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Solitons

The first description of a soliton
was by the Scottish engineer
John Scott Russell in 1834: he
was conducting experiments on
boats on a channel when he
observed
“ a mass of water [...] assuming
the form of a large solitary
elevation, a rounded, smooth and
well-defined heap of water, which
continued its course along the
channel apparently without
change of form or diminution of
speed. ”

Figure: A reconstruction of Russell’s observation in 1995
(Heriot-Watt University).



The KdV equation

Since this first sighting, solitary waves have been source of fascination among
scientists, and they are still a very active topic of research.

They were described in mathematical terms by Boussinesq (1877) and Korteveg
and de Vries (1895), as particular solutions of the Korteweg - de Vries equation:

4ut − 6uux − uxxx = 0

This is a famous nonlinear partial differential equation, which describes more
generally the motion of waves in a one-dimensional shallow channel, such as the
one of Russell.



A not so shallow channel

Figure: The Bosphorus strait this morning.



Translation waves

Let’s look for translation waves solutions to the KdV equation: something of the form

u(x; t) = v(x − a · t)

where v is a very nice function, for example analytic. Imposing that this is a solution
we find

−4a · v ′ − 6v · v ′ − v ′′′ = 0:

Integrating we get
−4a · v − 3(v)2 − v ′′ + b = 0:

We can multiply by v ′ to obtain

−4a · vv ′ − 3(v)2v ′ − v ′′v ′ + b · v ′ = 0;

which we can integrate again to obtain

−2a · v 2 − v 3 − 1

2
(v ′)2 + b · v + c = 0



The Weierstrass equation

To summarize, we need to solve the differential equation

(v ′)2 = −4v 3 − 4a · v 2 + 2b · v + 2c

Up to a constant, this is the same as the famous Weierstrass equation:

y 2 = f (x); f (x) = −4x3 − 4a · x2 + 2b · x + 2c

Geometrically this cuts out an elliptic curve E = {(x; y) | y 2 = f (x)} in C2 and we are
looking for an analytic function v : C→ C such that we have a well-defined map

C −→ E z 7→ (v(z); v ′(z))

But such a function is known since more than 100 years: it is the Weierstrass
}-function, or, equivalently, the (second logarithmic derivative of the) theta function
of the curve E.

This discussion works much more generally.



Algebraic curves and Riemann surfaces

An algebraic curve is a variety of dimension one, the zero locus of polynomial
equations in Cn or Pn.

˘
x4 + y 4 = 1

¯
Smooth curves correspond to Riemann surfaces: complex manifolds of dimension
one.



The KP equation

Algebraic curves are connected
to the Kadomtsev-Petviashvili
(KP) equation:

@

@x
(4ut − 6uux − uxxx) = 3uyy

which describes the evolution of
two-dimensional waves in
shallow water.

This is a generalization of the
KdV equation

4ut − 6uux − uxxx = 0 Figure: KP equation in French waters (Wikipedia).



Riemann’s theta function

The connection goes through Riemann’s theta function. Integrating holomorphic
differentials on a genus g curve, we obtain the Riemann matrix:

fi “ = ”

 Z
bj

!i

!

which is a complex symmetric g × g matrix with positive definite imaginary part.

Riemann’s theta function The associated theta function is a function of z ∈ Cg

given by

„(z; fi) =
X
n∈Zg

e

„
1

2
ntfin

«
· e(ntz) =

X
n∈Zg

an(fi) · e(ntz):

where e(x) = exp(2ıix). This is an infinite sum of exponentials, and it is computable:
Maple, MATLAB, Sage, Julia,...



Abelian varieties and Jacobians

In geometric terms, the Riemann matrix fi corresponds to an abelian variety:

Afi = Cg=(Zg + fiZg)

We can construct an abelian variety starting from any Riemann matrix fi . If this
comes from a curve, the abelian variety is called the Jacobian of the curve C.

1

fi



Curves and waves

Krichever proved that the KP
equation has a solution of the form

u(x; y ; t) = 2
@2 log

@2x
„(Ux + Vy +Wt; fi)

for certain vectors U;V;W ∈ Cg .

Shiota then solved the Schottky
problem: a matrix fi represents a
Jacobian if and only if the above is a
solution of the KP equation.

The first result is very concrete: on
the right, a wave obtained from a
quartic plane curve in Julia.



Many research directions

I Classify the KP solution arising from a fixed curve: the Dubrovin Threefold.
Together with T. Çelik and B. Sturmfels.

I What happens when the curve degenerates to a singular nodal curve? Tropical
geometry. Together with C. Fevola, Y. Mandelshtam and B. Sturmfels.

I What happens when the curve degenerates to a cuspidal curve? Rational
solutions. Together with T. Çelik and J. Little.

I Try to recover the curve from the matrix fi : Effective Torelli theorem. Together
with T. Çelik and D. Eken.



Singular curves

One proof of Krichever’s theorem is based on two essential ingredients:

1. The algebraic structure of the KP equation: Sato Grassmannian of Sato,
Segal-Wilson.

2. Abel’s theorem and Riemann-Roch.

In particular, it can be replicated on singular curves as well: since Abel’s theorem
and Riemann- Roch still hold.



Example: soliton solutions

Consider the nodal cubic C = {(x; y) | y 2 = x3 + x2} ⊆ C2. This is the image of

C −→ C; t 7→
`
t2 − 1; t3 − t

´
A basis of canonical differentials is given by ! =

`
1
t−1 −

1
t+1

´
dt, and

R
‚ ! = 2ıi .

Hence
Jac(C) = C=2ıiZ ∼−→ C∗; z 7→ exp(z)

The theta function in this case is

„(z) = exp(z)− 1

This is a finite sum of exponentials, and gives rise to a soliton solution.

Note that the nodal cubic y 2 = x3 + x2 is a special, or degenerate, case of the cubic
y 2 = f (x).



Singular solutions and tropical geometry

Fevola, Mandelstham, Sturmfels and myself, studied these degenerations and the
corresponding solitons, from the point of view of tropical geometry.

Theorem (A., Fevola, Mandelstham, Sturmfels - 2021; Ichikawa - 2023) Under
the degeneration to a rational nodal curve, the theta function becomes a finite sum
of exponentials:

„(z) =
X
n∈Zg

exp
`
ıinTfin + 2ıinTz

´
 „̂ =

X
c∈C

ac exp(c
Tz)

The corresponding solution of the KP equation is a soliton solution.



Example: rational solutions

Consider the cuspidal cubic C = {(x; y) | y 2 = x3} ⊆ C2. This is the image of

C −→ C; t 7→
`
t2; t3

´
A basis of canonical differentials is given by ! = 1

t2
dt, and

R
‚ ! = 0. Hence

Jac(C) = C

The theta function in this case is
„(z) = z:

This is a polynomial, and gives rise to a rational solution.

Note that the cuspidal cubic y 2 = x3 is an even more degenerate, case of the cubic
y 2 = f (x).



Polynomial theta functions

Together with Çelik and Little, we have classified which curves give rise to
polynomial theta functions.

Theorem (A., Çelik, Little - 2021) The theta function of C is polynomial if and only
if the curve is rational with unibranched singularities. Moreover, the resulting
polynomial is of degree at most g(g+1)

2 and gives a rational solution to the KP
equation.

In general we have:

Curve Theta function KP solution
smooth infinite sum of exponentials quasiperiodic

nodal rational finite sum of exponentials soliton
unibranched rational polynomial rational



More research directions

I When do we get real soliton solutions out of rational nodal curves? Tropical
geometry and positive geometry. Work in progress by S. Abenda, T. Çelik, C.
Fevola, Y. Mandelshtam.

I When do we get real rational solutions out of rational unibranched curves?
Discussion in progress with T. Çelik and J. Little.

I What about real real solutions?



What about “actual” applications?

What if we want to actually model water waves this way? A natural idea:

Figure: from Hammack, Scheffner, Segur, Journal of
Fluid Mechanics (1989) Figure: from Dubrovin, Flickinger, Segur, Studies in

applied mathematics (1997)



And today?

In a joint work in progress with M. Bennett, T. Çelik, B. Deconinck and C. Wang, we
consider the problem of reconstructing the data of a Riemann matrix fi , together
with the wave vectors U;V;W, from one KP solution

u(x; y ; t) = 2
@2 log

@2x
„(Ux + Vy +Wt; fi)

This was already done by Dubrovin, Flickinger and Segur, but only with genus two
solutions, and with techniques valid exclusively in genus two.



An algorithm

I Suppose f is a periodic function of x with period U, then we have

f (x) =
X
k∈Z

ck · exp (2ıi · k · Ux) ; f̂ (‰) =
X
k∈Z

ck‹(‰ − 2ıUk):

So, if the coefficients ck decay sufficiently fast, the Fourier transform of f has
“peaks” around 2ık , for small values of k.

I We look the Fourier transform of u(x; 0; 0). This will have some “peaks”, which
turn out to be the coordinates of U. Same with y; z and V;W respectively.

I We can recover the function fi(x; y ; z) = „(Ux + Vy +Wz; B) from U.
I Recovering the matrix fi becomes a matter of numerical linear algebra:

fi(x; 0; 0) =
X
n∈Zg

e

„
1

2
ntfin

«
· e(ntUx)



Thank you!


