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Topological Data Analysis

Aim:
To study the shape of the data, and obtain a unique fingerprint of its
topological features.

TDA methods are highly effective on various forms of data.
» Point Clouds in High Dimensions
» Graphs and Networks
» Images

Applications in different fields:

Bioinformatics, computational biology, finance, image recognition,
material science, network analysis, combining with deep learning.

2/23



Shapes hidden in the Data

@ Want to find topological patterns hidden in the data.

3/24






Shapes hidden in the Data

@ Want to find topological patterns hidden in the data.

@ Topological Features can be detected by using Homology.

3/24



Shapes hidden in the Data

@ Want to find topological patterns hidden in the data.
@ Topological Features can be detected by using Homology.

» 0-dimensional features: Components
» 1-dimensional features: Holes

» 2-dimensional features: Cavities

3/24



Homology

* j-dimensional homology H, “counts the number of i-dimensional holes”

* j-dimensional homology H. actually has the structure of a vector space!

0-dimensional homology H,: rank 6

1-dimensional homology H,: rank 0

0-dimensional homology H,,: rank 1

1-dimensional homology H,: rank 3

0-dimensional homology H,,: rank 1

1-dimensional homology H,: rank 6




Homology

* i-dimensional homology “counts the number of i-dimensional holes™

* i-dimensional homology actually has the structure of a vector space!

0-dimensional homology H,,: rank 1
1-dimensional homology H,: rank 0
2-dimensional homology H,: rank 1

0-dimensional homology H,,: rank 1
1-dimensional homology H,: rank 2
2-dimensional homology H,: rank 1

Be careful! (Same as torus over 7 / 27,)

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle



Shapes hidden in the Data

@ Want to find topological patterns hidden in the data.
@ Topological Features can be detected by using Homology.

» 0-dimensional features: Components
» 1-dimensional features: Holes

» 2-dimensional features: Cavities

@ Similar shape / topological patterns = Same Class
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Shapes hidden in the Data

@ Want to find topological patterns hidden in the data.
@ Topological Features can be detected by using Homology.

» 0-dimensional features: Components
» 1-dimensional features: Holes

» 2-dimensional features: Cavities

@ Similar shape / topological patterns = Same Class

@ How to obtain a formal summary of these topological features?
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Persistent Homology

@ Persistent Homology is one of the main methods of TDA.
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@ It coarsely detects connected components, loops and cavities hidden in
the shape along with their "sizes”.
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@ Persistent Homology is one of the main methods of TDA.

@ It coarsely detects connected components, loops and cavities hidden in
the shape along with their "sizes”.

@ ltis used in ML as a very powerful feature extraction method to capture
shape patterns in the data.

@ PH is a 3-step process.

» Step 1 - Constructing Filtration: To obtain a sequence of
simplicial complexes X1 C AX»> C - -+ C Xn.

» Step 2 - Persistence Diagram: Record the topological changes
in the sequence {X}.
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Construction of Persistence Diagram
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Persistent Homology

@ Persistent Homology is one of the main methods of TDA.

@ It coarsely detects connected components, loops and cavities hidden in
the shape along with their "sizes”.

@ ltis used in ML as a very powerful feature extraction method to capture
shape patterns in the data.

@ PH is a 3-step process.

» Step 1 - Constructing Filtration: To obtain a sequence of
simplicial complexes X1 C AX»> C - -+ C Xn.

» Step 2 - Persistence Diagram: Record the topological changes
in the sequence {X}.

» Step 3 - Vectorization: Convert PDs into vectors.
Topological Feature Vectors
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Function Point cloud Digital images Matrix Network

a9
V"Ef,?,';';[g,'(ps Alpha complex Morsecomplex Cechcomplex Clique complex c%:r?;:ﬁaegc
JavaPlex  Perseus Dionysus Phat Dipha Gudhi Ripser R-TDA JHole
.
Persistent Betti Persistent Persistent Surface  Wasserstein distance Persistantkarnels

number Landscapes Persistent Image Bottleneck distance

Clustering & Dimensionality Reduction (PCA, Isomap,

Diffusion map, K-means, Spectral clustering, etc) SVM, CNN, Random Forest, KNN, Naive-Bayes, etc

Image credit - Pun, Xia, Lee. TDA Survey (2018)



Applications

@ Point Cloud Setting:

Shape Recognition
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Applications

@ Point Cloud Setting:

Shape Recognition

@ Graph Setting:
Computer-Aided Drug Design

@ Image Setting:

Cancer Detection from Histopathological Images
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3D Shapes
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Figure 4. Left: Four 3D shapes. Middle and Left: 500 random points from the magnetometer data of the second experiment.
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Figure 5. Subsampling methods applied to 3D shapes. For n = 100 subsamples of size mm = 300, for each shape, we constructed the
landscapes of the closest subsample (left), the average landscape with 95% confidence band (middle) and the dissimilarity matrix of the

pairwise /.. distance between average landscapes.

Subsampling Methods for Persistent Homology Chazal-Wasserman et al.

PMLR (2015)



Histopathological Cancer Detection with

Topological Machine Learning

Ankur Yadav', Faisal Ahmed?, Ovidiu Daescu’,
Reyhan Gedik®, and Baris Coskunuzer?
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8 Harvard - MGH, Pathology Dept.

IEEE - BIBM, Istanbul, December 2023

1/9



@ Examining tissue samples is the primary way to detect and grade
cancer. However, this process requires experienced pathologists and
tends to be time-consuming.
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@ Examining tissue samples is the primary way to detect and grade
cancer. However, this process requires experienced pathologists and
tends to be time-consuming.

@ ML methods offer clinical decision support systems that enhance
accuracy, reproducibility, and speed in medical processes.

@ DL methods exhibit significant potential. However, their utilization in
clinical-stage implementation faces challenges due to extensive
preprocessing periods, the substantial size of training datasets, the
need for high-performance computing infrastructures, and the
challenge of interpretability in decision-making.

@ In this project, to address these needs, we develop a fast, and
high-performing topological ML method for this task.

@ Further, our topological features hold the potential to significantly
boost the performance of upcoming ML models within this domain.
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Cubical Persistence

@ For Image Data, we use Cubical Persistence.

@ Constructing filtration out of histopathological image.
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Cubical Persistence

@ For Image Data, we use Cubical Persistence.
@ Constructing filtration out of histopathological image.

@ Persistence Diagram: Keep track of components and loops in binary
images
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Cubical Persistence

@ For Image Data, we use Cubical Persistence.
@ Constructing filtration out of histopathological image.

@ Persistence Diagram: Keep track of components and loops in binary
images

@ \ectorization: Betti function.
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

@ Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

@ Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.

» Bone Cancer

» Colon Cancer
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

@ Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.

» Bone Cancer
» Colon Cancer

» Cervical Cancer
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

@ Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.

» Bone Cancer
» Colon Cancer
» Cervical Cancer

» Prostate Cancer
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Topological Features of Histopathological Images

@ Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

@ Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.

» Bone Cancer
» Colon Cancer
» Cervical Cancer
» Prostate Cancer

» Breast Cancer
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Topological Machine Learning Model

@ For each histopathological image, we extract:
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Topological Machine Learning Model

@ For each histopathological image, we extract:
» 1600-dimensional topological features
» 800-dimensional Local Binary Pattern features

» 400-dimensional Gabor Filter features

@ We then use feature selection algorithm to choose the most important
500 features out of 2800 features.

@ Finally, we feed these features into our ML classifier.
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@ Datasets
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TABLE VII: Dataset Details. Information about classes, base images and generated tiles for the experiments.

Dataset # Classes Images Tile Size Train Tiles Test Tiles Total Tiles
ICTAR2018 (Breast) 4 400 256x256 15078 3769 18848
SipakMed (Cervical) 5 966 256x256 51324 12831 64155
Sicapv2 (Prostate) 4 9959 256x256 27466 6866 34333
CRCI100K (Colon) 3 33526 256x256 26820 6705 33526
UT-OSteo. (Bone) 3 1144 256x256 15587 6721 22308




@ Datasets

@ Results for 5 Cancer types
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TABLE I: Performance of our model in 5 cancer types

Cancer Dataset # Image # Class Acc AUC

Breast ICIAR2018 400 4 91.6 0.98
Prostate  Sicapv2 9959 4 95.2 0.99
Colon CRCI00K 33526 . 98.7 0.99
Bone UT-Osteo. 1144 3 94.2 0.99
Cervical SipakMed 966 5 94.2 0.99




Comparison Table for Breast Cancer

Comparison Table for Cervical Cancer

Method Train:Test # Class Accuracy
Kwok [33] Ti23 4 79.00
Nawaz [39] 80:20 4 81.25
Rakhlin [26]  80:20 4 87.20
Vang [62] 75:25 4 87.50
DCNN [31] 75:25 4 92.50
Our Model 80:20 4 91.64

Comparison Table for Bone Cancer

Method Train:Test # Class Accuracy
Hayranto [29] 5 fold CV 5 87.32
ResNet [61] 5 fold CV 5 94.86
Fuzzy [36] 5 fold CV . 95.43
Our Model 5 fold CV S 94.21

Comparison Table for Prostate Cancer

Method

Train:Test # Class Accuracy

Method Train:Test # Class Accuracy
Mishra-CNN [8]  70:30 3 93.30
Mishra-SVM [8]  70:30 3 89.90
VGG19 [6] 70:30 3 93.91
Our Model 70:30 3 94.20

Arvaniti [9] 80:20 4 58.61
Gerytch [21] 80:20 4 51.36
FSConv+GMP [53] 80:20 4 83.50
Res-CAE [58] 80:20 4 85.00
Our Model 80:20 4 95.20




Cancer Classes Sensitivity  Specificity  Precision  Recall  F1-Score AUC

Normal 0.8994 0.9652 0.8994 0.8935 0.8965
Benign 0.8911 0.9702 0.8911 0.9122 0.9015
Breast InSitu 0.9195 0.9683 0.9195 0.9034 09114
Invasive 0.9560 0.9850 0.9560 0.9557 0.9558

Average 0.9166 0.9722 0.9166 0.9164 0.9164 0.9894
im_Dyskeratotic g9272 0.9795 0.9272 0.9358 0.9315
im_Koil. 0.9280 0.9737 0.9280 0.9165 0.9222
Ciivical ilm_Meta. 0.9517 0.9786 09517 (0.9428 0.9472
im_Para. 0.9810 0.9983 09810 0.9880 0.9845
im_Sup.-Int. 0.9402 0.9941 0.9402 0.9582 0.9491

Average 0.9421 0.9819 0.9421 0.9421 0.9421 0.9960
NC 0.9740 0.9975 0.9740 0.9964 0.9850
G3 0.9281 0.9791 0.9281 0.9012 0.9145
Prostate G4 0.9465 0.9731 0.9465 0.9512 0.9488
G5 0.9640 0.9913 0.9640 0.8845 0.9226

Average 0.9554 0.9852 0.9554 0.9553 0.9551 0.9916
Normal 0.9804 0.9936 0.9804 0.9820 0.9812
Coloii Stroma 0.9928 0.9958 0.9928 0.9906 0.9917
Tumor 0.9868 0.9906 0.9868 0.9874 0.9871

Average 0.9870 0.9930 0.9870 0.9870 0.9870 0.9995
VT 0.9498 0.9701 0.9498 0.9432 0.9465
o NVT 0.9340 0.9771 0.9340 0.9366 0.9353
NT 0.9405 0.9646 0.9405 0.9445 0.9425

Average 0.9420 0.9698 0.9420 0.9420 0.9420 0.9553




@ Datasets
@ Results for 5 Cancer types

@ Ablation Study
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TABLE VI: Ablation Study. Accuracy results of XGBoost model on

different features.

Model Bone Breast Prostate Cervical Colon
TDA (Grayscale) 85.2 69.1 92.1 54.9 95.7
TDA (All colors) 91.2 83.0 94.6 85.8 97.9
LBP 92.1 84.7 94 .4 89.6 97.3
Gabor 88.1 107 92.7 84.9 94.9
Gabor+LBP 93.7 87.5 95.0 02.1 98.0
TDA+LBP 03.4 88.1 95.2 91.1 08.4
TDA+LBP+Gabor 93.1 89.8 95.4 92.9 98.5
Bone Breast Prostate  Cervical Colon
Model RF XG RF XG RF XG RF XG RF XG
Gray (200) 84.0 84.6 69.6 68.8 923 91.1 53.7 54.6 945 959
G-RGB (800) 86.8 894 77.6 80.0 928 932 739 775 964 97.5
HSV AVG (200) 82.0 823 60.9 60.8 883 84.5 599 60.7 87.2 88.0
HSV AVG+HSV(800) 88.0 90.1 76.3 78.7 924 93.0 82.2 82.7 959 97.5
All Betti Features (1600) 87.9 90.8 794 82.8 928 939 822 855 96.5 97.8
All Features (2800) 90.7 93.7 854 884 938 947 90.5 926 97.1 98.5
Feature Selection - 942 - 916 - 952 - 914 - 984




Final Remarks

@ Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.
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Final Remarks

@ Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.

@ Without using any deep learning, topological feature vectors give
competitive results with SOTA models in 5 different cancer types.

@ We are positive that these novel topological features will substantially
enhance the performance of any upcoming ML models in the domain.

@ Moving forward, we aim to combine our topological feature vectors with
the latest CNN models to obtain robust and effective computer-aided
clinical decision support systems in histopathology.

@ Thank you for your attention!
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DRUG DISCOVERY with
TOPOLOGICAL DATA ANALYSIS

Baris Coskunuzer

University of Texas at Dallas

with Andac Demir, Ignacio S. Dominguez, Yuzhou Chen, Yulia Gel, Bulent Kiziltan
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Drug Discovery Process

Drug discovery Preclinical Phase | Clinical Phase 1-4 FDA Approved
| 10-14 years >
| >1 Billion dollars >

Figure 1: Traditional process of drug discovery and development.

Image Credit: Surabhi et al, Computer Aided Drug Design: An Overview, JDDT 2018



Structure-based methods

1. Molecular docking approach models the

interaction between a small molecule and

a drug target at the atomic level.

2. ltrequires:

Knowledge of the binding site
before docking process.

Prediction of the ligand
conformation as well as its position
and orientation in binding site.

LOCK & KEY APPROACH

Ligand-based methods

1.

We know a set of active ligands that can
inhibit a drug target.

There is little or no structural information
available for those drug targets.

Drug candidates are compared against a
library of dozens/hundreds of active
ligands and thousands of decoys (inactive
ligands).

SIMILARITY BASED APPROACH

(Our method)
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Image Credit: Jacob et al, Accessible HTVS Mol. Docking Software, PLOS 2012



= Most Ligand Based Models use an approach called Fingerprinting

= Main idea is to convert/summarize the structure information into a suitable form to be
used with ML algorithms

Two Examples:
1. Morgan Fingerprints: ECFP (Extended Connectivity Fingerprints)

- By using an hashing function, encode 0, 1, 2 neighborhoods of each atom as hash values.
Similar to Weisfeiler-Lehman algorithm.

- By using 1024 dimensional bit-vector, summarize obtained hash values. Nonreversible.



2. SMILES METHOD

0] >§ O 6/
NS A NS
OrTRs O8O

Cclen2ce(CN(C)C(=0)c3cce(F)ec3C)e(Chne2sl
Cclee(F)eec1C(=O)N(C)Cele(Chne2scc(C)nl2

Figure 1. Two almost identical molecules with markedly different
canonical SMILES in RDKit. The edit distance between two
strings is 22 (50.5% of the whole sequence).

Another popular technique SMILES
formulated the compound fingerprinting
task as string generation problem.
SMILES strings are reversible i.e., they
can be translated into graphs.

However. SMILES has 2 limitations:

Two molecules with similar chemical
structures may be encoded into markedly
different SMILES strings.

Essential chemical properties such as
molecule validity are easier to express
on graphs rather than linear SMILES
representations.
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1.

2.

3.

A novel feature extraction method by using topology.

Captures and summarizes the shape patterns developed in the data.

3-step Process:
Filtration: For a given dataset, induce a meaningful sequence of topological spaces.
Persistence Diagram: Record the evolution of topological features in this sequence.

Vectorization: Convert PDs into suitable functions/vectors for ML methods.



FILTRATION FOR GRAPHS

node
filtration

edge
filtration
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Persistence barcode

a

0-dim

Persistence Diagram
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Vectorization of Persistence Diagrams (Barcode)

: Persistence Betti Function
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While single parameter persistence tracks the topological changes in 1-parameter

sequence, multiparameter persistence aims to do it for 2 or more parameters.
Serious mathematical problems make multiparameter approach infeasible in general.
There are remedial methods to bypass these serious problems.

We propose and apply one of these approaches in this work.



Conformation Problem

Conformation also referred to as conformers or conformational isomers, are
different arrangements of atoms that occur as a result of rotation about single
bonds. For example, in the following molecule, we can have a different
arrangement of atoms by rotating around the middle o bond:

H Gl 120°) H CI 1207
' OH 5 H ClI
H C;S/ — > o0 H — AL Br
3 Br HSC .-OH H3C %
H Br HO H

Different conformers = conformational 1somers

14 Image credit: https://www.chemistrysteps.com
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4.

We define a new fingerprinting method for compounds by using persistent homology.
Topological Fingerprints of Compounds:

Realize a compound as a graph (Atoms—> Nodes, Bonds—> Edges)

Use important chemical quantities as node and edge functions.

Obtain a bifiltration decomposing the compound into substructures (subgraphs G;)

Extract a vector (mxn matrix) from bifiltration (multipersistence module)

summarizing topology of G;



Figure 2: Cytosine. Atom types are coded
by their color: White=Hydrogen, Gray=Carbon,
Blue=Nitrogen, and Red=Oxygen. The decimal
numbers next to atoms represent their partial
charges.
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F1gure 2: Cytosine. Atom types are coded
by their color: White=Hydrogen, Gray=Carbon,
Blue=Nitrogen, and Red=Oxygen. The decimal
numbers next to atoms represent their partial
charges.
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Degree + Vietoris-Rips Filtration
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TOPOLOGICAL COMPOUND FINGERPRINTING

= mxn bifiltration " m single " m vectorization " m X h matrix
= horizontal slicing persistence (Betti, Silhouette)

diagram
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Table 3: Summary statistics of the Cleves-Jain dataset.

Target

# Training
Samples

# Test
Samples

<:c~wﬂ.n'co=5'—'r‘—'-':rm o o o
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10
30
23
11
14
15

Table 4: Summary statistics of the DUD-E Diverse dataset.

Target Description # Active # Decoy
AMPC beta-lactamase 62 2902
CXCR4 C-X-C chemokine receptor type 4 122 3414
KIF11 kinesin-like protein 1 197 6912
CP3A4 cytochrome P450 3A4 363 11940
GCR glucocorticoid receptor 563 15185
AKT1 serine/threonine-protein kinase Akt-1 423 16576
HIVRT HIV type 1 reverse transcriptase 639 19134
HIVPR HIV type 1 protease 1395 36278
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Enrichment Factor (EF) is the most common performance evaluation metric for Virtual Screening
methods.

Let N be the total number of ligands in the dataset, A, be the number of true positives (i.e., correctly
predicted active ligands) in the first a% of all ligands and N be the number of active ligands in
the whole dataset. Then,

actives

EF,, A Nigtarewe — Ay
’ 0
' Nactives/ Ntotal Nactives 0%

Notice that the maximum score for EF ,, 1s %, 1.e., 100 for EF,,, and 20 for EF,,.

Example: N=1000, N, .~ 40 a=5 A, =18 => EF;,=9 max EFs,=20.

actives



Table 1: Comparison of EF 2%, 5%, 10% and AUC values between ToDD and other virtual screening methods
on the Cleves-Jain dataset.

Model EF 2% (max. 50) EF 5% (max. 20) EF 10% (max. 10) AUC
USR [7] 10.0 6.2 4.1 0.76
GZD [83] 13.4 8.0 53 0.81
PS [42] 10.7 6.6 4.9 0.78
ROCS [36] 20.1 10.7 6.2 0.83
USR + GZD [75] 13.7 1.7 4.7 0.81
USR + PS [75] 13.1 79 5.0 0.80
USR + ROCS [75] 17.1 9.1 54 0.83
GZD + PS [75] 16.0 9.1 59 0.82
PH_VS [48] 18.6 NA NA NA
GZD + ROCS [75] 20.3 10.8 53 0.83
PS + ROCS [75] 20.5 10.7 6.4 0.83
ToDD-RF 35.2+23 15.6£1.0 8.1+0.4 0.94+0.02
ToDD-ViT 39.6t1.4 18.61+0.4 9.9+0.1 0.904:0.01
Relative gains 92.9% 83.7% 54.1% 13.3%

Relative gains are relative to the next best performing model.
Mean and standard deviation of EF scores evaluated by 5-fold cross-validation.



Table 2: Comparison of EF 1% (max. 100) between ToDD and other virtual screening methods on 8 targets of
the DUD-E Diverse subset.

Model AMPC CXCR4 KIF11  CP3A4 GCR AKT1  HIVRT HIVPR  Avg
Findsite [90] 0.0 0.0 0.9 21.7 34.2 39.0 1.2 34.7 16.5
Fragsite [91] 4.2 42.5 0.0 32.9 29.1 47.1 2.4 48.7 25.9
Gnina [78] 2.1 15.0 38.0 12 39.0 4.1 11.0 28.0 17.3
GOLD-EATL [87] 25.8 20.0 33.5 17.9 34.6 29.2 28.7 234 26.6
Glide-EATL [87] 35.5 20.8 30.5 15.1 24.0 31.6 29.0 22.0 26.1
CompM [87] 32.3 25.0 35.5 33.6 37.1 44.2 30.2 25.0 32.9
CompScore [66] 39.6 51.6 51.3 14.0 27.1 37.6 21.8 18.2 32.7
CNN [68] 2.1 5.0 11.2 28.7 12.8 84.6 12.2 9.9 20.8
DenseFS [44] 14.6 5.0 4.3 44.3 20.9 89.4 12.8 8.4 25.0
SIEVE-Score [88] 30.7 61.1 53.4 6.7 33.3 42.1 39.8 38.3 38.2
DeepScore [85] 28.1 56.8 54.3 37.1 40.9 59.0 43.8 62.8 47.9
RF-Score-VSv3 [88] 32.3 60.9 45 25.9 32.5 41.9 39.8 65.7 37.9
ToDD-RF 429445 923432 750450 67.6+£3.4 78.9+40 90713 641423 92.1+15 737
ToDD-ConvNeXt  462+3.6 84.64+2.8 72.5+3.6 28.8+28 46.0+2.0 812425 37.54+3.6 74.6+1.0 589
Relative gains 16.7% 51.1% 38.1% 52.6% 92.9% 1.5% 46.3% 402%  53.9%

Relative gains are relative to the next best performing model.
Mean and standard deviation of EF scores evaluated by 5-fold cross-validation.
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Figure 1: Comparison of virtual screening performance. Each bubble’s diameter is proportional to its EF
score. ToDD offers significant gain regardless of the choice of classification model such as random forests (RF),
vision transformer (ViT) or a modernized ResNet architecture ConvNeXt. The standard performance metric
EF o is defined as 299, and therefore the maximum attainable value is 50 for E Fyo;, and 100 for EFy,, .
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COMPARISON OF FILTRATIONS

Table 5: EF 2% values and ROC-AUC scores across different modalities on Cleves-Jain dataset using ToDD-RF.

Target Atomic Mass  Partial Charge Bond Type  Atomic Mass & Partial Charge  All Modalities
a 333 333 333 333 41.7
b 25.0 29.5 31.8 273 25.0
c 19.2 7.7 154 26.9 34.6
d 333 333 41.7 50.0 50.0
e 30.0 30.0 30.0 40.0 40.0
f 25.0 50.0 317.5 50.0 37.5
a 30.0 30.0 30,0 30.0 40.0
h 40.0 50.0 30,0 50.0 50.0
i 40.0 40.0 30,0 40.0 40.0
i 17.9 39.3 35.7 28.6 28.6
k 21.4 214 17.9 35.7 32.1
1 15.0 15.0 15.0 30.0 25.0
m 44.4 50.0 333 50.0 38.9
n 15.0 25.0 10.0 25.0 10.0
0 217 20.0 25.0 233 23.3
p 10.9 8.7 13.0 174 26.1
q 45.5 273 227 40.9 409
r 429 429 429 39.3 32.1
s 26.7 16.7 20,0 20.0 30.0
t 30.0 50.0 50.0 50.0 50.0
u 333 38.9 27.8 38.9 50.0
v 21.4 28.6 28.6 28.6 28.6
Mean 28.3 31.3 283 35.2 35.2

ROC-AUC 0.92 (.90 0.88 0.94 0.93




Novelty: We developed a new compound fingerprinting method by facilitating
multiparameter persistence approach.

Performance: We develop and benchmark ML approaches; and outperform the SOTA by a
wide and statistically significant margin: 93% gain for Cleves-Jain and 54% gain for DUD-E

Diverse dataset.

Small data sets: effective few-shot classification (only 2-3 active ligands per drug target for
training)

ML integration: features suited for SOTA Neural Networks, as well as traditional ML methods

Computational efficiency: Full training + analysis on a laptop ~7 minutes (for a library of 1100
compounds, distributed across the 8 cores of an Intel Core i7 CPU (100GB RAM))



Testing the performance of ToDD on ultra-large Virtual Screening datasets with
millions of compounds such as MUV, DUD-E and custom datasets of Novartis.

Trying other MP vectorization methods, e.g., MP Image - vineyards (Carriere-
Blumberg), MP Landscapes (Vipond).

Using transfer learning to adapt state-of-the-art convolutional and transformer
based computer vision models to extract complex chemical properties of
compounds, specifically for few-shot learning problems.

There are other subdomains in chemistry that ToDD can be benchmarked and
tested such as: molecular property prediction, e.g. solubility, polarization, binding
affinity.



	TDA_Drug_Discovery.pdf
	DRUG DISCOVERY with �TOPOLOGICAL DATA ANALYSIS
	Drug Discovery Process
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	FILTRATION for graphs
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28




