Period integrals of hypersurfaces via tropical geometry

Yuto Yamamoto

IBS Center for Geometry and Physics

July, 2023

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Background

Gamma conjecture for Calabi-Yau manifolds

- ▶ (X, ω) : a Calabi–Yau manifold with a symplectic structure
- $\{Z_t\}_{t \in \Delta^*}$: a family of Calabi–Yau manifolds mirror to (X, ω)
- $C_t \subset Z_t$: a Lagrangian cycle
- E: a coherent sheaf on X mirror to C_t

Then one has

$$\int_{C_t} \Omega_t = \int_X t^{-\omega} \cdot \widehat{\Gamma}_X \cdot \left(2\pi\sqrt{-1}\right)^{\frac{\deg}{2}} \cdot \operatorname{ch}(E) + O(t^{\epsilon}) \quad (t \to +0),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

Ω_t: the holomorphic volume form on Z_t, and
 Γ_X ∈ H^{*} (X, ℝ): the gamma class of X.

Gamma classes

The gamma class of X is defined by

$$\widehat{\mathsf{\Gamma}}_{X} := \prod_{i} \mathsf{\Gamma} \left(1 + \delta_{i} \right) \in H^{*} \left(X, \mathbb{R} \right),$$

where δ_i are the Chern roots of X, i.e., $c(TX) = \prod_i (1 + \delta_i)$. • One can write it as

$$\widehat{\Gamma}_{X} = \exp\left(-\gamma c_{1}(TX) + \sum_{k=2}^{\infty} (-1)^{k} (k-1)! \zeta(k) \operatorname{ch}_{k}(TX)\right),$$

where

▶ $\gamma = \lim_{n \to \infty} \left(-\log n + \sum_{k=1}^{n} 1/k \right)$: the Euler's constant, and ▶ $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$: the Riemann zeta value.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Gamma conjecture and tropical geometry

Theorem (Abouzaid–Ganatra–Iritani–Sheridan=:AGIS)

One can compute the asymptotics of $\int_{\mathcal{C}_t} \Omega_t \ (t \to +0)$ in the case where

X, Z_t: a mirror pair of Calabi–Yau hypersurfaces of Batyrev
 C_t: a cycle mirror to an ambient line bundle E on X
 by using *tropical geometry*, and can see that

$$\int_{C_t} \Omega_t = \int_X t^{-\omega} \cdot \widehat{\Gamma}_X \cdot \left(2\pi\sqrt{-1}\right)^{\frac{\deg}{2}} \cdot \operatorname{ch}(E) + O(t^{\epsilon}) \quad (t \to +0)$$

holds in this case.

Goal/Plan of the talk

Goal

To generalize the computation by AGIS to the case where

- the hypersurfaces are not necessarily Calabi–Yau hypersurfaces (geometric genus > 1), and
- the integrands are the Poincaré residues of meromorphic forms having poles of higher order along the hypersurfaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Plan

- Tropical geometry
- Idea of computations by AGIS
- Sketch of its generalization
- Main result

Overview of tropical geometry

► Tropical geometry is algebraic geometry over the tropical number semi-field (T := R ∪ {∞}, ⊕, ⊙)

 $a \oplus b := \min\{a, b\}$ $a \odot b := a + b.$

- We study tropical varieties which are tropical counterparts of algebraic varieties.
- Tropical varieties are polyhedral complexes equipped with a certain kind of integral affine structures.
- Tropical varieties arise as limits of degenerating families of complex algebraic varieties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tropical hypersurfaces

- (K, val): a valued field
- For a Laurent polynomial

$$f = \sum_{m=(m_1,\cdots,m_{d+1})} k_m z_1^{m_1} \cdots z_{d+1}^{m_{d+1}} \in K \left[z_1^{\pm},\cdots, z_{d+1}^{\pm} \right],$$

the following are defined:

Definition

The tropicalization trop (f) of f is the piecewise affine function ℝ^{d+1} → ℝ defined by

 $trop(f)(Z_1, \cdots, Z_{d+1}) := \min_m \{val(k_m) + m_1Z_1 + \cdots + m_{d+1}Z_{d+1}\}.$

The tropical hypersurface V (trop (f)) ⊂ ℝ^{d+1} defined by trop (f) is the corner locus of trop (f).

Example

K := C {x} : the convergent Laurent series field
val: K → Z ∪ {-∞}, ∑_{j∈Z} c_jx^j → min {j ∈ Z | c_j ≠ 0}
f := 1 + x (z₁ + z₂ + z₁⁻¹z₂⁻¹) ∈ K [z₁[±], z₂[±]]

 \rightsquigarrow trop $(f)(Z) = \min \{0, 1 + Z_1, 1 + Z_2, 1 - Z_1 - Z_2\}$

Amoebas of complex hypersurfaces

Theorem (Mikhalkin, Rullgård)

$$\lim_{t\to 0} \operatorname{Log}_t(Z_t) = V(\operatorname{trop}(f)).$$

Sketch of the proof

Recall that for a Laurent polynomial $f = \sum_{m} k_m z^m$,

$$\operatorname{trop}(f)(Z_1,\cdots,Z_{d+1}):=\min_m\left\{\operatorname{val}(k_m)+m\cdot Z\right\}.$$

Take a point $Z \in \mathbb{R}^{d+1}$. On $\text{Log}_t^{-1}(Z)$, • we have $k_m z^m|_{x=t} = O(t^{\text{val}(k_m)+m \cdot Z})$, and • monomials $k_m z^m|_{x=t}$ such that

$$\operatorname{val}(k_m) + m \cdot Z = \operatorname{trop}(f)(Z)$$

are leading terms of f_t .

Sketch of computations by AGIS

Example

•
$$M := \bigoplus_{i=1}^{3} \mathbb{Z}e_{i}$$

• $f_{t}(z) := -1 + \sum_{m \in (\Delta \cap M) \setminus \{0\}} t \cdot z^{m}$
• $Z_{t} := \left\{ z \in (\mathbb{C}^{*})^{3} \mid f_{t}(z) = 0 \right\}$
• $C_{t} := Z_{t} \cap (\mathbb{R}_{>0})^{3}$
• $\Omega_{t} := \frac{1}{df_{t}} \bigwedge_{i=1}^{3} \frac{dz_{i}}{z_{i}}$
• $V(\text{trop}(f)) \subset \mathbb{R}^{3}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We consider

and try to compute $\int_{C_t} \Omega_t = \int_{B_t} i_t^* \Omega_t$.

- $B_t := i_t^{-1}(C_t)$ converges to the central part of $V(\operatorname{trop}(f))$.
- Decompose B_t into pieces according to the polyhedral structure of V (trop (f)).

We can simplify $f_t(z) = -1 + \sum_{m \in (\Delta \cap M) \setminus \{0\}} t \cdot z^m = 0$ to $1 = tz_1 (1 + O(t^{\epsilon}))$ on $i_t (\blacksquare)$, $1 = tz_1 (1 + tz_2/tz_1 + O(t^{\epsilon}))$ on $i_t (\blacksquare)$, and $1 = tz_1 (1 + tz_2/tz_1 + tz_3/tz_1 + O(t^{\epsilon}))$ on $i_t (\blacksquare)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Using the simplified equation on each region, we get

$$\int_{\square} i_t^* \Omega_t = \operatorname{vol}(\square) \cdot (-\log t)^2 + O(t^{\epsilon}),$$

$$\int_{\square} i_t^* \Omega_t = \operatorname{vol}(\square) \cdot (-\log t)^2 - \zeta(2) + O(t^{\epsilon}), \text{ and }$$

$$\int_{\square} i_t^* \Omega_t = \operatorname{vol}(\square) \cdot (-\log t)^2 + O(t^{\epsilon}).$$

In total, we obtain

$$\begin{split} \int_{B_t} i_t^* \Omega_t &= \operatorname{vol} \left(\operatorname{the \ central \ sphere} \right) \cdot \left(-\log t \right)^2 - 24 \cdot \zeta(2) + O\left(t^\epsilon \right) \\ &= \int_X t^{-\omega} \cdot \widehat{\Gamma}_X + O\left(t^\epsilon \right), \end{split}$$

where

• (X, ω) : an anticanonical hypersurface of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ with the anticanonical polarization, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

•
$$(E = \mathcal{O}_X).$$

Generalization of the computations

Theorem (Y., rough version)

Similar computations are possible also for the case where the Newton polytope Δ has more lattice points in its interior.

Example
•
$$f_t := -1 + \sum_{m \in (\Delta \cap M) \setminus \{0\}} t \cdot z^m + t^3 z_1^2$$

• $C_t := Z_t \cap (\mathbb{R}_{>0})^3$
• $\Omega_t := tz_1 \cdot \frac{1}{df_t} \bigwedge_{i=1}^3 \frac{dz_i}{z_i}$
• $V(\operatorname{trop}(f)) \subset \mathbb{R}^3$
We consider
• $i_t : \mathbb{R}^3 \to (\mathbb{R}_{>0})^3$, $(Z_1, Z_2, Z_3) \mapsto (t^{Z_1}, t^{Z_2}, t^{Z_3})$
• $B_t := i_t^{-1} (C_t)$
and try to compute $\int_{C_t} \Omega_t = \int_{B_t} i_t^* \Omega_t$.

Generalization of the computations (continued)

•
$$V(\operatorname{trop}(f)) \subset \mathbb{R}^3$$

• $B_t := i_t^{-1}(C_t)$ converges to the boundary of the right cube in $V(\operatorname{trop}(f))$ again.

Generalization of the computations (continued)

Highlight

- Integrals only over the above green regions are effective.
- Around an edge, we get

$$\int_{\blacksquare+\blacksquare} i_t^* \Omega_t = \operatorname{vol}(\blacksquare) \cdot (-\log t)^2 - \zeta(2) + O(t^{\epsilon}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalization of the computations (continued)

In total, we obtain

$$\begin{split} \int_{B_t} i_t^* \Omega_t &= \operatorname{vol} \left(\operatorname{facet} \right) \cdot \left(-\log t \right)^2 - 4 \cdot \zeta(2) + O\left(t^\epsilon \right) \\ &= \int_{\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1} t^{-\omega} \cdot D_1 \cdot \widehat{\Gamma}_0 + O\left(t^\epsilon \right), \end{split}$$

where

$$\begin{array}{l} \blacktriangleright \quad D_1 := \{0\} \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1, \text{ and} \\ \blacktriangleright \quad \widehat{\Gamma}_0 := \frac{\prod_i \Gamma(1+D_i)}{\Gamma(1+\sum_i D_i)} \quad (\{D_i\}_i: \text{ all toric divisors on } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1). \end{array}$$

Remark

The restriction of $\widehat{\Gamma}_0$ to an anticanonical hypersurface of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ coincides with the gamma class of the hypersurface.

Setup of the main result

- ▶ $\Delta \subset M_{\mathbb{R}}$: a lattice polytope of dimension d+1 $(d \ge 1)$
- $\Sigma \subset N_{\mathbb{R}}$: a simplicial refinement of the normal fan of Δ
- Y_Σ: the toric variety over C associated with Σ
- $w \in \operatorname{Int}(\Delta) \cap M$
- Consider the hypersurface $Z_t \subset Y_{\Sigma}$ defined by the polynomial

$$f_t(z) = -t^{\lambda_w} z^w + \sum_{m \in (\Delta \cap M) \setminus \{w\}} t^{\lambda_m} z^m \quad (\lambda_m \in \mathbb{Z}).$$

We suppose (Δ ∩ M) → Z, m ↦ λ_m extends to a strictly convex affine function on a unimodular triangulation *T* of Δ.
C_t := Z_t ∩ (ℝ_{>0})^{d+1}

Setup of the main result (continued)

$$\blacktriangleright \ l \cdot \Delta := \{l \cdot m \in M_{\mathbb{R}} \mid m \in \Delta\} \ (l \in \mathbb{Z}_{>0})$$

►
$$v \in \mathsf{Int}(I \cdot \Delta) \cap M$$

► $\tau_{v} \in \mathscr{T}$: the minimal cell such that $v \in I \cdot \tau_{v}$ $\rightsquigarrow v = \sum_{m \in \tau_{v} \cap M} p_{m} \cdot m \quad (p_{m} \in \mathbb{Z}_{>0}, \sum_{m} p_{m} = I)$

• $\omega_t^{l,v}$: the meromorphic (d+1)-form on Y_{Σ} defined by

$$\omega_t^{l,\mathbf{v}} := (l-1)! \left(\bigwedge_{i=0}^d \frac{dz_i}{z_i} \right) \frac{z^{\mathbf{v}}}{(f_t)^l} \prod_{m \in \tau_{\mathbf{v}} \cap M} t^{p_m \lambda_m}$$

The forms $\left\{\omega_t^{l,v}\right\}_v$ generate $H^0\left(Y_{\Sigma}, \Omega^{d+1}\left(l \cdot Z_t\right)\right)$. • $\Omega_t^{l,v} \in H^d\left(Z_t, \mathbb{C}\right)$: the Poincaré residue of $\omega_t^{l,v}$, i.e., the image by the Poincaré residue map

Res:
$$H^0\left(Y_{\Sigma}, \Omega^{d+1}\left(I \cdot Z_t\right)\right) \to H^d\left(Z_t, \mathbb{C}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main result

Theorem (Y., simplified version) One has

$$\int_{C_t} \Omega_t^{l,v} = \begin{cases} \int_{Y_w} t^{-\omega_\lambda^w} \cdot E_{v,w} \cdot \widehat{\Gamma}_w + O(t^{\epsilon}) & \operatorname{conv}\left(\{w\} \cup \tau_v\right) \in \mathscr{T} \\ O(t^{\epsilon}) & \operatorname{otherwise} \end{cases}$$

as $t \to +0$, for some $\epsilon > 0$, where

 \triangleright Y_w : the toric variety associated with the fan

$$\Sigma_{w} := \left\{ \mathbb{R}_{\geq 0} \cdot (\tau - w) \mid \tau \in \mathscr{T}, \tau \ni w \right\},$$