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Overview of Mean-Field Game (MFG)

Mean-Field Games (MFGs) are characterized as
▶ A game involving a vast population of small interacting individuals:

Large population: Encompassing a continuum of players.
Small interacting: Strategies based on aggregated macroscopic
information (mean-field).

▶ Originated from the study of weakly interacting particles in physics.

▶ Theoretical groundwork laid by Huang, Malhamé, and Caines (2006),
and Lasry and Lions (2007).

▶ Main idea: In an N-player game, as N grows, the “aggregated”
version, MFG, approximates the game using the Law of Large
Numbers, in terms of ϵ-Nash equilibrium.
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Motivating Example: Crowd Motion Analysis

https://www.science4all.org/article/mean-field-games/
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Classical N-Player Markovian Games

▶ Given the current state profile of N-players xt = (x1t , . . . , x
N
t ) ∈ XN

and the action ait ∈ A, player i receives a reward r i (xt , ait).
▶ Their state changes to x it+1 according to a transition probability

function P i (xt , ait).
▶ The policy πi

t : XN → ∆A maps each state profile x ∈ XN to a
randomized action, with ∆A the space of probability measures on
space A.

▶ In a Markovian game, the admissible policy/control for player i is
determined by the current state: ait = πi

t(xt).
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Classical N-Player Markovian Games

Problem Formulation

maximizeπ V i (x ,π) := E

[ ∞∑
t=0

γtr i (xt , ait) | x0 = x

]
subject to x it+1 ∼ P i (xt , ait) and ait ∼ πi

t(xt)

▶ V i (x ,π) is the value function for player i , given the initial state
profile x and the policy profile sequence π := {πt}∞t=0 with
πt = (π1

t , . . . , π
N
t ).

▶ γ ∈ (0, 1) is the discount factor.
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N-Player Games

Definition (N-Player Game: Nash Equilibrium)

Nash Equilibrium (NE) consists of strategies where no agent can gain an
advantage from unilaterally deviating from this set of strategies. Formally,
π∗ is an NE if for all i and x ,

V i (x ,π∗) ≥ V i (x , (π∗
1, . . . , πi , . . . , π

∗
N))

holds for any πi : XN → ∆A.
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From N-Player Game to MFG

▶ Assume all players are identical, indistinguishable and interchangeable.

▶ Each player has a negligible impact on the rest of the population.

▶ One can view the limit of other players’ states
x−i
t := (x1t , . . . , x

i−1
t , x i+1

t , . . . , xNt ) as a population state distribution

µt(x) := lim
N→∞

∑N
j=1,j ̸=i 1x jt=x

N
.

▶ Due to the homogeneity of the players, one can then focus on a single
(representative) player.
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From N-Player Game to MFG

MFG Formulation

maximizeπ V (x ,π,µ) := E

[ ∞∑
t=0

γtr(xt , at , µt) | x0 = x

]
subject to xt+1 ∼ P(xt , at , µt) and at ∼ πt(xt , µt)

▶ Here π := {πt}∞t=0 denotes the policy sequence and µ := {µt}∞t=0

the distribution flow.

▶ In the MFG setting, at time t, after the representative player chooses
their action according to some policy πt , they will receive reward
r(xt , at , µt) and their state will evolve under P(· | st , at , µt).

▶ Here π : X ×∆X → ∆A.
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Population Dynamics

Definition (McKean–Vlasov Equation)

The evolution of the population is given by a transition matrix defined by

µt+1(y) =
∑
x∈X

µt(x)
∑
a∈A

πt(a | x)p(y | x , a, µt) := Pπ
t µt(y)

for all πt ∈ Π, µt ∈ ∆X and x ∈ X .
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Stationary MFGs

▶ Assume that the players interact through a stationary distribution,
which represents a steady state of the population.

▶ The model is defined by a tuple (X ,A, p, r , γ) consisting of

a state space X and an action space A,
a one-step transition probability kernel p : X ×A×∆X → ∆X ,
a one-step reward function r : X ×A×∆X → R,
and a discount factor γ ∈ [0, 1].

▶ The state of the population is given by µt = µ ∈ ∆X for all t.

▶ Consider a representative agent using policy π ∈ Π.
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Stationary MFGs

Definition (Total discounted reward)

J(π, µ) = E

[ ∞∑
n=0

γnr(xn, an, µ)

]
x0 ∼ µ, xn+1 ∼ p(· | xn, an, µ), an ∼ π(· | xn).

▶ Given a population state, the goal for a representative agent, is to
find the best reaction, i.e., a policy that maximizes their total reward.
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Stationary MFGs

Definition (Best Response Map)

Ψ : ∆X → 2Π, µ 7→ Ψ(µ) := argmax
π∈Π

J(π, µ) ⊆ Π.

Definition (Population Behaviour Map)

Λ : Π → 2∆X , π 7→ Λ(π) := {µ ∈ ∆X | µ = Pπµ}

is the stationary distribution obtained when using π (that we assume to
be unique).
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Stationary MFGs

Definition (Stationary MF Nash Equilibrium)

A pair (π∗, µ∗) ∈ Π×∆X is called stationary MFNE if it satisfies:

π∗ ∈ Ψ(µ∗) and µ∗ ∈ Λ(π∗)

Alternatively, an equilibrium can be defined as a fixed point:

▶ π∗ is a stationary MFNE policy if it is a fixed point of Ψ ◦ Λ,
▶ µ∗ is a stationary MFNE distribution if it is the stationary

distribution of a stationary MFNE policy.
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Stationary MFGs

Definition (State-Action Value Function)

The state-action value function associated to a stationary policy π for a
given distribution µ is defined as:

Qπ,µ(x , a) = E

[ ∞∑
n=0

γnr(xn, an, µ) | x0 = x , a0 = a

]

where xn+1 ∼ p(· | xn, an, µ) and an ∼ π(· | xn).

▶ Qπ,µ satisfies the fixed point equation: Q = Bπ,µQ.
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Stationary MFGs

Definition (Bellman Operator)

(Bπ,µQ)(x , a) = r(x , a, µ) + γ
∑
x ′

p(x ′ | x , a, µ)
∑
a′

π(a′ | x ′)Q(x ′, a′)

▶ Note that∑
x ′

p(x ′ | x , a, µ)
∑
a′

π(a′ | x ′)Q(x ′, a′) = E
x ′∼p(·|x ,a,µ)
a′∼π(·|x ′)

[Q(x ′, a′)].
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Stationary MFGs

Definition (Optimal State-Action Value Function)

Q∗,µ(x , a) = sup
π

Qπ,µ(x , a)

▶ It satisfies the fixed point equation: Q = B∗,µQ.

Optimal Bellman Operator associated to µ

(B∗,µQ)(x , a) = r(x , a, µ) + γ E
x ′∼p(·|x ,a,µ)

[max
a′

Q(x ′, a′)]

▶ Here

E
x ′∼p(·|x ,a,µ)

[max
a′

Q(x ′, a′)] =
∑
x ′

p(x ′ | x , a, µ)max
a′

Q(x ′, a′).
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Solving MFGs

Best Response-Based Methods

Let µ0 be given, for i = 0, . . . , L− 1:{
πi+1 = Ψ(µi )

µi+1 = Π(πi+1)

Under suitable conditions, (πL, µL) is close to (π∗, µ∗) when L is large
enough.

Transition Matrix Approximation

Let µ0 be given, for i = 0, . . . , L− 1:{
πi+1 = Ψ(µi )

µi+1 = Pπi+1
µi

Berkay Anahtarcı (OZU) Learning MFGs January 23, 2024 18 / 30



Value Iteration Algorithm [A., Karıksız, Saldi (2021)]

Cost Function

Given µ, the cost of policy π with initial state x is:

Jµ(π, x) = Eπ

[ ∞∑
t=0

βtc(x(t), a(t), µ) | x(0) = x

]

Bellman Optimality Operator

J∗µ(x) = min
a

[
c(x , a, µ) + β

∞∑
y

J∗µ(y)p(y | x , a, µ)

]

▶ The optimal cost is given by J∗µ = infπ Jµ(π, x).

▶ J∗µ is the unique fixed point of the Bellman optimality operator which
is β-contractive.

▶ If πµ : X → A attains the minimum, then it is optimal.
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Value Iteration Algorithm

▶ We can also characterize πµ using Q-functions.

Optimal Q-function

Q∗
µ(x , a) = c(x , a, µ) + β

∞∑
y

J∗µ(y)p(y | x , a, µ)

▶ Then Q∗
µ,min(x) := mina Q

∗
µ(x , a) = J∗µ(x).

▶ Q∗
µ(x , a) is the unique fixed point of the β-contractive operator:

Q∗
µ(x , a) = c(x , a, µ) + β

∞∑
y

Q∗
µ,min(x)p(y | x , a, µ)

▶ If πµ(x) = argmina Q
∗
µ(x , a). Then πµ is optimal.
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Value Iteration Algorithm

Optimal Q-function for µ

H1 : µ → Q∗
µ

New mean-field

H2 : (µ,Q) 7→
∑
x

p(· | x , πQ(x), µ)µ(x)

πQ(x) := argmin
a

Q(x , a) [greedy policy]

Mean-Field Equilibrium (MFE)

H : µ 7→ H2(µ,H1(µ)) =
∑
x

p(· | x , πµ(x), µ)µ(x)
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Value Iteration Algorithm

▶ It turns out that H is a contraction.

▶ Using the Banach Fixed Point theorem, the VI algorithm gives the
fixed point µ∗ and the corresponding

VI Algorithm

Start with µ0

while µn ̸= µn−1 do
µn+1 = H(µn)

end while
return Fixed-point µ∗ of H and Q∗

µ∗ = H1(µ∗)

▶ If (µ∗,Q
∗
µ∗) is the output of the value iteration algorithm above, then

the pair (µ∗, πµ∗) is a mean-field equilibrium.
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Value Iteration Algorithm

Assumptions

▶ The one-stage cost c function and the transition kernel p are
Lipschitz continuous.

▶ F (x , ν, µ, ·) := c(x , ·, µ) + β
∑

y∈X ν(y)p(y | x , ·, µ) is ρ-strongly
convex. Moreover, its gradient ∇F (x , ν, µ, ·) with respect to a is
Lipschitz continuous.
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Learning Algorithm [A., Karıksız, Saldi (2021)]

▶ If p and c are unknown, one needs to develop a learning algorithm to
compute a mean-field equilibrium.

▶ When the model is known, given µ, the MFE operator H is
composition of H1 and H2:

H1(µ) is the optimal Q-function Q∗
µ for µ

H2(µ,Q
∗
µ) is the new mean-field term.

▶ When the model is unknown, we replace H1 and H2 with random
operators Ĥ1 and Ĥ2.
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Algorithm for Ĥ1

Fitted Q-learning

Inputs ([N, L], µ)
Generate i.i.d. samples {(xt , at)}Nt=1 and let
ct = c(xt , at , µ), yt+1 ∼ p(· | xt , at , µ).
Start with Q0 = 0
for i = 0, . . . , L− 1 do

Qi+1 = argmin
f ∈F

[
1

N

N∑
t=1

(
f (xt , at)− ct + βmin

a′
Qi (yt+1, a

′)

)2
]

end for
return QL
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Algorithm for Ĥ2

Simulation

Inputs (M, µ,Q)
for x ∈ X do
Generate i.i.d. samples {y xt }Mt=1 using y xt ∼ p(· | x , πQ(x), µ) and define

pM(· | x , πQ(x), µ) =
1

M

M∑
t=1

δyx
t
(·)

end for
return

∑
x pM(· | x , πQ(x), µ)µ(x)
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Approximate MFE operator Ĥ

Learning Algorithm

Inputs (K , {[Nk , Lk ]}Kk=0, {Mk}Kk=0, µ0)
Start with µ0

for k = 0, . . .K − 1 do

µk+1 = Ĥ([Nk , Lk ],Mk)(µk) := Ĥ2[Mk ](µk , Ĥ1[Nk , Lk ](µk))

end for
return µk and Qk = Ĥ1([Nk , Lk ])(µk)
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Main Results

Approximate Mean-Field Equilibrium

Let (µk ,Qk) be the output of the learning algorithm Ĥ. Define
πK (x) := argmina QK (x , a). Then, with probability at least 1− δ,

sup
x

∥πK (x)− π∗(x)∥ ≤ κ(ϵ,∆)

where κ(ϵ,∆) = O(ϵ+∆).

Approximate Nash Equilibrium

Let πK be the policy obtained from the learning algorithm. Then, for any
δ > 0, there exists a positive integer N(δ) such that for each N ≥ N(δ),
the N-tuple of policies π(N) = {πK , πK , . . . , πK} is an (δ+ τκ(ϵ,∆))-Nash
equilibrium for the game with N agents, with probability at least 1− δ.

Berkay Anahtarcı (OZU) Learning MFGs January 23, 2024 28 / 30



References

Berkay Anahtarci, Can Deha Karıksız, Naci Saldi

Learning Mean-Field Games with Discounted and Average-Costs

Journal of Machine Learning Research 24(17):1-59, 2023.

Mathieu Laurière, Sarah Perrin, Matthieu Geisty, Olivier Pietquiny

Learning Mean Field Games: A Survey

arXiv: 2205.12944v1 (2022)

Xin Guo, Anran Hu, Renyuan Xu, Junzi Zhang

Learning Mean-Field Games

arXiv: 1901.09585v4 (2021)

Berkay Anahtarcı (OZU) Learning MFGs January 23, 2024 29 / 30



The End
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