Period integrals of hypersurfaces via tropical geometry

Yuto Yamamoto

IBS Center for Geometry and Physics
July, 2023

Background

Gamma conjecture for Calabi-Yau manifolds

- (X, ω) : a Calabi-Yau manifold with a symplectic structure
- $\left\{Z_{t}\right\}_{t \in \Delta^{*}}$: a family of Calabi-Yau manifolds mirror to (X, ω)
- $C_{t} \subset Z_{t}$: a Lagrangian cycle
- E : a coherent sheaf on X mirror to C_{t}

Then one has
$\int_{C_{t}} \Omega_{t}=\int_{X} t^{-\omega} \cdot \widehat{\Gamma}_{X} \cdot(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}}{2}} \cdot \operatorname{ch}(E)+O\left(t^{\epsilon}\right) \quad(t \rightarrow+0)$,
where

- Ω_{t} : the holomorphic volume form on Z_{t}, and
- $\widehat{\Gamma}_{X} \in H^{*}(X, \mathbb{R})$: the gamma class of X.

Gamma classes

- The gamma class of X is defined by

$$
\widehat{\Gamma}_{x}:=\prod \Gamma\left(1+\delta_{i}\right) \in H^{*}(X, \mathbb{R})
$$

where δ_{i} are the Chern roots of X, i.e., $c(T X)=\prod_{i}\left(1+\delta_{i}\right)$.

- One can write it as

$$
\widehat{\Gamma}_{X}=\exp \left(-\gamma c_{1}(T X)+\sum_{k=2}^{\infty}(-1)^{k}(k-1)!\zeta(k) \mathrm{ch}_{k}(T X)\right)
$$

where

- $\gamma=\lim _{n \rightarrow \infty}\left(-\log n+\sum_{k=1}^{n} 1 / k\right)$: the Euler's constant, and
- $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$: the Riemann zeta value.

Gamma conjecture and tropical geometry

Theorem (Abouzaid-Ganatra-Iritani-Sheridan=:AGIS)
One can compute the asymptotics of $\int_{C_{t}} \Omega_{t}(t \rightarrow+0)$ in the case where

- X, Z_{t} : a mirror pair of Calabi-Yau hypersurfaces of Batyrev
- C_{t} : a cycle mirror to an ambient line bundle E on X by using tropical geometry, and can see that

$$
\int_{C_{t}} \Omega_{t}=\int_{X} t^{-\omega} \cdot \hat{\Gamma}_{X} \cdot(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}}{2}} \cdot \operatorname{ch}(E)+O\left(t^{\epsilon}\right) \quad(t \rightarrow+0)
$$

holds in this case.

Goal/Plan of the talk

Goal
To generalize the computation by AGIS to the case where

- the hypersurfaces are not necessarily Calabi-Yau hypersurfaces (geometric genus >1), and
- the integrands are the Poincaré residues of meromorphic forms having poles of higher order along the hypersurfaces.

Plan

- Tropical geometry
- Idea of computations by AGIS
- Sketch of its generalization
- Main result

Overview of tropical geometry

- Tropical geometry is algebraic geometry over the tropical number semi-field $(\mathbb{T}:=\mathbb{R} \cup\{\infty\}, \oplus, \odot)$

$$
\begin{aligned}
& a \oplus b:=\min \{a, b\} \\
& a \odot b:=a+b .
\end{aligned}
$$

- We study tropical varieties which are tropical counterparts of algebraic varieties.
- Tropical varieties are polyhedral complexes equipped with a certain kind of integral affine structures.
- Tropical varieties arise as limits of degenerating families of complex algebraic varieties.

Tropical hypersurfaces

- (K, val): a valued field
- For a Laurent polynomial

$$
f=\sum_{m=\left(m_{1}, \cdots, m_{d+1}\right)} k_{m} z_{1}^{m_{1}} \cdots z_{d+1}^{m_{d+1}} \in K\left[z_{1}^{ \pm}, \cdots, z_{d+1}^{ \pm}\right],
$$

the following are defined:

Definition

- The tropicalization trop (f) of f is the piecewise affine function $\mathbb{R}^{d+1} \rightarrow \mathbb{R}$ defined by
$\operatorname{trop}(f)\left(Z_{1}, \cdots, Z_{d+1}\right):=\min _{m}\left\{\operatorname{val}\left(k_{m}\right)+m_{1} Z_{1}+\cdots+m_{d+1} Z_{d+1}\right\}$.
- The tropical hypersurface $V(\operatorname{trop}(f)) \subset \mathbb{R}^{d+1}$ defined by $\operatorname{trop}(f)$ is the corner locus of $\operatorname{trop}(f)$.

Example

- $K:=\mathbb{C}\{x\}$: the convergent Laurent series field
- val: $K \longrightarrow \mathbb{Z} \cup\{-\infty\}, \quad \sum_{j \in \mathbb{Z}} c_{j} x^{j} \mapsto \min \left\{j \in \mathbb{Z} \mid c_{j} \neq 0\right\}$
- $f:=1+x\left(z_{1}+z_{2}+z_{1}^{-1} z_{2}^{-1}\right) \in K\left[z_{1}^{ \pm}, z_{2}^{ \pm}\right]$
$\leadsto \operatorname{trop}(f)(Z)=\min \left\{0,1+Z_{1}, 1+Z_{2}, 1-Z_{1}-Z_{2}\right\}$

Amoebas of complex hypersurfaces

- $0<t \ll 1 \leadsto f_{t}:=\left.f\right|_{x=t} \in \mathbb{C}\left[z_{1}^{ \pm}, \cdots, z_{d+1}^{ \pm}\right]$
- $Z_{t}:=\left\{z \in\left(\mathbb{C}^{*}\right)^{d+1} \mid f_{t}(z)=0\right\}$
$-\log _{t}:\left(\mathbb{C}^{*}\right)^{d+1} \rightarrow \mathbb{R}^{d+1}$

$$
\left(z_{1}, \ldots, z_{d+1}\right) \mapsto\left(\log _{t}\left|z_{1}\right|, \ldots, \log _{t}\left|z_{d+1}\right|\right)
$$

Theorem (Mikhalkin, Rullgård)

$$
\lim _{t \rightarrow 0} \log _{t}\left(Z_{t}\right)=V(\operatorname{trop}(f))
$$

Sketch of the proof

Recall that for a Laurent polynomial $f=\sum_{m} k_{m} z^{m}$,

$$
\operatorname{trop}(f)\left(Z_{1}, \cdots, Z_{d+1}\right):=\min _{m}\left\{\operatorname{val}\left(k_{m}\right)+m \cdot Z\right\}
$$

Take a point $Z \in \mathbb{R}^{d+1}$. On $\log _{t}^{-1}(Z)$,

- we have $\left.k_{m} z^{m}\right|_{x=t}=O\left(t^{\operatorname{val}\left(k_{m}\right)+m \cdot Z}\right)$, and
- monomials $\left.k_{m} z^{m}\right|_{x=t}$ such that

$$
\operatorname{val}\left(k_{m}\right)+m \cdot Z=\operatorname{trop}(f)(Z)
$$

are leading terms of f_{t}.

Sketch of computations by AGIS

Example

- $M:=\bigoplus_{i=1}^{3} \mathbb{Z} e_{i}$
- $f_{t}(z):=-1+\sum_{m \in(\Delta \cap M) \backslash\{0\}} t \cdot z^{m}$
- $Z_{t}:=\left\{z \in\left(\mathbb{C}^{*}\right)^{3} \mid f_{t}(z)=0\right\}$
- $C_{t}:=Z_{t} \cap\left(\mathbb{R}_{>0}\right)^{3}$
- $\Omega_{t}:=\frac{1}{d f_{t}} \bigwedge_{i=1}^{3} \frac{d z_{i}}{z_{i}}$

- $V(\operatorname{trop}(f)) \subset \mathbb{R}^{3}$

We consider
$-i_{t}: \mathbb{R}^{3} \rightarrow\left(\mathbb{R}_{>0}\right)^{3}, \quad\left(Z_{1}, Z_{2}, Z_{3}\right) \mapsto\left(t^{Z_{1}}, t^{Z_{2}}, t^{Z_{3}}\right)$

- $B_{t}:=i_{t}^{-1}\left(C_{t}\right)$
and try to compute $\int_{C_{t}} \Omega_{t}=\int_{B_{t}} i_{t}^{*} \Omega_{t}$.

Sketch of computations by AGIS (continued)

- $B_{t}:=i_{t}^{-1}\left(C_{t}\right)$ converges to the central part of $V(\operatorname{trop}(f))$.
- Decompose B_{t} into pieces according to the polyhedral structure of $V(\operatorname{trop}(f))$.

Sketch of computations by AGIS (continued)

We can simplify $f_{t}(z)=-1+\sum_{m \in(\Delta \cap M) \backslash\{0\}} t \cdot z^{m}=0$ to

- $1=t z_{1}\left(1+O\left(t^{\epsilon}\right)\right)$ on $i_{t}(\square)$,
- $1=t z_{1}\left(1+t z_{2} / t z_{1}+O\left(t^{\epsilon}\right)\right)$ on $i_{t}(\square)$, and
- $1=t z_{1}\left(1+t z_{2} / t z_{1}+t z_{3} / t z_{1}+O\left(t^{\epsilon}\right)\right)$ on $i_{t}(\square)$.

Sketch of computations by AGIS (continued)

Using the simplified equation on each region, we get
$-\int_{\square} i_{t}^{*} \Omega_{t}=\operatorname{vol}(\square) \cdot(-\log t)^{2}+O\left(t^{\epsilon}\right)$,
$-\int_{\square} i_{t}^{*} \Omega_{t}=\operatorname{vol}(\square) \cdot(-\log t)^{2}-\zeta(2)+O\left(t^{\epsilon}\right)$, and
$>\int_{\square} i_{t}^{*} \Omega_{t}=\operatorname{vol}(\square) \cdot(-\log t)^{2}+O\left(t^{\epsilon}\right)$.

Sketch of computations by AGIS (continued)

In total, we obtain
$\int_{B_{t}} i_{t}^{*} \Omega_{t}=\operatorname{vol}($ the central sphere $) \cdot(-\log t)^{2}-24 \cdot \zeta(2)+O\left(t^{\epsilon}\right)$

$$
=\int_{x} t^{-\omega} \cdot \widehat{\Gamma}_{x}+O\left(t^{\epsilon}\right)
$$

where

- (X, ω) : an anticanonical hypersurface of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ with the anticanonical polarization, and
- $\left(E=\mathcal{O}_{X}\right)$.

Generalization of the computations

Theorem (Y., rough version)
Similar computations are possible also for the case where the Newton polytope Δ has more lattice points in its interior.

Example

- $f_{t}:=-1+\sum_{m \in(\Delta \cap M) \backslash\{0\}} t \cdot z^{m}+t^{3} z_{1}^{2}$
- $C_{t}:=Z_{t} \cap\left(\mathbb{R}_{>0}\right)^{3}$
- $\Omega_{t}:=t z_{1} \cdot \frac{1}{d f_{t}} \bigwedge_{i=1}^{3} \frac{d z_{i}}{z_{i}}$
- $V(\operatorname{trop}(f)) \subset \mathbb{R}^{3}$

We consider
$-i_{t}: \mathbb{R}^{3} \rightarrow\left(\mathbb{R}_{>0}\right)^{3}, \quad\left(Z_{1}, Z_{2}, Z_{3}\right) \mapsto\left(t^{Z_{1}}, t^{Z_{2}}, t^{Z_{3}}\right)$

- $B_{t}:=i_{t}^{-1}\left(C_{t}\right)$
and try to compute $\int_{C_{t}} \Omega_{t}=\int_{B_{t}} i_{t}^{*} \Omega_{t}$.

Generalization of the computations (continued)

- $V(\operatorname{trop}(f)) \subset \mathbb{R}^{3}$

- $B_{t}:=i_{t}^{-1}\left(C_{t}\right)$ converges to the boundary of the right cube in $V(\operatorname{trop}(f))$ again.

Generalization of the computations (continued)

Highlight

- Integrals only over the above green regions are effective.
- Around an edge, we get

$$
\int_{\square+\square} i_{t}^{*} \Omega_{t}=\operatorname{vol}(\square) \cdot(-\log t)^{2}-\zeta(2)+O\left(t^{\epsilon}\right) .
$$

Generalization of the computations (continued)

In total, we obtain

$$
\begin{aligned}
\int_{B_{t}} i_{t}^{*} \Omega_{t} & =\operatorname{vol}(\text { facet }) \cdot(-\log t)^{2}-4 \cdot \zeta(2)+O\left(t^{\epsilon}\right) \\
& =\int_{\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}} t^{-\omega} \cdot D_{1} \cdot \widehat{\Gamma}_{0}+O\left(t^{\epsilon}\right)
\end{aligned}
$$

where

- $D_{1}:=\{0\} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, and
- $\widehat{\Gamma}_{0}:=\frac{\Pi_{i} \Gamma\left(1+D_{i}\right)}{\Gamma\left(1+\sum_{i} D_{i}\right)} \quad\left(\left\{D_{i}\right\}_{i}:\right.$ all toric divisors on $\left.\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$.

Remark
The restriction of $\widehat{\Gamma}_{0}$ to an anticanonical hypersurface of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ coincides with the gamma class of the hypersurface.

Setup of the main result

- $\Delta \subset M_{\mathbb{R}}$: a lattice polytope of dimension $d+1(d \geq 1)$
- $\Sigma \subset N_{\mathbb{R}}$: a simplicial refinement of the normal fan of Δ
- Y_{Σ} : the toric variety over \mathbb{C} associated with Σ
- $w \in \operatorname{Int}(\Delta) \cap M$
- Consider the hypersurface $Z_{t} \subset Y_{\Sigma}$ defined by the polynomial

$$
f_{t}(z)=-t^{\lambda_{w}} z^{w}+\sum_{m \in(\Delta \cap M) \backslash\{w\}} t^{\lambda_{m}} z^{m} \quad\left(\lambda_{m} \in \mathbb{Z}\right) .
$$

We suppose $(\Delta \cap M) \rightarrow \mathbb{Z}, m \mapsto \lambda_{m}$ extends to a strictly convex affine function on a unimodular triangulation \mathscr{T} of Δ.

- $C_{t}:=Z_{t} \cap\left(\mathbb{R}_{>0}\right)^{d+1}$

Setup of the main result (continued)

- $I \cdot \Delta:=\left\{I \cdot m \in M_{\mathbb{R}} \mid m \in \Delta\right\}\left(I \in \mathbb{Z}_{>0}\right)$
- $v \in \operatorname{Int}(I \cdot \Delta) \cap M$
- $\tau_{v} \in \mathscr{T}$: the minimal cell such that $v \in I \cdot \tau_{v}$

$$
\leadsto v=\sum_{m \in \tau_{\vee} \cap M} p_{m} \cdot m \quad\left(p_{m} \in \mathbb{Z}_{>0}, \sum_{m} p_{m}=l\right)
$$

- $\omega_{t}^{I, v}$: the meromorphic $(d+1)$-form on Y_{Σ} defined by

$$
\omega_{t}^{I, v}:=(I-1)!\left(\bigwedge_{i=0}^{d} \frac{d z_{i}}{z_{i}}\right) \frac{z^{v}}{\left(f_{t}\right)^{\prime}} \prod_{m \in \tau_{v} \cap M} t^{p_{m} \lambda_{m}}
$$

The forms $\left\{\omega_{t}^{I, v}\right\}_{v}$ generate $H^{0}\left(Y_{\Sigma}, \Omega^{d+1}\left(I \cdot Z_{t}\right)\right)$.

- $\Omega_{t}^{I, v} \in H^{d}\left(Z_{t}, \mathbb{C}\right)$: the Poincaré residue of $\omega_{t}^{l, v}$, i.e., the image by the Poincaré residue map

$$
\text { Res: } H^{0}\left(Y_{\Sigma}, \Omega^{d+1}\left(I \cdot Z_{t}\right)\right) \rightarrow H^{d}\left(Z_{t}, \mathbb{C}\right)
$$

Main result

Theorem (Y., simplified version)

One has

$$
\int_{C_{t}} \Omega_{t}^{\prime, v}= \begin{cases}\int_{Y_{w}} t^{-\omega_{\lambda}^{w}} \cdot E_{v, w} \cdot \hat{\Gamma}_{w}+O\left(t^{\epsilon}\right) & \text { conv }\left(\{w\} \cup \tau_{v}\right) \in \mathscr{T} \\ O\left(t^{\epsilon}\right) & \text { otherwise }\end{cases}
$$

as $t \rightarrow+0$, for some $\epsilon>0$, where

- Y_{w} : the toric variety associated with the fan

$$
\Sigma_{w}:=\left\{\mathbb{R}_{\geq 0} \cdot(\tau-w) \mid \tau \in \mathscr{T}, \tau \ni w\right\}
$$

- $\omega_{\lambda}^{w}:=\sum_{m \in A_{w}}\left(\lambda_{m}-\lambda_{w}\right) D_{m}^{w}$ with
- $A_{w}:=\{m \in(\Delta \cap M) \backslash\{w\} \mid \operatorname{conv}(\{m, w\}) \in \mathscr{T}\}$
- $D_{m}^{w}\left(m \in A_{w}\right)$: the toric divisor on Y_{w} associated with the 1-dimensional cone $\mathbb{R}_{\geq 0} \cdot(m-w) \in \Sigma_{w}$,
- $E_{v, w}:=\prod_{m \in A_{w} \cap \tau_{v}} \prod_{i=0}^{p_{m}-1}\left(D_{m}^{w}+i\right) \cdot \prod_{i=0}^{p_{w}-1}\left(\sum_{m \in A_{w}} D_{m}^{w}-i\right)$
$-\widehat{\Gamma}_{w}:=\frac{\prod_{m \in A_{w}} \Gamma\left(1+D_{m}^{w}\right)}{\Gamma\left(1+\sum_{m \in A_{w}} D_{m}^{w}\right)}$.

