Learning Mean-Field Games

Berkay Anahtarcı

Özyeğin University, Department of Natural and Mathematical Sciences

Based on joint work with Can Deha Karıksız and Naci Saldi

January 23, 2024

Motivating Example

- 2 N-Player Games
- 3 Mean-Field Games
- 4 Value Iteration Algorithm
- 5 Reinforcement Learning for MFGs

Mean-Field Games (MFGs) are characterized as

- ► A game involving a vast population of small interacting individuals:
 - Large population: Encompassing a continuum of players.
 - **Small interacting**: Strategies based on aggregated macroscopic information (mean-field).
- Originated from the study of weakly interacting particles in physics.
- Theoretical groundwork laid by Huang, Malhamé, and Caines (2006), and Lasry and Lions (2007).
- Main idea: In an N-player game, as N grows, the "aggregated" version, MFG, approximates the game using the Law of Large Numbers, in terms of ε-Nash equilibrium.

Motivating Example: Crowd Motion Analysis

Hamilton-Jacobi-Bellman

Fokker-Planck-Kolmogorov

https://www.science4all.org/article/mean-field-games/

- Given the current state profile of *N*-players $\mathbf{x}_t = (x_t^1, \dots, x_t^N) \in \mathcal{X}^N$ and the action $a_t^i \in \mathcal{A}$, player *i* receives a **reward** $r^i(\mathbf{x}_t, a_t^i)$.
- Their state changes to xⁱ_{t+1} according to a transition probability function Pⁱ(x_t, aⁱ_t).
- The policy πⁱ_t: X^N → Δ_A maps each state profile x ∈ X^N to a randomized action, with Δ_A the space of probability measures on space A.
- In a Markovian game, the admissible policy/control for player i is determined by the current state: aⁱ_t = πⁱ_t(x_t).

Problem Formulation

$$\begin{split} \text{maximize}_{\pi} \quad V^{i}(\pmb{x}, \pi) &:= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(\pmb{x}_{t}, a^{i}_{t}) \mid \pmb{x}_{0} = \pmb{x}\right]\\ \text{subject to} \quad x^{i}_{t+1} \sim P^{i}(\pmb{x}_{t}, a^{i}_{t}) \text{ and } a^{i}_{t} \sim \pi^{i}_{t}(\pmb{x}_{t}) \end{split}$$

- Vⁱ(x, π) is the value function for player *i*, given the initial state profile x and the policy profile sequence π := {π_t}_{t=0}[∞] with π_t = (π¹_t,...,π^N_t).
- $\gamma \in (0,1)$ is the discount factor.

Definition (*N*-Player Game: Nash Equilibrium)

Nash Equilibrium (NE) consists of strategies where no agent can gain an advantage from unilaterally deviating from this set of strategies. Formally, π^* is an NE if for all *i* and *x*,

$$V^{i}(\boldsymbol{x}, \boldsymbol{\pi}^{*}) \geq V^{i}(\boldsymbol{x}, (\pi_{1}^{*}, \ldots, \pi_{i}, \ldots, \pi_{N}^{*}))$$

holds for any $\pi_i : \mathcal{X}^N \to \Delta_{\mathcal{A}}$.

- Assume all players are identical, indistinguishable and interchangeable.
- Each player has a negligible impact on the rest of the population.
- One can view the limit of other players' states $\mathbf{x}_t^{-i} \coloneqq (x_t^1, \dots, x_t^{i-1}, x_t^{i+1}, \dots, x_t^N)$ as a population state distribution

$$\mu_t(x) \coloneqq \lim_{N \to \infty} \frac{\sum_{j=1, j \neq i}^N \mathbb{1}_{x_t^j = x}}{N}$$

Due to the homogeneity of the players, one can then focus on a single (representative) player.

MFG Formulation

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(x, \pi, \mu) \coloneqq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}, \mu_{t}) \mid x_{0} = x\right] \\ & \text{subject to} \quad x_{t+1} \sim P(x_{t}, a_{t}, \mu_{t}) \text{ and } a_{t} \sim \pi_{t}(x_{t}, \mu_{t}) \end{aligned}$$

- Here $\pi := {\pi_t}_{t=0}^{\infty}$ denotes the **policy sequence** and $\mu := {\mu_t}_{t=0}^{\infty}$ the **distribution flow**.
- In the MFG setting, at time t, after the representative player chooses their action according to some policy π_t, they will receive reward r(x_t, a_t, μ_t) and their state will evolve under P(· | s_t, a_t, μ_t).
- Here $\pi : \mathcal{X} \times \Delta_{\mathcal{X}} \to \Delta_{\mathcal{A}}$.

Definition (McKean–Vlasov Equation)

The evolution of the population is given by a transition matrix defined by

$$\mu_{t+1}(y) = \sum_{x \in \mathcal{X}} \mu_t(x) \sum_{a \in \mathcal{A}} \pi_t(a \mid x) p(y \mid x, a, \mu_t) \coloneqq P_t^{\pi} \mu_t(y)$$

for all $\pi_t \in \Pi$, $\mu_t \in \Delta_{\mathcal{X}}$ and $x \in \mathcal{X}$.

- Assume that the players interact through a stationary distribution, which represents a steady state of the population.
- The model is defined by a tuple $(\mathcal{X}, \mathcal{A}, p, r, \gamma)$ consisting of
 - \bullet a state space ${\cal X}$ and an action space ${\cal A},$
 - a one-step transition probability kernel $p: \mathcal{X} \times \mathcal{A} \times \Delta_{\mathcal{X}} \to \Delta_{\mathcal{X}}$,
 - a one-step reward function $r: \mathcal{X} \times \mathcal{A} \times \Delta_{\mathcal{X}} \to \mathbb{R}$,
 - and a discount factor $\gamma \in [0, 1]$.
- The state of the population is given by $\mu_t = \mu \in \Delta_{\mathcal{X}}$ for all t.
- Consider a representative agent using policy $\pi \in \Pi$.

Definition (Total discounted reward)

$$J(\pi,\mu) = \mathbb{E}\left[\sum_{n=0}^{\infty} \gamma^n r(x_n, a_n, \mu)\right]$$

$$y_0 \sim \mu, \quad x_{n+1} \sim p(\cdot \mid x_n, a_n, \mu), \quad a_n \sim \pi(\cdot \mid x_n).$$

Given a population state, the goal for a representative agent, is to find the best reaction, i.e., a policy that maximizes their total reward.

х

Definition (Best Response Map)

$$\Psi: \Delta_{\mathcal{X}} \to 2^{\Pi}, \quad \mu \mapsto \Psi(\mu) \coloneqq \operatorname{argmax}_{\pi \in \Pi} J(\pi, \mu) \subseteq \Pi.$$

Definition (Population Behaviour Map)

$$\Lambda:\Pi \to 2^{\Delta_{\mathcal{X}}}, \quad \pi \mapsto \Lambda(\pi) := \{\mu \in \Delta_{\mathcal{X}} \mid \mu = P^{\pi}\mu\}$$

is the **stationary distribution** obtained when using π (that we assume to be unique).

Definition (Stationary MF Nash Equilibrium)

A pair $(\pi_*, \mu_*) \in \Pi \times \Delta_{\mathcal{X}}$ is called **stationary MFNE** if it satisfies:

$$\pi_* \in \Psi(\mu_*)$$
 and $\mu_* \in \Lambda(\pi_*)$

Alternatively, an equilibrium can be defined as a fixed point:

- π_* is a **stationary MFNE policy** if it is a fixed point of $\Psi \circ \Lambda$,
- μ_{*} is a stationary MFNE distribution if it is the stationary distribution of a stationary MFNE policy.

Definition (State-Action Value Function)

The state-action value function associated to a stationary policy π for a given distribution μ is defined as:

$$Q^{\pi,\mu}(x,a) = \mathbb{E}\left[\sum_{n=0}^{\infty} \gamma^n r(x_n,a_n,\mu) \mid x_0 = x, a_0 = a\right]$$

where $x_{n+1} \sim p(\cdot \mid x_n, a_n, \mu)$ and $a_n \sim \pi(\cdot \mid x_n)$.

• $Q^{\pi,\mu}$ satisfies the fixed point equation: $Q = B^{\pi,\mu}Q$.

Definition (Bellman Operator)

$$(B^{\pi,\mu}Q)(x,a) = r(x,a,\mu) + \gamma \sum_{x'} p(x' \mid x,a,\mu) \sum_{a'} \pi(a' \mid x')Q(x',a')$$

Note that

$$\sum_{x'} p(x' \mid x, a, \mu) \sum_{a'} \pi(a' \mid x') Q(x', a') = \underset{\substack{x' \sim p(\cdot \mid x, a, \mu) \\ a' \sim \pi(\cdot \mid x')}}{\mathbb{E}} [Q(x', a')].$$

Berkay Anahtarcı (OZU)

Image: Image:

æ

Definition (Optimal State-Action Value Function)

$$Q^{*,\mu}(x,a) = \sup_{\pi} Q^{\pi,\mu}(x,a)$$

lt satisfies the fixed point equation: $Q = B^{*,\mu}Q$.

Optimal Bellman Operator associated to μ

$$(B^{*,\mu}Q)(x,a) = r(x,a,\mu) + \gamma \mathop{\mathbb{E}}_{x' \sim p(\cdot | x,a,\mu)} [\max_{a'} Q(x',a')]$$

Here

$$\mathbb{E}_{x' \sim p(\cdot \mid x, a, \mu)}[\max_{a'} Q(x', a')] = \sum_{x'} p(x' \mid x, a, \mu) \max_{a'} Q(x', a').$$

э

Solving MFGs

Best Response-Based Methods

Let μ_0 be given, for $i = 0, \ldots, L - 1$:

$$egin{cases} \pi_{i+1} = \Psi(\mu_i) \ \mu_{i+1} = \Pi(\pi_{i+1}) \end{cases}$$

Under suitable conditions, (π_L, μ_L) is close to (π_*, μ_*) when L is large enough.

Transition Matrix Approximation

Let μ_0 be given, for $i = 0, \ldots, L - 1$:

$$\begin{cases} \pi_{i+1} = \Psi(\mu_i) \\ \mu_{i+1} = P^{\pi^{i+1}} \mu_i \end{cases}$$

(日) (四) (日) (日) (日)

э

Value Iteration Algorithm [A., Karıksız, Saldi (2021)]

Cost Function

Given μ , the cost of policy π with initial state x is:

$$J_{\mu}(\pi,x) = \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^t c(x(t), a(t), \mu) \mid x(0) = x
ight]$$

Bellman Optimality Operator

$$J^*_{\mu}(x) = \min_{a} \left[c(x, a, \mu) + \beta \sum_{y}^{\infty} J^*_{\mu}(y) p(y \mid x, a, \mu) \right]$$

- The optimal cost is given by $J^*_{\mu} = \inf_{\pi} J_{\mu}(\pi, x)$.
- J^{*}_μ is the unique fixed point of the Bellman optimality operator which is β-contractive.

• If $\pi_{\mu} : \mathcal{X} \to \mathcal{A}$ attains the minimum, then it is optimal.

Value Iteration Algorithm

• We can also characterize π_{μ} using *Q*-functions.

Optimal *Q*-function

$$Q^*_\mu(x, a) = c(x, a, \mu) + eta \sum_y^\infty J^*_\mu(y) p(y \mid x, a, \mu)$$

$$Q^*_\mu(x,a) = c(x,a,\mu) + eta \sum_y^\infty Q^*_{\mu,\min}(x) p(y \mid x,a,\mu)$$

• If $\pi_{\mu}(x) = \operatorname{argmin}_{a} Q^{*}_{\mu}(x, a)$. Then π_{μ} is optimal.

æ

Value Iteration Algorithm

Optimal *Q*-function for μ

$$H_1: \mu \to Q^*_\mu$$

New mean-field

$$H_2: (\mu, Q) \mapsto \sum_{x} p(\cdot \mid x, \pi_Q(x), \mu) \mu(x)$$
$$\pi_Q(x) \coloneqq \operatorname{argmin}_a Q(x, a) \quad [\text{greedy policy}]$$

Mean-Field Equilibrium (MFE)

$$H: \mu \mapsto H_2(\mu, H_1(\mu)) = \sum_x p(\cdot \mid x, \pi_\mu(x), \mu) \mu(x)$$

Berkay Anahtarcı (OZU)

- It turns out that H is a contraction.
- Using the Banach Fixed Point theorem, the VI algorithm gives the fixed point µ_{*} and the corresponding

VI Algorithm

Start with μ_0 while $\mu_n \neq \mu_{n-1}$ do $\mu_{n+1} = H(\mu_n)$ end while return Fixed-point μ_* of H and $Q_{\mu_*}^* = H_1(\mu_*)$

If (μ_{*}, Q^{*}_{μ_{*}}) is the output of the value iteration algorithm above, then the pair (μ_{*}, π_{μ_{*}}) is a mean-field equilibrium.

Assumptions

- The one-stage cost c function and the transition kernel p are Lipschitz continuous.
- F(x, ν, μ, ·) := c(x, ·, μ) + β ∑_{y∈X} ν(y)p(y | x, ·, μ) is ρ-strongly convex. Moreover, its gradient ∇F(x, ν, μ, ·) with respect to a is Lipschitz continuous.

- If p and c are unknown, one needs to develop a learning algorithm to compute a mean-field equilibrium.
- When the model is known, given µ, the MFE operator H is composition of H₁ and H₂:
 - $H_1(\mu)$ is the optimal *Q*-function Q^*_{μ} for μ
 - $H_2(\mu, Q^*_{\mu})$ is the new mean-field term.
- When the model is unknown, we replace H₁ and H₂ with random operators H₁ and H₂.

Fitted Q-learning

Inputs
$$([N, L], \mu)$$

Generate i.i.d. samples $\{(x_t, a_t)\}_{t=1}^N$ and let
 $c_t = c(x_t, a_t, \mu), y_{t+1} \sim p(\cdot | x_t, a_t, \mu).$
Start with $Q_0 = 0$
for $i = 0, \dots, L - 1$ do

$$Q_{i+1} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \left[\frac{1}{N} \sum_{t=1}^{N} \left(f(x_t, a_t) - c_t + \beta \min_{a'} Q_i(y_{t+1}, a') \right)^2 \right]$$

end for return Q_L

Image: A matched black

æ

Simulation

Inputs (M, μ, Q) for $x \in \mathcal{X}$ do Generate i.i.d. samples $\{y_t^x\}_{t=1}^M$ using $y_t^x \sim p(\cdot \mid x, \pi_Q(x), \mu)$ and define

$$p_M(\cdot \mid x, \pi_Q(x), \mu) = \frac{1}{M} \sum_{t=1}^M \delta_{y_t^x}(\cdot)$$

end for return $\sum_{x} p_{M}(\cdot \mid x, \pi_{Q}(x), \mu)\mu(x)$

3

Learning Algorithm

Inputs $(K, \{[N_k, L_k]\}_{k=0}^K, \{M_k\}_{k=0}^K, \mu_0)$ Start with μ_0 for k = 0, ..., K - 1 do

$$\mu_{k+1} = \hat{H}([N_k, L_k], M_k)(\mu_k) \coloneqq \hat{H}_2[M_k](\mu_k, \hat{H}_1[N_k, L_k](\mu_k))$$

end for return μ_k and $Q_k = \hat{H}_1([N_k, L_k])(\mu_k)$

э

Approximate Mean-Field Equilibrium

Let (μ_k, Q_k) be the output of the learning algorithm \hat{H} . Define $\pi_K(x) \coloneqq \operatorname{argmin}_a Q_K(x, a)$. Then, with probability at least $1 - \delta$,

$$\sup_{x} \|\pi_{\mathcal{K}}(x) - \pi_*(x)\| \le \kappa(\epsilon, \Delta)$$

where $\kappa(\epsilon, \Delta) = O(\epsilon + \Delta)$.

Approximate Nash Equilibrium

Let π_K be the policy obtained from the learning algorithm. Then, for any $\delta > 0$, there exists a positive integer $N(\delta)$ such that for each $N \ge N(\delta)$, the *N*-tuple of policies $\pi^{(N)} = \{\pi_K, \pi_K, \dots, \pi_K\}$ is an $(\delta + \tau \kappa(\epsilon, \Delta))$ -Nash equilibrium for the game with *N* agents, with probability at least $1 - \delta$.

イロト 不得 トイヨト イヨト

3

Berkay Anahtarci, Can Deha Karıksız, Naci Saldi Learning Mean-Field Games with Discounted and Average-Costs *Journal of Machine Learning Research* **24**(17):1-59, 2023.

Mathieu Laurière, Sarah Perrin, Matthieu Geisty, Olivier Pietquiny Learning Mean Field Games: A Survey *arXiv:* 2205.12944v1 (2022)

Xin Guo, Anran Hu, Renyuan Xu, Junzi Zhang Learning Mean-Field Games *arXiv:* 1901.09585v4 (2021)

The End

2

< □ > < □ > < □ > < □ > < □ >