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The first description of a soliton
was by the Scottish engineer
John Scott Russell in 1834: he
was conducting experiments on
boats on a channel when he
observed

“a mass of water [...] assuming
the form of a large solitary
elevation, a rounded, smooth and
well-defined heap of water, which
continued its course along the
channel apparently without . 4 T e T A
change of form or diminution of ; F - - 1 . .

Figure: A reconstruction of Russell's observation in 1995
(Heriot-Watt University).
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Since this first sighting, solitary waves have been source of fascination among
scientists, and they are still a very active topic of research.

They were described in mathematical terms by Boussinesq (1877) and Korteveg
and de Vries (1895), as particular solutions of the Korteweg - de Vries equation:

This is a famous nonlinear partial differential equation, which describes more
generally the motion of waves in a one-dimensional shallow channel, such as the
one of Russell.
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Figure: The Bosphorus strait this morning.
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Let’s look for translation waves solutions to the KdV equation: something of the form
u(x,t) =v(x —a-t)

where v is a very nice function, for example analytic. Imposing that this is a solution
we find
—4a-v —6v-v — V" =0.

Integrating we get
—4a-v—-3(v) =Vv'+b=0.

We can multiply by v’ to obtain
—4a-vv' =3(vV)2V = V'V +b- Vv =0,
which we can integrate again to obtain

1
—2a-v2—v3—§(v')2+b-v—|—C:O
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To summarize, we need to solve the differential equation
(V') = —4v> —4a- v +2b-v +2c
Up to a constant, this is the same as the famous Weierstrass equation:
y? = f(x), f(x) = —4x> —4a-x*+2b-x +2c

Geometrically this cuts out an elliptic curve E = {(x, y) | y? = f(x)} in C? and we are
looking for an analytic function v: C — C such that we have a well-defined map

C—E zw—(v(2),V(2)
But such a function is known since more than 100 years: it is the Weierstrass

g-function, or, equivalently, the (second logarithmic derivative of the) theta function
of the curve E.

This discussion works much more generally.
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An algebraic curve is a variety of dimension one, the zero locus of polynomial
equations in C" or P".

{X4+y4 = 1}

Smooth curves correspond to Riemann surfaces: complex manifolds of dimension
one.
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Algebraic curves are connected
to the Kadomtsev-Petviashvili
(KP) equation:

0

E (4up — 6uL, — Uyxx) = Uy,
which describes the evolution of
two-dimensional waves in

shallow water.

This is a generalization of the
KdV equation

Auy — OUUy — Uyyx = 0

Figure: KP equation in French waters (Wikipedia).
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Riemann’s theta function TUBINGEN

The connection goes through Riemann’s theta function. Integrating holomorphic
differentials on a genus g curve, we obtain the Riemann matrix:

e ()

which is a complex symmetric g x g maitrix with positive definite imaginary part.

Riemann’s theta function The associated theta function is a function of z € Cé&

given by
0(z, 7) = Z e (%ntTn) -e(n'z) = Z a,(7) - e(n'z).

nezg neZ8

where e(x) = exp(2mix). This is an infinite sum of exponentials, and it is computable:
Maple, MATLAB, Sage, Julia,...
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In geometric terms, the Riemann matrix 7 corresponds to an abelian variety:
A, = C8/(Z8 + TZ8)

We can construct an abelian variety starting from any Riemann matrix 7. If this
comes from a curve, the abelian variety is called the Jacobian of the curve C.




Curves and waves
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Krichever proved that the KP
equation has a solution of the form

0 log

u(x,y, t) =2 o

0(Ux +Vy +Wt, 1)

for certain vectors U, V, W < Cs.

Shiota then solved the Schottky
problem: a matrix T represents a
Jacobian if and only if the above is a
solution of the KP equation.

The first result is very concrete: on
the right, a wave obtained from a
quartic plane curve in Julia.
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» Classify the KP solution arising from a fixed curve: the Dubrovin Threefold.
Together with T. Celik and B. Sturmfels.

» What happens when the curve degenerates to a singular nodal curve? Tropical
geometry. Together with C. Fevola, Y. Mandelshtam and B. Sturmfels.

» What happens when the curve degenerates to a cuspidal curve? Rational
solutions. Together with T. Celik and J. Little.

» Try to recover the curve from the matrix 7: Effective Torelli theorem. Together
with T. Celik and D. Eken.
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One proof of Krichever’s theorem is based on two essential ingredients:

1. The algebraic structure of the KP equation: Sato Grassmannian of Sato,
Segal-Wilson.

2. Abel’s theorem and Riemann-Roch.

In particular, it can be replicated on singular curves as well: since Abel’s theorem
and Riemann- Roch still hold.
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Consider the nodal cubic C = {(x, y) | y? = x3 + x?} C C2. This is the image of

C—C t=("-11¢—1)

A basis of canonical differentials is given by w = (77 — #7) dt, and [ w = 2.

t t41
Hence
Jac(C) = C/2miZ — C*, z s exp(2)

The theta function in this case is
0(z) = exp(z) — 1

This is a finite sum of exponentials, and gives rise to a soliton solution.

Note that the nodal cubic y? = x° + x? is a special, or degenerate, case of the cubic
2
y* = f(x).
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Fevola, Mandelstham, Sturmfels and myself, studied these degenerations and the
corresponding solitons, from the point of view of tropical geometry.

Theorem (A., Fevola, Mandelstham, Sturmfels - 2021; Ichikawa - 2023) Under
the degeneration to a rational nodal curve, the theta function becomes a finite sum
of exponentials:

0(z) = Z exp (min' Tn+2min’ z) ~> f = Z acexp(c’ z)

nez8 ceC

The corresponding solution of the KP equation is a soliton solution.
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Consider the cuspidal cubic C = {(x, y) | y?> = x’} C C2. This is the image of
C—C  t—(t5t)
A basis of canonical differentials is given by w = %dt, and f,yw = 0. Hence
Jac(C) =C

The theta function in this case is
6(z) = z.

This is a polynomial, and gives rise to a rational solution.

Note that the cuspidal cubic y? = x3 is an even more degenerate, case of the cubic
2
y* = f(x).
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Together with Celik and Little, we have classified which curves give rise to
polynomial theta functions.

Theorem (A., Celik, Little - 2021) The theta function of C is polynomial if and only
if the curve is rational with unibranched singularities. Moreover, the resulting
polynomial is of degree at most @ and gives a rational solution to the KP
equation.

In general we have:

Curve Theta function KP solution
smooth infinite sum of exponentials quasiperiodic
nodal rational finite sum of exponentials soliton

unibranched rational polynomial rational
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» When do we get real soliton solutions out of rational nodal curves? Tropical

geometry and positive geometry. Work in progress by S. Abenda, T. Celik, C.
Fevola, Y. Mandelshtam.

» When do we get real rational solutions out of rational unibranched curves?
Discussion in progress with T. Celik and J. Little.

» What about real real solutions?



” . . UNIVERSITAT
What about “actual” applications? TUBINGEN

What if we want to actually model water waves this way? A natural idea:

J. Hammack, N. Scheffner and H. Segqur

Energy arplim malerial
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Fiavre 4. Schematie drawing of the wave basin.

Figure: from Hammack, Scheffner, Segur, Journal of _ _ . . o
Fluid Mechanics (1989) Figure: from Dubrovin, Flickinger, Segur, Studies in

applied mathematics (1997)
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In a joint work in progress with M. Bennett, T. Gelik, B. Deconinck and C. Wang, we
consider the problem of reconstructing the data of a Riemann matrix 7, together
with the wave vectors U, V, W, from one KP solution

0 log
02x
This was already done by Dubrovin, Flickinger and Segur, but only with genus two

solutions, and with techniques valid exclusively in genus two.

u(x,y, t) =2 0(Ux +Vy + Wt, T)
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» Suppose f is a periodic function of x with period U, then we have

= ccexp(@mi-k-Ux), F(&) = ad(é—2nUk).

keZ keZ

So, if the coefficients ¢, decay sufficiently fast, the Fourier transform of f has
“peaks” around 27k, for small values of k.

» We look the Fourier transform of u(x, 0,0). This will have some “peaks”, which
turn out to be the coordinates of U. Same with y, z and V, W respectively.

We can recover the function 7(x, y, z) = 6(Ux + Vy + Wz, B) from U.
Recovering the matrix T becomes a matter of numerical linear algebra:

T(x,0,0)=) e (—n Tn) .e(n'Ux)

ncZs8

vy
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Thank you!



