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Symbolic-Numeric Computation

My research interest is

• constructing (theory- pure math),

• designing (math → computer science),

• analyzing (computer science → math)

algorithms to solve problems on polynomials using the integration of
numerical and symbolic techniques.

The goal:

Finding robust and efficient algorithms to solve problems, and then analyze
the computational complexity of the algorithms and implement them.
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Numerical and Symbolic tools from:

• (Computational) Algebraic Geometry

• Abstract Algebra (Ring Theory, Finite Fields etc.)

• Linear Algebra

• Matrix Theory

• Numerical Analysis

• Algorithms

• Complexity Theory

• Optimization

• Programming (Maple, SageMath, Python, Matlab, Bertini )

We take advantage of both approaches!
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Numerical vs Symbolic

Let’s say we want to divide 1 by 3:

Numerical Computation Symbolic Computation

input: 1/3 input: 1/3
0.33...3 1/3

0.33...3*3 1/3 * 3
0.99...9 1
error exact
fast slow

application theory
“actual world” “idealized world”
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Polynomial root

Example (A toy example)

Let f (x) = 3x − 1 be a univariate polynomial, compute the root:

Numerical Computation Symbolic Computation

Output: 0.33...3 Output: 1/3
f (0.33...3) = −0.00...01 f (1/3) = 0

How and when we can tell a numerical computation is valid? Can we
certify that a numerical result is a root?
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Notation

Definition (Monomial)

Let x1, . . . , xn be variables, a monomial in x1, . . . , xn is a product of the
variables up to some degree

xd = xd11 · x
d2
2 · · · x

dn
n

where d1, . . . , dn are nonnegative integers.

Definition (Polynomial)

Let x1, . . . , xn be variables, a polynomial f in x1, . . . , xn with coefficients in
K is a finite linear combination of monomials

f =
∑
d

adx
d ∈ K[x1, . . . , xn], ad ∈ K

where d = (d1, . . . , dn) is a vector of nonnegative integers and
xd = xd11 · x

d2
2 · · · xdnn .
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Notation

Definition (Polynomial system)

Let f1, . . . , fm be polynomials in the variables x1, . . . , xn over K, a set of
polynomials

f = (f1, . . . , fm) ∈ Km[x1, . . . , xn]

is called a polynomial system if we are interested in the common solutions
of the given polynomials.

Definition

We denote
I := ⟨f1, . . . , fm⟩

as the ideal generated by given polynomials f1, . . . , fm.
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Certification Problem

Let f = (f1, . . . , fm) ∈ Km[x1, . . . , xn] with common roots

V (f ) := {ξ1, ξ2, . . . , ξk} ⊂ Cn(algebraic closure of K),

Given:

Approximate roots of f : {z1, z2, . . . , zk}, zi ∈ Cn for i = 1, . . . , k,
a floating number z∗ and a rational number ε.

Goal:

To certify that a solution z∗ of f is in the ε neighborhood of an exact root
ξ of f .
i.e., whether z∗ is in the open ball Bε(ξ) := {x : ∥x − ξ∥ < ε} for ε > 0.
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Some Solution Methods:

Let f = (f1, . . . , fm) ∈ K[x1, . . . , xn] and z1, . . . , zk be approximate
solutions (we assume f generates a zero dimensional ideal).

• (K = R) if n = m, Smale’s α-theory
Theory by Smale (1986), then implemented (alphaCertified) by Sotille
and Hauenstein (2012)

• (K = Q) if n < m, A-,Szanto and Hauenstein (2018)
Use Rational Univariate Representation of the given overdetermined
System

• (K = Q) if f has singular roots, A-,Szanto and Hauenstein (2018)
Use determinantal form of isosingular deflation and obtain an
overdetermined system
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A fascinating application: A computerized proof of

a conjecture by Littlewood

Is it possible in 3-space for seven infinite circular cylinders of unit radius
each to touch all the others? Seven is the number suggested by constants.

Bozóki, Lee, and Rónyai (2015) proved this conjecture by setting up a
well-constrained polynomial system over Z with real roots corresponding to
solutions of the Littlewood conjecture. They approximated the roots using
a numerical homotopy continuation method and certified that some roots
are real using alphaCertified.

Figure: Seven cylinders can all touch each other!
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Some Solution Methods:

Let f = (f1, . . . , fm) ∈ K[x1, . . . , xn] and z1, . . . , zk be approximate
solutions (we assume f generates a zero dimensional ideal).

• (K = R) if n = m, Smale‘s α-theory
Theory by Smale (1986), then implemented (alphaCertified) by Sotille
and Hauenstein (2012)

• (K = Q) if m > n, A-,Szanto and Hauenstein (2018)
Use Rational Univariate Representation of the given overdetermined
System

• (K = Q) if f has singular roots, A-,Szanto and Hauenstein (2018)
Use determinantal form of isosingular deflation and obtain an
overdetermined system

• (K = Q) Certifying real roots: Zero dimensional Hermite Method,
A-, Szanto (2023)
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Zero Dimensional Hermite Method 1

It is a method to certify approximate real roots using Hermite matrices

Given: f = (f1, . . . , fm) ∈ Qm[x1, . . . , xn] and its approximate solutions
{z1, . . . , zk} ⊂ Cn

Assumptions: I is zero dimensional

• It certifies the approximate real roots of a polynomial system over Q
• Completely independent from the α-theory

• Therefore, does not require Newton’s method to convergence

• It can work when α-theory does not

1This research was supported by TÜBİTAK project 119F211: Zero Dimensional
Hermite Method (PI: Tülay Ayyıldız) and partially supported by NSF grant
CCF-1813340 (PI: Agnes Szanto, NCSU).
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Zero Dimensional Hermite Method

Approach:
Let f = (f1, . . . , fm) ∈ Qm[x1, . . . , xn] such that I = ⟨f1, . . . , fm⟩ is a zero
dimensional radical ideal.

• Compute approximate roots z1, . . . , zk ∈ Cn

• Construct an approximate Hermite matrix

• Rationalize the entries

• Certify that the obtained matrix is the exact Hermite Matrix of f

• Compute its signature

• Use the certification theorem to certify a real root

• Can be modified to work on non-radical case
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Hermite Matrices (Definition 1)

Let ξ1, ξ2, . . . , ξk ∈ Cn be the exact common roots of the polynomials in I,
roots are listed as many times as their multiplicity. If I is radical, each
root is distinct. We denote approximations to the exact roots by
z1, . . . , zk ∈ Cn.

Definition

Let g ∈ R[x1, . . . , xn] and B = {xα1 , . . . , xαk} be a set of monomials in
R[x1, . . . , xn]. Let z1, z2, . . . , zk ∈ Cn be points, not necessary distinct.
Then the Hermite matrix of z1, z2, . . . , zk with respect to g , written in
the basis B is

Hg := HB
g (z1, z2, . . . , zk) := V TGV (1)

where V := VB(z1, z2, . . . , zk) = [z
αj

i ]ki ,j=1 is the Vandermonde matrix of
z1, z2, . . . , zk ∈ Cn with respect to a monomial set B and G is an k × k
diagonal matrix with [G ]i ,i = g(zi ) for i = 1, . . . , k .
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Hermite Matrices (Definition 2)

Definition

Let I ⊂ R[x1, . . . , xn] be a zero dimensional ideal and denote
A := R[x1, . . . , xn]/I , a finite dimensional vectors space over R with
k := dimR A.
For any f ∈ A, let µf : A→ A, p + I 7→ p · f + I be the multiplication
map by f on A.
Fix a monomial basis B = {xα1 , . . . , xαk} of A, and denote by MB

f the
k × k matrix of µf in the basis B. The Hermite matrix of I with respect to
g , written in the basis B is

Hg (I) := HB
g (I) =

[
Tr(MB

g ·xαi+αj )
]k
i ,j=1

,

where Tr denotes the matrix trace.
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Extended Hermite Matrix

Definition

Let B be a finite set of monomials and and assume that |B+| = l . The
extended Hermite matrix associated to points z1, . . . , zk ∈ Cn (not
necessarily distinct) is

H+
g := HB+

g (z1, . . . , zk) := (V+)TGV+ ∈ Cl×l (2)

where B+ := B ∪
⋃

i xiB = {b, x1b, . . . , xnb | b ∈ B},
V+ = VB+(z1, . . . , zk) ∈ Ck×l and G is the k × k diagonal matrix with
[G ]j ,j = g(zj) for j = 1, . . . , k.
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Example

Let f (x) = x2 − 1, g = 1 ∈ R[x ], and B = {1, x , x2} and
ξ0 = 1, ξ1 = i , ξ2 = −i ∈ C.

G=

g(1) 0 0
0 g(i) 0
0 0 g(−i)

 = I3 and V=

ξ0 ξ0 ξ20
ξ1 ξ1 ξ21
ξ2 ξ2 ξ22

=
1 1 1
1 i −1
1 −i −1

,

then H1 = HB
1 (1, i ,−i) = V TGV =

 3 1 −1
1 −1 1
−1 1 3
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Trace definition vs VGV definition over Rationals

VGV definition:

Pros: gives a very efficient way to evaluate the entries of the Hermite
matrix, assuming that we know the common roots of I exactly.
Cons: we need to compute the common roots exactly, which may involve
working in field extensions of Q.

Trace Definition:

Pros: can be computed exactly, working with rational numbers only.
Cons: requires the computation of the traces of k2 matrices.
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Signature of Hermite Matrices

Definition

Let A be a real and symmetric matrix. Then the signature of A is

σ(A) := #{positive eigenvalues ofA} −#{negative eigenvalues ofA}.

Theorem (Multivariate Hermite Theorem)

Let I ⊂ R[x1, . . . , xn] be zero dimensional and B be a monomial basis of
R[x1, . . . , xn]/I. If Hg (I) is the Hermite matrix of I with respect to g in
the basis B, then

σ(Hg (I)) = #{x ∈ VR(I) | g(x) > 0} −#{x ∈ VR(I) | g(x) < 0}.
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Special case g = 1

Corollary

Using the Hermite Theorem above, its signature gives the number of real
roots of f

σ(H1) = #{x ∈ VR(I)}

Moreover:
Consider the univariate case when g = 1 and B := {1, x , . . . , xk−1}.
Let f = (f1, . . . , fm) ∈ R[x ] and I = ⟨f1, . . . , fm⟩ be a zero dimensional
ideal and exact roots zl for l = 1, . . . , k

H1 =

[
k∑

l=1

z i+j−2
l

]
i ,j=1,...,k

.

The right hand side of the equation is the (i + j − 2)-th power sum of the
roots, which is an elementary symmetric function of the roots.
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Computation

• Algorithm 1: Hermite Matrix Computation
- Returns a rational matrix

• Algorithm 2: Hermite Matrix Certification
- Certifies that the output of the Algorithm 1 is the exact Hermite
Matrix

• Algorithm 3: Real Root Certification
- Uses the exact Hermite matrix and a certain g to certify the real
roots of the given rational polynomial system
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Algorithm 1: Hermite Matrix Computation

Input: B = {xα1 , . . . , xαk} and B+ with |B+| = l for k, l ∈ N.
E ,M ∈ R+ and z1, . . . , zk ∈ Cn such that ∥zi∥∞ ≤ M + E
for i = 1, . . . , k and E .

Output: H+
1 ∈ Ql×l with rows and columns indexed by the elements

of B+.
1: Compute the extended Hermite matrix HB+

1 (z1, z2, . . . , zk)
using Definition 1 with respect to the auxiliary function
g = 1 and the monomials in B+.
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Algorithm 1: Hermite Matrix Computation

2: Rationalize each entry of the approximate Hermite matrix
HB+

1 (z1, z2, . . . , zk) using rational number reconstruction. For
the (i , j)-th entry of the HB+

1 (z1, z2, . . . , zk), we use the
following denominator bound:

Bij :=
⌈
(2Ekndi ,jM

di,j−1)−1/2
⌉
, (3)

where di ,j = deg bi + deg bj and bi and bj are the i-th and
j-th elements of B+ respectively, for 1 ≤ i , j ≤ l . Return the
resulting rational matrix.
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Algorithm 2: Hermite Matrix Certification

Input: f = (f1, . . . , fm) ∈ Q[x1, . . . , xn]
m with I = ⟨f1, . . . , fm⟩ zero

dimensional and radical;
g ∈ Q[x1, . . . , xn],
B = {xα1 , . . . , xαk} connected to 1 with |B+| = l for some
k , l ∈ N
H+
1 ∈ Ql×l with rows and columns indexed by the elements

of B+.
Output: The certified H1(I) and Hg (I), or Fail.

1: H1 ← k × k submatrix of H+
1 with rows and columns

corresponding to B.
Hxs
1 ← k × k submatrix of H+

1 with rows corresponding to B
and columns corresponding to xsB for s = 1, . . . , n.

2: If rank H1 = rank H+
1 = k, then Ms ← H−1

1 · H
xs
1 for

s = 1, . . . , n. else return Fail.

25 / 36



Algorithm 2: Hermite Matrix Certification

3: For s = 1, . . . , n, i , j = 1, . . . , k
if xsxαi = xαj and [Ms ]i ,∗ ̸= eTj then return

Fail.

4: Let c1, . . . , cn be either new parameters or generic elements
of Q.
p(λ)← characteristic polynomial polynomial to

∑n
i=1 ciMi .

if gcd(p(λ), p′(λ)) ̸= 1 return Fail.

5: If
Mi ·Mj = Mj ·Mi 1 ≤ i < j ≤ n

and
fi (M1,M2, . . . ,Mn) = 0 for i = 1, . . . ,m,

then we certified that Mi is the transpose of the
multiplication matrix of I with respect to xi in the basis B
for all i = 1, . . . , n.
Else return Fail.
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Algorithm 2: Hermite Matrix Certification

6: For i , j = 1, . . . , l if

Tr((bi · bj)(M1,M2, . . . ,Mn)) ̸= [H1]i ,j

where bi and bj are the i-th and j-th elements of B
respectively, and (bi · bj)(M1,M2, . . . ,Mn) is the matrix
obtained by evaluating the polynomial bi · bj in the matrices
M1,M2, . . . ,Mn

then return Fail.
Else we certified H1 = H1(I).

7: Return H1 and Hg ← H1 · g(M1, . . . ,Mn).
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How to choose g?

If we choose g(x) = 1, then σ(H1(I)) = #{x ∈ VR(I)}.

What happens if we choose g(x) = |x − z |2 − ε2 ?

z = 0 z = 0.33
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Hermite Certification Theorem

Corollary (A. and Szanto, 2023)

Let f = (f1, . . . , fm) ∈ Q[x1, . . . , xn]
m for all i = 1, . . .m, and

I = ⟨f1, . . . , fm⟩ is a zero dimensional radical ideal. Given z∗ ∈ Qn and
ε ∈ Q+, define g(x) := ∥x − z∗∥22 − ε2 ∈ Q[x1, . . . , xn]. Then

σ(H1(I)) = σ(Hg (I))

if and only if there is no real root within the closed ball in Rn of radius ε
around z∗.
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Algorithm 3: Real Root Certification

Input: f = (f1, . . . , fm) ∈ Q[x1, . . . , xn]
m; z∗ ∈ Q[i ]n; ε2 ∈ Q+;

B = {xα1 , . . . , xαk} connected to 1 with |B+| = l for some
k , l ∈ N
E ,M ∈ R+ and z1, . . . , zk ∈ Cn such that ∥zi∥∞ ≤ M + E
for i = 1, . . . , k and the accuracy of zi is at least E .

Output: True: ∃z ∈ VR(I) such that z is in the closed ball of radius ε
around z∗

False: No real root of I within the closed ball of radius ε
around z∗

or Fail.
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Algorithm 3: Real Root Certification (cont’d)

1: Define g(x) := ∥x − z∗∥22 − ε2 ∈ Q[x1, . . . , xn]

2: H+
1 := HB+

1 (z1, . . . , zk)←
Hermite Matrix Computation (B,B+,E ,M, {z1, . . . , zk})
using the second definition.

3: For I := ⟨f1, . . . , fm⟩ call
Hermite Matrix Certification(f , g(x),B,H+

1 ) to
obtain certified H1(I ) and Hg (I ), that algorithm can also
return Fail.

4: Compute σ(H1(I)) and σ(Hg (I)).
5: If σ(H1(I)) = σ(Hg (I)) then return False

else return True.
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A Simple Example

Consider f (x) = 16x4 − 10x2 + 1 ∈ Q[x ], with g(x) = 1.
The exact roots: 1/

√
2,−1/

√
2, 1/2

√
2,−1/2

√
2.

Approximate solutions (homotopy method on Maple):
z1 = 0.7071067810, z2 = −0.7071067810, z3 = 0.3535533905, z4 =
−0.3535533905.
This solution has error bound E := 10−8.

Compute the approximate extended Hankel matrix H̃+
1 from z1, z2, z3, z4:

H̃+
1 =



4.0 −0.0000000007 1.2500000052 −0.00000000026 0.5312500055

−0.0000000007 1.2500000053 −0.0000000002 0.5312500055 −5.3363907043 × 10−11

1.2500000052999999 −0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062541

−0.0000000002 0.5312500055 −5.4597088135 × 10−11 0.2539062542 −9.3658008865 × 10−12

0.5312500055 −5.3363907043 × 10−11 0.2539062541 −9.3658008865 × 10−12 0.1254882840


.
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Example (cont’d)

Rationalize H+
1 , using M = 0.8 and E = 10−8 and the denominator bound defined

in the Algorithm 1. This gives B ∼= 2700 as upper bound for the denominators of
each entry of the Hankel matrix H+

1 .

H+
1 =



4 0 5
4

0 17
32

0 5
4

0 17
32

0

5
4

0 17
32

0 65
256

0 17
32

0 65
256

0

17
32

0 65
256

0 257
2048



Let H1 be the first k rows and the first k columns of H+
1 , and Hk

1 be the first k rows and the last k columns of H+
1 .
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H+
1 has Hankel structure and rank(H+

1 ) = rank(H1) = 4. Then

C = H−1
1 · H4

1 =


0 0 0 − 1

16

1 0 0 0

0 1 0 5
8

0 0 1 0

 .

C has a companion matrix shape and f (C ) = 0, then p(x) := x4 − 5
8x

2 + 1
16 with

gcd(p, p′) = 1 (square free).
We Newton–Girard formulas with the elementary symmetric functions:
e0 = 1, e1 = 0, e2 = − 5

8 , e3 = 0, e4 =
1
16 , which yields

4∑
i=1

ξ0i = 4,
4∑

i=1

ξ2i =
5

4
,

4∑
i=1

ξ4i =
17

32
,

4∑
i=1

ξ6i =
65

256
,

and all odd power sums are zero. Each sum matches the corresponding entry, thus
we certified H1.
Since g(x) = 1, Return H1.
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Further Research

Extra sections in the paper:

• Extension to the Non-Radical Case

• Another interesting application of Hermite Matrices:
Non-positivity over V (f ) ∩ Rn

Other research interests:

• Real Eigenvalue certification

• Positivity Certificates

• Fast Polynomial Multiplication

• Applications of Polyhedral Omega (joint work with Zefeirakis
Zafeirakopoulos)
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