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Topological Data Analysis

Aim:
To study the shape of the data, and obtain a unique fingerprint of its
topological features.

TDA methods are highly effective on various forms of data.

I Point Clouds in High Dimensions

I Graphs and Networks

I Images

Applications in different fields:

Bioinformatics, computational biology, finance, image recognition,
material science, network analysis, combining with deep learning.
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Shapes hidden in the Data

Want to find topological patterns hidden in the data.

Topological Features can be detected by using Homology.

I 0-dimensional features: Components

I 1-dimensional features: Holes

I 2-dimensional features: Cavities

Similar shape / topological patterns ⇒ Same Class

How to obtain a formal summary of these topological features?
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Homology
• i-dimensional homology Hi “counts the number of i-dimensional holes”
• i-dimensional homology Hi actually has the structure of a vector space!

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 6

0-dimensional homology H0: rank 6
1-dimensional homology H1: rank 0

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 3



Homology
• i-dimensional homology “counts the number of i-dimensional holes”
• i-dimensional homology actually has the structure of a vector space!

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 0
2-dimensional homology H2: rank 1

0-dimensional homology H0: rank 1
1-dimensional homology H1: rank 2
2-dimensional homology H2: rank 1

Be careful! (Same as torus over               )

Image	credit:	https://plus.maths.org/content/imaging-maths-inside-klein-bottle
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Persistent Homology

Persistent Homology is one of the main methods of TDA.

It coarsely detects connected components, loops and cavities hidden in
the shape along with their ”sizes”.

It is used in ML as a very powerful feature extraction method to capture
shape patterns in the data.

PH is a 3-step process.

▶ Step 1 - Constructing Filtration: To obtain a sequence of
simplicial complexes 1 ⊂2⊂ · · · ⊂N .

▶ Step 2 - Persistence Diagram: Record the topological changes
in the sequence {i}.

▶ Step 3 - Vectorization: Convert PDs into vectors.
Topological Feature Vectors
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Applications

Point Cloud Setting:

Shape Recognition

Graph Setting:

Computer-Aided Drug Design

Image Setting:

Cancer Detection from Histopathological Images
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Histopathological Cancer Detection with
Topological Machine Learning

Ankur Yadav1, Faisal Ahmed2, Ovidiu Daescu1,
Reyhan Gedik3, and Baris Coskunuzer2

1 UT Dallas, CS Dept.
2 UT Dallas, Math Dept.
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Motivation

Examining tissue samples is the primary way to detect and grade
cancer. However, this process requires experienced pathologists and
tends to be time-consuming.

ML methods offer clinical decision support systems that enhance
accuracy, reproducibility, and speed in medical processes.

DL methods exhibit significant potential. However, their utilization in
clinical-stage implementation faces challenges due to extensive
preprocessing periods, the substantial size of training datasets, the
need for high-performance computing infrastructures, and the
challenge of interpretability in decision-making.

In this project, to address these needs, we develop a fast, and
high-performing topological ML method for this task.

Further, our topological features hold the potential to significantly
boost the performance of upcoming ML models within this domain.
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Cubical Persistence

For Image Data, we use Cubical Persistence.

Constructing filtration out of histopathological image.

Persistence Diagram: Keep track of components and loops in binary
images

Vectorization: Betti function.
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Topological Features of Histopathological Images

Topological Features: For each histopathological image, for each of
the 8 color channels, we obtain 100-dimensional Betti-0 and
100-dimensional Betti-1 vectors. This gives us a 1600-dimensional
topological feature vector for each histopathological image.

Topological Feature Vectors distinguish normal and abnormal classes
histopathological images for following cancer types.

▶ Bone Cancer

▶ Colon Cancer

▶ Cervical Cancer

▶ Prostate Cancer

▶ Breast Cancer
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Topological Machine Learning Model

For each histopathological image, we extract:

▶ 1600-dimensional topological features

▶ 800-dimensional Local Binary Pattern features

▶ 400-dimensional Gabor Filter features

We then use feature selection algorithm to choose the most important
500 features out of 2800 features.

Finally, we feed these features into our ML classifier.
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Experiments

Datasets

Results for 5 Cancer types

Ablation Study
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Final Remarks

Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.

Without using any deep learning, topological feature vectors give
competitive results with SOTA models in 5 different cancer types.

We are positive that these novel topological features will substantially
enhance the performance of any upcoming ML models in the domain.

Moving forward, we aim to combine our topological feature vectors with
the latest CNN models to obtain robust and effective computer-aided
clinical decision support systems in histopathology.

Thank you for your attention!

9 / 9



Final Remarks

Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.

Without using any deep learning, topological feature vectors give
competitive results with SOTA models in 5 different cancer types.

We are positive that these novel topological features will substantially
enhance the performance of any upcoming ML models in the domain.

Moving forward, we aim to combine our topological feature vectors with
the latest CNN models to obtain robust and effective computer-aided
clinical decision support systems in histopathology.

Thank you for your attention!

9 / 9



Final Remarks

Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.

Without using any deep learning, topological feature vectors give
competitive results with SOTA models in 5 different cancer types.

We are positive that these novel topological features will substantially
enhance the performance of any upcoming ML models in the domain.

Moving forward, we aim to combine our topological feature vectors with
the latest CNN models to obtain robust and effective computer-aided
clinical decision support systems in histopathology.

Thank you for your attention!

9 / 9



Final Remarks

Our experiments show topological feature vectors are quite effective in
cancer detection from histopathological images.

Without using any deep learning, topological feature vectors give
competitive results with SOTA models in 5 different cancer types.

We are positive that these novel topological features will substantially
enhance the performance of any upcoming ML models in the domain.

Moving forward, we aim to combine our topological feature vectors with
the latest CNN models to obtain robust and effective computer-aided
clinical decision support systems in histopathology.

Thank you for your attention!

9 / 9



DRUG DISCOVERY with 
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Drug Discovery Process

2

Image Credit: Surabhi et al, Computer Aided Drug Design: An Overview, JDDT 2018
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VIRTUAL SCREENING METHODS FOR HIT IDENTIFICATION

Structure-based methods

1. Molecular docking approach models the 
interaction between a small molecule and 
a drug target at the atomic level. 

2. It requires:
• Knowledge of the binding site 

before docking process. 
• Prediction of the ligand 

conformation as well as its position 
and orientation in binding site.

LOCK & KEY APPROACH

Ligand-based methods

1. We know a set of active ligands that can 
inhibit a drug target.

2. There is little or no structural information 
available for those drug targets.

3. Drug candidates are compared against a 
library of dozens/hundreds of active 
ligands and thousands of decoys (inactive 
ligands).

SIMILARITY BASED APPROACH

 (Our method)
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Structure (Docking) Based Virtual Screening

Image Credit: Jacob et al, Accessible HTVS Mol. Docking Software, PLOS 2012 
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 Most Ligand Based Models use an approach called Fingerprinting

 Main idea is to convert/summarize the structure information into a suitable form to be 
used with ML algorithms

Two Examples:

1. Morgan Fingerprints: ECFP (Extended Connectivity Fingerprints)

- By using an hashing function, encode 0, 1, 2 neighborhoods of each atom as hash values. 
Similar to Weisfeiler-Lehman algorithm.

- By using 1024 dimensional bit-vector, summarize obtained hash values. Nonreversible.

RELATED WORK
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RELATED WORK
 Another popular technique SMILES 

formulated the compound fingerprinting 
task as string generation problem.

 SMILES strings are reversible i.e., they 
can be translated into graphs.

 However. SMILES has 2 limitations:

1. Two molecules with similar chemical 
structures may be encoded into markedly 
different SMILES strings.

2. Essential chemical properties such as 
molecule validity are easier to express 
on graphs rather than linear SMILES 
representations.

2. SMILES METHOD
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RELATED WORK
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 A novel feature extraction method by using topology.

 Captures and summarizes the shape patterns developed in the data. 

 3-step Process:

1. Filtration: For a given dataset, induce a meaningful sequence of topological spaces.

2. Persistence Diagram: Record the evolution of topological features in this sequence.

3. Vectorization: Convert PDs into suitable functions/vectors for ML methods.

BACKGROUND - PERSISTENT HOMOLOGY



FILTRATION FOR GRAPHS

9



Image Credit: Sizemore et al, Knowledge gaps in the early growth of semantic feature networks, Nature Human Behavior, 2018
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Persistence barcode Persistence Diagram
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Vectorization of Persistence Diagrams (Barcode)
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 While single parameter persistence tracks the topological changes in 1-parameter 

sequence, multiparameter persistence aims to do it for 2 or more parameters.

 Serious mathematical problems make multiparameter approach infeasible in general.

 There are remedial methods to bypass these serious problems.

 We propose and apply one of these approaches in this work.

MULTIPARAMETER PERSISTENCE
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2D VS. 3D MODELS

Conformation Problem

Conformation also referred to as conformers or conformational isomers, are 
different arrangements of atoms that occur as a result of rotation about single 
bonds. For example, in the following molecule, we can have a different 
arrangement of atoms by rotating around the middle σ bond:

Image credit: https://www.chemistrysteps.com 

https://www.chemistrysteps.com/
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 We define a new fingerprinting method for compounds by using persistent homology.

 Topological Fingerprints of Compounds:

1. Realize a compound as a graph (Atoms Nodes, BondsEdges)

2. Use important chemical quantities as node and edge functions.

3. Obtain a bifiltration decomposing the compound into substructures (subgraphs Gij)

4.  Extract a vector (mxn matrix) from bifiltration (multipersistence module) 

summarizing topology of Gij    

DRUG DISCOVERY WITH TDA
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Atomic Number + Partial Charge Sublevel Bifiltration
17



Degree + Vietoris-Rips Filtration 18



Degree + Edge Weight Filtration 19



 mxn bifiltration
 horizontal slicing

 m single 
persistence 
diagram

 m x n matrix m vectorization
(Betti, Silhouette)

TOPOLOGICAL COMPOUND FINGERPRINTING
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EXPERIMENTS - DATASETS
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PERFORMANCE METRIC

 Enrichment Factor (EF) is the most common performance evaluation metric for Virtual Screening 
methods.

 Let N be the total number of ligands in the dataset, Aφ be the number of true positives (i.e., correctly 
predicted active ligands) in the first α% of all ligands and Nactives be the number of active ligands in 
the whole dataset. Then,

                                                EFα% =Aφ 
/Ntotal.α%

Nactives/Ntotal
= Aφ 

Nactives 
.α%

 Notice that the maximum score for EFα% is 100
𝛼𝛼

, i.e., 100 for EF1% and 20 for EF5%. 

 Example:   N=1000, Nactives= 40  α=5   Aφ = 18   =>  EF5% = 9     max EF5%= 20.
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RESULTS

Relative gains are relative to the next best performing model. 
Mean and standard deviation of EF scores evaluated by 5-fold cross-validation.
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RESULTS SUMMARY
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COMPARISON OF FILTRATIONS 
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KEY TAKEAWAYS

1. Novelty: We developed a new compound fingerprinting method by facilitating 
multiparameter persistence approach.

2. Performance: We develop and benchmark ML approaches; and outperform the SOTA by a 
wide and statistically significant margin: 93% gain for Cleves-Jain and 54% gain for DUD-E 
Diverse dataset.

3. Small data sets: effective few-shot classification (only 2-3 active ligands per drug target for 
training)

4. ML integration: features suited for SoTA Neural Networks, as well as traditional ML methods

5. Computational efficiency: Full training + analysis on a laptop ~7 minutes (for a library of 1100 
compounds, distributed across the 8 cores of an Intel Core i7 CPU (100GB RAM))
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POTENTIAL FUTURE WORK

1. Testing the performance of ToDD on ultra-large Virtual Screening datasets with 
millions of compounds such as MUV, DUD-E and custom datasets of Novartis.

2. Trying other MP vectorization methods, e.g., MP Image - vineyards (Carriere-
Blumberg), MP Landscapes (Vipond).

3. Using transfer learning to adapt state-of-the-art convolutional and transformer 
based computer vision models to extract complex chemical properties of 
compounds, specifically for few-shot learning problems. 

4. There are other subdomains in chemistry that ToDD can be benchmarked and 
tested such as: molecular property prediction, e.g. solubility, polarization, binding 
affinity.
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