Homological mirror symmetry for chain type polynomials

Umut Varolgunes

Stanford University

October 30, 2020

joint work with Alexander Polishchuk

Chain type polynomials

• For an *n*-tuple of positive integers $a = (a_1, ..., a_n) \in \mathbb{Z}_{>1}^n$, $n \ge 1$, we define the chain polynomial:

$$p_a(z_1,\ldots,z_n) := \sum_{i=1}^{n-1} z_i^{a_i} z_{i+1} + z_n^{a_n}$$

- Isolated singularity at the origin for $p_a:\mathbb{C}^n o\mathbb{C}$ (tame map)
- ullet The group of (diagonal) symmetries up to scaling of p_a

$$\Gamma_a := \{\lambda_1^{a_1} \lambda_2 = \ldots = \lambda_{n-1}^{a_{n-1}} \lambda_n = \lambda_n^{a_n} = \lambda\} \subset (\mathbb{C}^*)^{n+1}$$

Group of symmetries $\Gamma^0_a\subset \Gamma_a$ given by $\lambda=1$

• Using the Γ_a action on $\mathbb C$ by multiplication with λ , $p_a:\mathbb C^n\to\mathbb C$ becomes Γ_a -equivariant.

Berglund-Hubsch-Henningson duality for chain polynomials

- Define $a^{\vee}=(a_n,\ldots,a_1)$
- B-Hu: p_a and $p_{a^{\vee}}$ are "mirror" LG models?
- B-He: Non-trivial check + clarified role of the symmetry groups
- Takahashi: there should exist a triangulated equivalence

$$DFuk(p_{a})\simeq HMF_{L_{a^ee}}(p_{a^ee})$$

- $L_{\mathsf{a}^\vee} := \mathit{Hom}(\Gamma_{\mathsf{a}^\vee}, \mathbb{C}^*)$ grading group, acts on the RHS
- Canonical short exact sequence

$$0 \to \mathbb{Z} \to L_{a^{\vee}} \to \mathit{Hom}(\Gamma^0_{a^{\vee}}, \mathbb{C}^*) \underset{\mathit{can.}}{\simeq} \Gamma^0_a \to 0.$$

Equivariant HMS conjecture

- Γ_a^0 acts on \mathbb{C}^n by symplectomorphisms and preserves p_a by definition. Taking graded lifts we obtain an action of L_{a^\vee} on $D^bFuk(p_a)$.
- Equivariant conjecture: there is an HMS equivalence intertwining these actions
- Would this imply the statements with $G \subset \Gamma_a^0$?
- There exists $F \in L_{a^{\vee}}$ whose action on either side equals T^2 , where T is the shift functor
- There exists $P \in L_{a^{\vee}}$ whose action on either side satisfies

$$P^{\mu(a)} = T^{m(a)} S^{-1}, \tag{1}$$

where S is the Serre functor, $\mu(a)$, m(a) explicit integers

• $L_{a^{\vee}} = \langle F, P \mid d(a)P = \mu(-a)F \rangle$ - gen. by T^2 and S if $(d(a), \mu(a)) = 1$, so equivariance is automatic in that case

Exceptional collections: A-side I

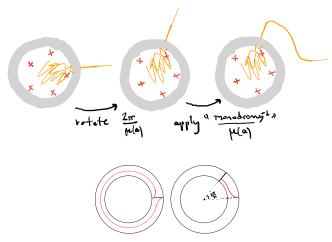
• Milnor number of the singularity of p_a :

$$\mu(a) := a_1 \dots a_n - a_2 \dots a_n + \dots + (-1)^{n-1} a_n + (-1)^n.$$

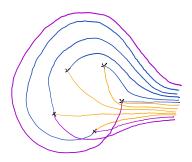
- Let $d(a) := a_1 \dots a_n$ and $-a := (a_2, \dots, a_n)$.
- Useful: $\mu(a) + \mu(-a) = d(a)$ and $\Gamma_a \simeq \{\lambda_1^{d(a)} = \lambda^{\mu(-a)}\}.$
- Morsification: $\epsilon z_1 + p_a(z_1, \dots, z_n) = \epsilon z_1 + \sum_{i=1}^{n-1} z_i^{a_i} z_{i+1} + z_n^{a_n}$
- $\epsilon z_1 + p_a : \mathbb{C}^n \to \mathbb{C}$ tame for all $\epsilon \in \mathbb{C}$
- 0 is a regular value for $\epsilon \neq 0$.
- The order $\mu(a)$ cyclic subgroup of Γ_a given by $\lambda_1 = \lambda$ makes $z_1 + p_a$ equivariant (maximal possible for such perturbation)

Exceptional collections: A-side II

- $D(F(p_a)) \simeq D(F(\epsilon z_1 + p_a))$ ("same at infinity")
- We can geometrically reconstruct the action of P on $D(F(\epsilon z_1 + p_a))$. On objects up to grading:



Exceptional collections: A-side III



- Blue paths give our distinguished basis of thimbles.
- Yellow ones give the geometric left dual distinguished basis.
 Purple ones are in the geometric helix of the blue distiguished basis (up to grading).
- Blue and purple thimbles are generated by a single thimble using $P^{\pm 1}$ (up to grading)

Exceptional collections: A-side IV

• Let us denote the directed Fukaya-Seidel A_{∞} -category with an exceptional collection corresponding to the blue paths by

$$(\mathcal{A}_{\mathsf{a}}, e_{\mathsf{a}})$$

- $D(A_a) \simeq D(F(\epsilon z_1 + p_a))$ work in progress, but should follow from GPS
- In previous work, I computed the Euler pairing in $K_0(A_a)$, which is the same as the Seifert form of p_a , with respect to the basis corresponding to e_a . This confirms conjecture by Orlik-Randell '77.
- Set $(\mathcal{A}_{\emptyset}, e_{\emptyset})$ to be the A_{∞} cat. with one object \cdot with $Hom^*(\cdot, \cdot) = k$
- We prove that (A_a, e_a) can be obtained from (A_{-a}, e_{-a}) by an explicit recursive procedure \mathcal{R} for $a \neq \emptyset$

Exceptional collections: B-side

• Aramaki-Takahashi consider the following graded matrix factorization of p_a :

$$E := \begin{cases} \operatorname{stab}(x_2, x_4, \dots, x_n), & n \text{ even} \\ \operatorname{stab}(x_1, x_3, \dots, x_n), & n \text{ odd} \end{cases}$$

- The collection $(E, P(E), \dots, P^{\mu(a^{\vee})-1}(E))$ is a full exceptional collection in $HMF_{L_a}(p_a)$.
- AT compute the Euler pairing wrt this basis. My computation for p_a and their computation for $p_{a^{\vee}}$ give exactly the same result.
- Let us denote their subcategory in an enhancement by

$$(\mathcal{B}_{\mathsf{a}},\mathsf{e}_{\mathsf{a}})$$

ullet We prove that (\mathcal{B}_a,e_a) can be obtained from $(\mathcal{B}_{a-},e_{a-})$ by \mathcal{R}

Recursion \mathcal{R}

- Start with a directed A_{∞} -category (\mathcal{C}, e) .
- Extend e to a helix inside $Tw(\mathcal{C})$ and take the segment f of length N in this helix such that e is the rightmost subsegment of f.
- Note that f is no longer an exceptional collection in general. We define \mathcal{C}' as the directed A_{∞} -category defined by the directed A_{∞} -subcategory of f (keeping track of only morphisms from left to right in the order of the helix).
- Inside Tw(C'), we consider the right dual exceptional collection f^+ .
- We say (\mathcal{C}^+, e^+) is obtained from (\mathcal{C}, e) by \mathcal{R} if one can take shifts of the objects of f^+ and find an A_{∞} -quasi-isomorphism from (\mathcal{C}^+, e^+) to their directed A_{∞} -subcategory.

Explanations and remarks on recursion \mathcal{R}

• Mutations of exceptional collections in a triangulated A_{∞} -category:

$$E_1, \ldots E_n \mapsto E_1, \ldots, \mathbb{L}_{E_i} E_{i+1}, E_i, \ldots E_n.$$

 \mathbb{L} is the twist functor.

- Given full exceptional collection $E_1, \ldots E_n$, we can extend it to the left by adding the object $\mathbb{L}_{E_1} \ldots \mathbb{L}_{E_{n-1}} E_n$. Then the n leftmost elements form a FEC, and we do the same. Extend in both directions to get an infinite collection of objects, called the helix of $E_1, \ldots E_n$.
- We have $E_{i-n} = S(E_i)$ (up to shift), where S is the Serre functor.
- Left (resp. right) dual collection is obtained by applying mutations to the right (resp. left) until the order is fully reversed.
- The initial A_{∞} -subcategory determines all the others.

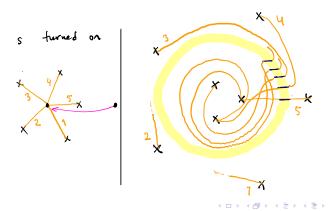
The main theorem

- \bullet $(\mathcal{A}_{\emptyset}, e_{\emptyset}) = (\mathcal{B}_{\emptyset}, e_{\emptyset})$
- Theorem (Polishchuk V): (\mathcal{B}_a, e_a) can be obtained from $(\mathcal{B}_{a-}, e_{a-})$ by \mathcal{R} . Shifts can be computed.
- Theorem* (Polishchuk V): (A_a, e_a) can be obtained from (A_{-a}, e_{-a}) by \mathcal{R} . Only up to undetermined shifts.
- This proves Takahashi's HMS conjecture.
- Equivariant version in the interesting case $(d(a), \mu(a)) \neq 1$ needs a bit more work.

Recursion in the A-side I

• Compute the vanishing cycles of the dual basis in

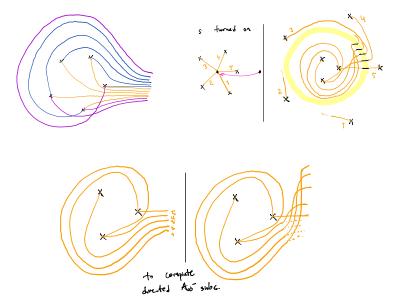
$$f_{s,r}:\{(z_1,\ldots,z_n)\mid \underline{z_1}-s\underline{z_2}-rz_1^{a_1}z_2-p_{-a}(z_2,\ldots z_n)=0\}\stackrel{\underline{z_1}}{\to}\mathbb{C},$$
 as matching cycles. s is a small positive real, $r=1$ for now. Sign changes for convenience.



Recursion in the A-side II

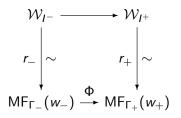
- First get the vanishing cycle for the positive real critical value using real solutions.
- For each other critical value the vanishing cycle is similarly easy to compute for s with a specific argument. Then we move the s back to positive real axis by rotating it clockwise (and use braid parallel transport).
- The key point is that as s rotates, the inner critical values of $f_{s,1}$ are very close to rotating with it (with different speed) and the outer ones don't move much rigorously proved using Rouche's theorem.
- Now fix the s, and let $r \to 0$. Inner critical values don't move much, outer ones go off the infinity roughly radially.
- When r = 0, the map is the same as $sz_2 + p_{-a}$ and we have part of the helix of the distinguished collection in maximally moved position (up to grading that we cannot yet compute).

Recursion in the A-side III



Recursion in the B-side (only the first step)

- Consider $W = x_1^{a_1} x_2 + x_2^{a_2} x_3 + \ldots + x_n^{a_n} x_{n+1}^{a_n}$. We also define a \mathbb{G}_m -action on \mathbb{C}^{n+1} leaving W invariant
- The VGIT machinery of Ballard-Favero-Katzarkov gives the diagram (except Φ)



where $w_- = W|_{x_n=1}$ and $w_+ = W|_{x_{n+1}=1}$, and the categories at the top row are "window subcategories" of $MF_{\Gamma}(W)$.

• We get a functor $MF_{\Gamma_{a-}}(p_{a-}) o MF_{\Gamma_{a}}(p_{a})$.

\mathcal{A}_a for small n

Conjecture: The endomorphism algebra of \mathcal{A}_a is generated as a vector space by elements obtained by applying the A_{∞} -operations iteratively to x's. There are relations between such elements starting from n=4.

References - with links

- Original Berglund-Hubsch paper (1993)
- Berglund-Henningson (1994)
- Takahashi, HMS (2007)
- Aramaki-Takahashi, B-side K_0 level (2019)
- Varolgunes, A-side K₀ level (2020)
- Ballard-Favero-Katzarkov, VGIT (2012)
- Seidel, Directed Fukaya-Seidel $Lag^{\rightarrow}(\mathbb{V})$ (2000)
- Seidel, $Fuk(p_a)$ by localization (2018)
- Gorodentsev-Kuleshov, Helix theory in triangulated categories (developed in late 80's)
- Seidel's book for mutations in A_{∞} -categories and matching cycles (no link)

