Algebraic Geometry at Sea

Daniele Agostini
University of Tübingen

9 November 2023
Koç University

Solitons

The first description of a soliton was by the Scottish engineer John Scott Russell in 1834: he was conducting experiments on boats on a channel when he observed
" a mass of water [...] assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed.

Figure: A reconstruction of Russell's observation in 1995 (Heriot-Watt University).

The KdV equation

Since this first sighting, solitary waves have been source of fascination among scientists, and they are still a very active topic of research.

They were described in mathematical terms by Boussinesq (1877) and Korteveg and de Vries (1895), as particular solutions of the Korteweg - de Vries equation:

$$
4 u_{t}-6 u u_{x}-u_{x x x}=0
$$

This is a famous nonlinear partial differential equation, which describes more generally the motion of waves in a one-dimensional shallow channel, such as the one of Russell.

Figure: The Bosphorus strait this morning.

Translation waves

Let's look for translation waves solutions to the KdV equation: something of the form

$$
u(x, t)=v(x-a \cdot t)
$$

where v is a very nice function, for example analytic. Imposing that this is a solution we find

$$
-4 a \cdot v^{\prime}-6 v \cdot v^{\prime}-v^{\prime \prime \prime}=0
$$

Integrating we get

$$
-4 a \cdot v-3(v)^{2}-v^{\prime \prime}+b=0
$$

We can multiply by v^{\prime} to obtain

$$
-4 a \cdot v v^{\prime}-3(v)^{2} v^{\prime}-v^{\prime \prime} v^{\prime}+b \cdot v^{\prime}=0
$$

which we can integrate again to obtain

$$
-2 a \cdot v^{2}-v^{3}-\frac{1}{2}\left(v^{\prime}\right)^{2}+b \cdot v+c=0
$$

The Weierstrass equation

To summarize, we need to solve the differential equation

$$
\left(v^{\prime}\right)^{2}=-4 v^{3}-4 a \cdot v^{2}+2 b \cdot v+2 c
$$

Up to a constant, this is the same as the famous Weierstrass equation:

$$
y^{2}=f(x), \quad f(x)=-4 x^{3}-4 a \cdot x^{2}+2 b \cdot x+2 c
$$

Geometrically this cuts out an elliptic curve $E=\left\{(x, y) \mid y^{2}=f(x)\right\}$ in \mathbb{C}^{2} and we are looking for an analytic function $v: \mathbb{C} \rightarrow \mathbb{C}$ such that we have a well-defined map

$$
\mathbb{C} \longrightarrow E \quad z \mapsto\left(v(z), v^{\prime}(z)\right)
$$

But such a function is known since more than 100 years: it is the Weierstrass \wp-function, or, equivalently, the (second logarithmic derivative of the) theta function of the curve E.

This discussion works much more generally.

Algebraic curves and Riemann surfaces

An algebraic curve is a variety of dimension one, the zero locus of polynomial equations in \mathbb{C}^{n} or \mathbb{P}^{n}.

$$
\left\{x^{4}+y^{4}=1\right\}
$$

Smooth curves correspond to Riemann surfaces: complex manifolds of dimension one.

The KP equation

Algebraic curves are connected to the Kadomtsev-Petviashvili (KP) equation:

$$
\frac{\partial}{\partial x}\left(4 u_{t}-6 u u_{x}-u_{x x x}\right)=3 u_{y y}
$$

which describes the evolution of two-dimensional waves in shallow water.

This is a generalization of the KdV equation

Figure: KP equation in French waters (Wikipedia).

Riemann's theta function

The connection goes through Riemann's theta function. Integrating holomorphic differentials on a genus g curve, we obtain the Riemann matrix:

$$
\tau "="\left(\int_{b_{j}} \omega_{i}\right)
$$

which is a complex symmetric $g \times g$ matrix with positive definite imaginary part.

Riemann's theta function The associated theta function is a function of $z \in \mathbb{C}^{g}$ given by

$$
\theta(z, \tau)=\sum_{n \in \mathbb{Z}^{s}} \mathbf{e}\left(\frac{1}{2} n^{t} \tau n\right) \cdot \mathbf{e}\left(n^{t} z\right)=\sum_{n \in \mathbb{Z}^{s}} a_{n}(\tau) \cdot \mathbf{e}\left(n^{t} z\right) .
$$

where $\mathbf{e}(x)=\exp (2 \pi i x)$. This is an infinite sum of exponentials, and it is computable: Maple, MATLAB, Sage, Julia,...

Abelian varieties and Jacobians

In geometric terms, the Riemann matrix τ corresponds to an abelian variety:

$$
A_{\tau}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\tau \mathbb{Z}^{g}\right)
$$

We can construct an abelian variety starting from any Riemann matrix τ. If this comes from a curve, the abelian variety is called the Jacobian of the curve C.

Curves and waves

Krichever proved that the KP equation has a solution of the form
$u(x, y, t)=2 \frac{\partial^{2} \log }{\partial^{2} x} \theta(\mathbf{U} x+\mathbf{V} y+\mathbf{W} t, \tau)$
for certain vectors $\mathbf{U}, \mathbf{V}, \mathbf{W} \in \mathbb{C}^{g}$.
Shiota then solved the Schottky problem: a matrix τ represents a Jacobian if and only if the above is a solution of the KP equation.

The first result is very concrete: on the right, a wave obtained from a quartic plane curve in Julia.

Many research directions

- Classify the KP solution arising from a fixed curve: the Dubrovin Threefold. Together with T. Çelik and B. Sturmfels.
- What happens when the curve degenerates to a singular nodal curve? Tropical geometry. Together with C. Fevola, Y. Mandelshtam and B. Sturmfels.
- What happens when the curve degenerates to a cuspidal curve? Rational solutions. Together with T. Çelik and J. Little.
- Try to recover the curve from the matrix τ : Effective Torelli theorem. Together with T. Çelik and D. Eken.

Singular curves

 TUBINGENOne proof of Krichever's theorem is based on two essential ingredients:

1. The algebraic structure of the KP equation: Sato Grassmannian of Sato, Segal-Wilson.
2. Abel's theorem and Riemann-Roch.

In particular, it can be replicated on singular curves as well: since Abel's theorem and Riemann- Roch still hold.

Example: soliton solutions

Consider the nodal cubic $C=\left\{(x, y) \mid y^{2}=x^{3}+x^{2}\right\} \subseteq \mathbb{C}^{2}$. This is the image of

$$
\mathbb{C} \longrightarrow C, \quad t \mapsto\left(t^{2}-1, t^{3}-t\right)
$$

A basis of canonical differentials is given by $\omega=\left(\frac{1}{t-1}-\frac{1}{t+1}\right) d t$, and $\int_{\gamma} \omega=2 \pi i$. Hence

$$
\operatorname{Jac}(C)=\mathbb{C} / 2 \pi i \mathbb{Z} \xrightarrow{\sim} \mathbb{C}^{*}, \quad z \mapsto \exp (z)
$$

The theta function in this case is

$$
\theta(z)=\exp (z)-1
$$

This is a finite sum of exponentials, and gives rise to a soliton solution.

Note that the nodal cubic $y^{2}=x^{3}+x^{2}$ is a special, or degenerate, case of the cubic $y^{2}=f(x)$.

Singular solutions and tropical geometry

Fevola, Mandelstham, Sturmfels and myself, studied these degenerations and the corresponding solitons, from the point of view of tropical geometry.

Theorem (A., Fevola, Mandelstham, Sturmfels - 2021; Ichikawa - 2023) Under the degeneration to a rational nodal curve, the theta function becomes a finite sum of exponentials:

$$
\theta(z)=\sum_{n \in \mathbb{Z}^{g}} \exp \left(\pi i n^{T} \tau n+2 \pi i n^{T} z\right) \rightsquigarrow \hat{\theta}=\sum_{c \in \mathcal{C}} a_{c} \exp \left(c^{\top} z\right)
$$

The corresponding solution of the KP equation is a soliton solution.

Example: rational solutions

Consider the cuspidal cubic $C=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subseteq \mathbb{C}^{2}$. This is the image of

$$
\mathbb{C} \longrightarrow C, \quad t \mapsto\left(t^{2}, t^{3}\right)
$$

A basis of canonical differentials is given by $\omega=\frac{1}{t^{2}} d t$, and $\int_{\gamma} \omega=0$. Hence

$$
\operatorname{Jac}(C)=\mathbb{C}
$$

The theta function in this case is

$$
\theta(z)=z .
$$

This is a polynomial, and gives rise to a rational solution.

Note that the cuspidal cubic $y^{2}=x^{3}$ is an even more degenerate, case of the cubic $y^{2}=f(x)$.

Polynomial theta functions

Together with Çelik and Little, we have classified which curves give rise to polynomial theta functions.

Theorem (A., C Celik, Little - 2021) The theta function of C is polynomial if and only if the curve is rational with unibranched singularities. Moreover, the resulting polynomial is of degree at most $\frac{g(g+1)}{2}$ and gives a rational solution to the KP equation.

In general we have:

Curve	Theta function	KP solution
smooth	infinite sum of exponentials	quasiperiodic
nodal rational	finite sum of exponentials	soliton
unibranched rational	polynomial	rational

More research directions

- When do we get real soliton solutions out of rational nodal curves? Tropical geometry and positive geometry. Work in progress by S. Abenda, T. Çelik, C. Fevola, Y. Mandelshtam.
- When do we get real rational solutions out of rational unibranched curves? Discussion in progress with T. Çelik and J. Little.
- What about real real solutions?

What about "actual" applications?

What if we want to actually model water waves this way? A natural idea:

Figure 4. Schematic drawing of the wave basin.
Figure: from Hammack, Scheffner, Segur, Journal of Fluid Mechanics (1989)

Figure: from Dubrovin, Flickinger, Segur, Studies in applied mathematics (1997)

And today?

In a joint work in progress with M. Bennett, T. Çelik, B. Deconinck and C. Wang, we consider the problem of reconstructing the data of a Riemann matrix τ, together with the wave vectors $\mathbf{U}, \mathbf{V}, \mathbf{W}$, from one KP solution

$$
u(x, y, t)=2 \frac{\partial^{2} \log ^{2} x}{\partial^{2} x} \theta\left(\mathbf{U} x+\mathbf{V}_{y}+\mathbf{W} t, \tau\right)
$$

This was already done by Dubrovin, Flickinger and Segur, but only with genus two solutions, and with techniques valid exclusively in genus two.

- Suppose f is a periodic function of x with period U, then we have

$$
f(x)=\sum_{k \in \mathbb{Z}} c_{k} \cdot \exp (2 \pi i \cdot k \cdot U x), \quad \hat{f}(\xi)=\sum_{k \in \mathbb{Z}} c_{k} \delta(\xi-2 \pi U k)
$$

So, if the coefficients c_{k} decay sufficiently fast, the Fourier transform of f has "peaks" around $2 \pi k$, for small values of k.

- We look the Fourier transform of $u(x, 0,0)$. This will have some "peaks", which turn out to be the coordinates of \mathbf{U}. Same with y, z and \mathbf{V}, \mathbf{W} respectively.
- We can recover the function $\tau(x, y, z)=\theta(\mathbf{U} x+\mathbf{V} y+\mathbf{W} z, B)$ from U.
- Recovering the matrix τ becomes a matter of numerical linear algebra:

$$
\tau(x, 0,0)=\sum_{n \in \mathbb{Z}^{g}} \mathbf{e}\left(\frac{1}{2} n^{t} \tau n\right) \cdot \mathbf{e}\left(n^{t} \mathbf{U} x\right)
$$

Thank you!

