{d}$ where $\mathrm{r}=$ remainder of m when divided by $\mathrm{Z}(\mathrm{d})$. (Just like in the main Thm)
- Conj 2: . Let $m=k Z(d)+r$ for some $0 \leq r<Z(d)$. Then, we have

$$
f_{\Delta}(d, m)= \begin{cases}d m+k\lfloor d / 2\rfloor & \text { if } r<d \\ d m+k\lfloor d / 2\rfloor+r-d+1 & \text { if } r \geq d\end{cases}
$$

- Conj 3: For $\mathrm{d} \geq 21$ and odd, we have $\mathrm{Z}(\mathrm{d})=\lfloor 5(\mathrm{~d}+1) / 4\rfloor$.

New IP for extremal components $f_{\Delta}(d, i)$

- IP formulations for constructing extremal components for is.t. $6<d<i<Z(d) \rightarrow$ missing parameters for Knapsack
- Decision var. $\mathrm{x}_{\mathrm{ij}}=$ edge ij exists or not
$\operatorname{Max} \sum \mathrm{x}_{\mathrm{ij}}$ Key Lemma s.t. T-free

$$
\begin{aligned}
& \max \sum_{i, j \in V} x_{i j} \\
& \text { s.t. } \quad x_{i j}+x_{j k}+x_{i k} \leq 2 \quad \forall i, j, k \in V \\
& \sum_{j \in V} x_{i j} \leq d \quad \forall i \in V \\
& x_{i j} \in\{0,1\} \quad \forall i, j \in V
\end{aligned}
$$

constructing graphs

Methodology

1. Basic Formulation + CPLEX symmetry breaking 5
2. Orbital Branching to eliminate isomorphisms in the branch\&cut tree: find symmetry / automorphism groups -> variable orbits and constraint orbits (equivalence classes). Reducing symmetry
3. Iterative formulation: Set all degrees to d , then all but one to d, etc. searching for a feasible solution, until $\mathrm{UB}=\mathrm{LB}$. Reducing the feasible region.
4. Combination of Orbital Branching and Iterative Approach

Computational experiments

- Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz with 32 GB RAM using CPLEX 20.1 .0 on 10 threads.
- CPLEX 20.1.0 with C++ to implement the methods
- A limit of 1800 seconds for each run
- Orbital Branching and Iterative Method with callback mechanism of CPLEX. Orbits found by nauty 2.7r3 software library to compute automorphism groups [McKay, Piperno, 2014]

Main findings with IP

- We construct all extremal components for $d=7,8,9,10$ and $\mathrm{d}<\mathrm{m}<\mathrm{Z}(\mathrm{d})$ with IP + some for $\mathrm{d}=11,12$ and 13 .
- We solve the Knapsack Formulation for $d=7,8,9,10$ and any m value
- All our findings support Conjectures 1, 2.
- All extremal graphs have a max number of $x_{Z(d)}$ and at most one other extremal component.
- As a byproduct (checking the degrees), we obtain new values for $Z(d)$: $Z(7)=9, Z(9)=13, Z(11)=15$, and $Z(13)=17$. (By definition of $Z(d)$ and checking the degrees)

Best computational results

Parameters									Iterative + Orbital Branching					
\boldsymbol{d}	\boldsymbol{m}	PreUB	LB	UB	Gap	Time	Node							
7	8	59	58	58	0.00%	0	57							
7	9	66	66	66	0.00%	0	0							
8	9	76	74	74	0.00%	4	2794							
8	10	84	84	84	0.00%	0	0							
9	10	94	92	92	0.00%	11	1990							
9	11	103	102	102	0.00%	36	4170							
9	12	112	112	112	0.00%	368	229							
10	11	115	112	112	0.00%	79	10114							
10	12	125	125	125	0.00%	2	0							
11	12	137	134	134	0.00%	146	15106							
11	13	148	146	146	0.00%	355	371215							
11	14	159	158	159	0.63%	1800	706832							
11	15	170	170	170	0.00%	1	0							
12	13	162	158	158	0.00%	1623	2020924							
12	14	174	171	172	0.58%	1800	1101510							
12	15	186	186	186	0.00%	0	0							
13	14	188	184	185	0.54%	1800	2294463							
13	15	201	198	200	1.01%	1800	935875							
13	16	214	212	213	0.47%	1800	577438							
13	17	227	227	227	0.00%	72	543							
Avg														

Bottlenecks:

1) Computing the orbits
2) Decreasing the UB

Pattern for extremal components

suggested by IP

- Prop: For all $\mathrm{i}=\mathrm{d}+\mathrm{t}$ such that $\mathrm{d}<\mathrm{i}<\mathrm{Z}(\mathrm{d})$, the graph $\mathrm{B}_{\mathrm{d}, \mathrm{d}+\mathrm{t}}$ is an extremal graph if Conjecture 1 holds (with di+i$\mathrm{d}+1$ edges. $\Delta(\mathrm{B}, \ldots)=\mathrm{d}$ and $\left.v\left(\mathrm{~B}_{\mathrm{d}, \mathrm{d}+\mathrm{t}}\right)=\mathrm{d}+\mathrm{t}=\mathrm{i}\right)$

- H independent set
- F complete bipartite - t distinct perfect matching
- Opposite parts of F and H are completely linked
Generalizes the extremal graph A_{d}
for $f_{\Delta}(d, d)$

Knapsack formulation

d	m	edge count	\#d-star	$\# Z(d)$	\#other
7	15	108	6	1	0
7	16	116	0	1	1
7	17	124	0	1	1
7	18	132	0	2	0
7	19	139	1	2	0
7	20	146	2	2	0
7	21	153	3	2	0
8	17	140	7	1	0
8	18	148	8	1	0
8	19	158	0	1	1
8	20	168	0	2	0
8	21	176	1	2	0
8	22	184	2	2	0
8	23	192	3	2	0
8	24	200	4	2	0
9	19	175	7	1	0
9	20	184	8	1	0
9	21	194	0	1	1
9	22	204	0	1	1
9	23	214	0	1	1
9	24	224	0	2	0
9	25	233	1	2	0
9	26	242	2	2	0
9	27	251	3	2	0
10	21	215	9	1	0
10	22	226	0	1	1
10	23	237	0	1	1
10	24	250	0	2	0
10	25	260	1	2	0
10	26	270	2	2	0
10	27	280	3	2	0
10	28	290	4	2	0
10	29	300	5	2	0
10	30	310	6	2	0

Tinaz Ekim
Koç University - Jan 2024

d	m	edge count	d-star	comp_8	comp_9	comp_10
8	15	124	5	0	0	1
8	16	132	6	0	0	1
8	17	140	7	0	0	1
8	18	149	0	1	0	1
8	19	158	0	0	1	1
8	20	168	0	0	0	2
8	21	176	1	0	0	2
8	22	184	2	0	0	2
8	23	192	3	0	0	2
8	24	200	4	0	0	2
8	25	208	5	0	0	2
8	26	216	6	0	0	2
8	27	224	7	0	0	2
8	28	233	0	1	0	2
8	29	242	0	0	1	2
8	30	252	0	0	0	3
8	31	260	1	0	0	3
8	32	268	2	0	0	3
8	33	276	3	0	0	3
8	34	284	4	0	0	3
8	35	292	5	0	0	3
8	36	300	6	0	0	3
8	37	308	7	0	0	3
8	38	317	0	1	0	3
8	39	326	0	0	1	3
8	40	336	0	0	0	4
8	41	344	1	0	0	4
8	42	352	2	0	0	4
8	43	360	3	0	0	4
8	44	368	4	0	0	4
8	45	376	5	0	0	4
8	46	384	6	0	0	4
8	47	392	7	0	0	4

Conclusion

- IP methods
- shed some light on the open cases
- provides more motivation to search for a formal proof
- but they can never settle all open cases
- Structural proofs for the conjectures require more powerful techniques
- Nice combination of IP and structural graph theory
- Opens the way to use IP to construct graphs with desired properties

Future Work

- What if we forbid k-star? ($k \geq 4$) Can we find an explicit formula in terms of d, m, and k, for the maximum number of edges that a graph G can have where $\Delta(G) \leq d, v(G) \leq m$ and where G does not contain k-star as an induced subgraph?
- What if we forbid k-clique? What is the maximum number of edges of a graph G where $\Delta(G) \leq d, v(G) \leq m$ and
triangle $\left(\mathrm{K}_{3}\right) \quad$ claw $\left(\mathrm{K}_{1,3}\right)$ $\omega(\mathrm{G})<\mathrm{k}$?
- What if we require connectivity for general edge-extremal graphs?

Thank you for listening

A question inspired by IP

- IP for extremal components: $|\mathrm{V}(\mathrm{H})|=2 v(\mathrm{H})+1$ but we do not explicitly force that H is factor-critical.
- However, it turns out that all extremal components resulting from IP are factor-critical.

$$
\begin{array}{cl}
\max \sum_{i, j \in V} x_{i j} & \begin{array}{l}
\text { QUESTION: Is it true that a } \\
\text { triangle-free extremal graph }
\end{array} \\
\text { s.t. } \quad x_{i j}+x_{j k}+x_{i k} \leq 2 \quad \forall i, j, k \in V & \text { G with matching number m } \\
\sum_{j \in V} x_{i j} \leq d \quad \forall i \in V & \begin{array}{l}
\text { and maximum degree d }
\end{array} \\
x_{i j} \in\{0,1\} \quad \forall i, j \in V & \begin{array}{l}
\text { such that } \mathrm{d}<\mathrm{m}<\mathrm{Z}(\mathrm{~d}) \text { and } \\
\text { having } 2 \mathrm{~m}+1 \text { vertices is } \\
\\
\end{array} \\
& \text { factor-critical? }
\end{array}
$$

Relation to Ramsey Numbers

Observation: Let G be a graph, let $L(G)$ be the line graph of G, and let $d \geq 4$ and $j \geq 1$ be two integers. Then G has a vertex of degree at least d if and only if $L(G)$ has a clique of size d. Moreover, G has a matching of size m if and only if $L(G)$ has an independent set of size m. Graph G
Graph L(G)

max	number of edges	max	number of vertices
s.t.	maximum degree $\leq \mathrm{d}$	s.t.	clique number $\leq \mathrm{d}$
	matching number $\leq \mathrm{m}$		independence number $\leq \mathrm{m}$

Max number of edges in $\mathbf{G}=\mathrm{R}(\mathrm{d}+1, \mathrm{~m}+1)$ - 1 for $\mathrm{L}(\mathrm{G})$

