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Background

Gamma conjecture for Calabi–Yau manifolds

▶ (X , ω): a Calabi–Yau manifold with a symplectic structure

▶ {Zt}t∈∆∗ : a family of Calabi–Yau manifolds mirror to (X , ω)

▶ Ct ⊂ Zt : a Lagrangian cycle

▶ E : a coherent sheaf on X mirror to Ct

Then one has∫
Ct

Ωt =

∫
X
t−ω · Γ̂X ·

(
2π

√
−1
) deg

2 · ch(E ) + O (tϵ) (t → +0),

where

▶ Ωt : the holomorphic volume form on Zt , and

▶ Γ̂X ∈ H∗ (X ,R): the gamma class of X .



Gamma classes

▶ The gamma class of X is defined by

Γ̂X :=
∏
i

Γ (1 + δi ) ∈ H∗ (X ,R) ,

where δi are the Chern roots of X , i.e., c(TX ) =
∏

i (1 + δi ).

▶ One can write it as

Γ̂X = exp

(
−γc1(TX ) +

∞∑
k=2

(−1)k (k − 1)!ζ(k) chk(TX )

)
,

where
▶ γ = limn→∞

(
− log n +

∑n
k=1 1/k

)
: the Euler’s constant, and

▶ ζ(s) =
∑∞

n=1 1/n
s : the Riemann zeta value.



Gamma conjecture and tropical geometry

Theorem (Abouzaid–Ganatra–Iritani–Sheridan=:AGIS)

One can compute the asymptotics of
∫
Ct

Ωt (t → +0) in the case
where

▶ X ,Zt : a mirror pair of Calabi–Yau hypersurfaces of Batyrev

▶ Ct : a cycle mirror to an ambient line bundle E on X

by using tropical geometry, and can see that∫
Ct

Ωt =

∫
X
t−ω · Γ̂X ·

(
2π

√
−1
) deg

2 · ch(E ) + O (tϵ) (t → +0)

holds in this case.



Goal/Plan of the talk

Goal
To generalize the computation by AGIS to the case where

▶ the hypersurfaces are not necessarily Calabi–Yau
hypersurfaces (geometric genus > 1), and

▶ the integrands are the Poincaré residues of meromorphic forms
having poles of higher order along the hypersurfaces.

Plan
▶ Tropical geometry

▶ Idea of computations by AGIS

▶ Sketch of its generalization

▶ Main result



Overview of tropical geometry

▶ Tropical geometry is algebraic geometry over the tropical
number semi-field (T := R ∪ {∞},⊕,⊙)

a⊕ b := min{a, b}
a⊙ b := a+ b.

▶ We study tropical varieties which are tropical counterparts of
algebraic varieties.

▶ Tropical varieties are polyhedral complexes equipped with a
certain kind of integral affine structures.

▶ Tropical varieties arise as limits of degenerating families of
complex algebraic varieties.



Tropical hypersurfaces

▶ (K , val): a valued field

▶ For a Laurent polynomial

f =
∑

m=(m1,··· ,md+1)

kmz
m1
1 · · · zmd+1

d+1 ∈ K
[
z±1 , · · · , z±d+1

]
,

the following are defined:

Definition
▶ The tropicalization trop (f ) of f is the piecewise affine

function Rd+1 → R defined by

trop(f )(Z1, · · · ,Zd+1) := min
m

{val(km) +m1Z1 + · · ·+md+1Zd+1} .

▶ The tropical hypersurface V (trop (f )) ⊂ Rd+1 defined by
trop (f ) is the corner locus of trop (f ).



Example
▶ K := C {x} : the convergent Laurent series field

▶ val : K −→ Z ∪ {−∞},
∑

j∈Z cjx
j 7→ min {j ∈ Z | cj ̸= 0}

▶ f := 1 + x
(
z1 + z2 + z−1

1 z−1
2

)
∈ K

[
z±1 , z±2

]
; trop (f ) (Z ) = min {0, 1 + Z1, 1 + Z2, 1− Z1 − Z2}



Amoebas of complex hypersurfaces
▶ 0 < t << 1 ; ft := f |x=t ∈ C[z±1 , · · · , z±d+1]

▶ Zt :=
{
z ∈ (C∗)d+1

∣∣ ft(z) = 0
}

▶ Logt : (C∗)d+1 → Rd+1

(z1, . . . , zd+1) 7→ (logt |z1|, . . . , logt |zd+1|)

Theorem (Mikhalkin, Rullg̊ard)

limt→0 Logt(Zt) = V (trop(f )).



Sketch of the proof

Recall that for a Laurent polynomial f =
∑

m kmz
m,

trop(f )(Z1, · · · ,Zd+1) := min
m

{val(km) +m · Z} .

Take a point Z ∈ Rd+1. On Log−1
t (Z ),

▶ we have kmz
m|x=t = O

(
tval(km)+m·Z), and

▶ monomials kmz
m|x=t such that

val (km) +m · Z = trop(f )(Z )

are leading terms of ft .



Sketch of computations by AGIS

Example

▶ M :=
⊕3

i=1 Zei
▶ ft(z) := −1 +

∑
m∈(∆∩M)\{0} t · zm

▶ Zt :=
{
z ∈ (C∗)3

∣∣∣ ft(z) = 0
}

▶ Ct := Zt ∩ (R>0)
3

▶ Ωt :=
1
dft

∧3
i=1

dzi
zi

▶ V (trop (f )) ⊂ R3

We consider

▶ it : R3 → (R>0)
3 , (Z1,Z2,Z3) 7→

(
tZ1 , tZ2 , tZ3

)
▶ Bt := i−1

t (Ct)

and try to compute
∫
Ct

Ωt =
∫
Bt

i∗t Ωt .



Sketch of computations by AGIS (continued)
▶ Bt := i−1

t (Ct) converges to the central part of V (trop (f )).

▶ Decompose Bt into pieces according to the polyhedral
structure of V (trop (f )).



Sketch of computations by AGIS (continued)

We can simplify ft(z) = −1 +
∑

m∈(∆∩M)\{0} t · zm = 0 to

▶ 1 = tz1 (1 + O (tϵ)) on it (■),

▶ 1 = tz1 (1 + tz2/tz1 + O (tϵ)) on it (■), and

▶ 1 = tz1 (1 + tz2/tz1 + tz3/tz1 + O (tϵ)) on it (■).



Sketch of computations by AGIS (continued)

Using the simplified equation on each region, we get

▶ ∫
■ i∗t Ωt = vol (■) · (− log t)2 + O (tϵ),

▶ ∫
■ i∗t Ωt = vol (■) · (− log t)2 − ζ(2) + O (tϵ), and

▶ ∫
■ i∗t Ωt = vol (■) · (− log t)2 + O (tϵ).



Sketch of computations by AGIS (continued)

In total, we obtain∫
Bt

i∗t Ωt = vol (the central sphere) · (− log t)2 − 24 · ζ(2) + O (tϵ)

=

∫
X
t−ω · Γ̂X + O (tϵ) ,

where

▶ (X , ω): an anticanonical hypersurface of P1 × P1 × P1 with
the anticanonical polarization, and

▶ (E = OX ).



Generalization of the computations

Theorem (Y., rough version)

Similar computations are possible also for the case where the
Newton polytope ∆ has more lattice points in its interior.

Example
▶ ft := −1 +

∑
m∈(∆∩M)\{0} t · zm + t3z21

▶ Ct := Zt ∩ (R>0)
3

▶ Ωt := tz1 · 1
dft

∧3
i=1

dzi
zi

▶ V (trop (f )) ⊂ R3

We consider

▶ it : R3 → (R>0)
3 , (Z1,Z2,Z3) 7→

(
tZ1 , tZ2 , tZ3

)
▶ Bt := i−1

t (Ct)

and try to compute
∫
Ct

Ωt =
∫
Bt

i∗t Ωt .



Generalization of the computations (continued)

▶ V (trop (f )) ⊂ R3

▶ Bt := i−1
t (Ct) converges to the boundary of the right cube in

V (trop (f )) again.



Generalization of the computations (continued)

Highlight

▶ Integrals only over the above green regions are effective.

▶ Around an edge, we get∫
■+■

i∗t Ωt = vol (■) · (− log t)2 − ζ(2) + O (tϵ) .



Generalization of the computations (continued)

In total, we obtain∫
Bt

i∗t Ωt = vol (facet) · (− log t)2 − 4 · ζ(2) + O (tϵ)

=

∫
P1×P1×P1

t−ω · D1 · Γ̂0 + O (tϵ) ,

where

▶ D1 := {0} × P1 × P1 ⊂ P1 × P1 × P1, and

▶ Γ̂0 :=
∏

i Γ(1+Di )
Γ(1+

∑
i Di )

({Di}i : all toric divisors on P1 × P1 × P1).

Remark
The restriction of Γ̂0 to an anticanonical hypersurface of
P1 × P1 × P1 coincides with the gamma class of the hypersurface.



Setup of the main result

▶ ∆ ⊂ MR: a lattice polytope of dimension d + 1 (d ≥ 1)

▶ Σ ⊂ NR: a simplicial refinement of the normal fan of ∆

▶ YΣ: the toric variety over C associated with Σ

▶ w ∈ Int (∆) ∩M

▶ Consider the hypersurface Zt ⊂ YΣ defined by the polynomial

ft(z) = −tλw zw +
∑

m∈(∆∩M)\{w}

tλmzm (λm ∈ Z).

We suppose (∆ ∩M) → Z,m 7→ λm extends to a strictly
convex affine function on a unimodular triangulation T of ∆.

▶ Ct := Zt ∩ (R>0)
d+1



Setup of the main result (continued)

▶ l ·∆ := {l ·m ∈ MR | m ∈ ∆} (l ∈ Z>0)

▶ v ∈ Int (l ·∆) ∩M

▶ τv ∈ T : the minimal cell such that v ∈ l · τv
; v =

∑
m∈τv∩M pm ·m (pm ∈ Z>0,

∑
m pm = l)

▶ ωl ,v
t : the meromorphic (d + 1)-form on YΣ defined by

ωl ,v
t := (l − 1)!

(
d∧

i=0

dzi
zi

)
zv

(ft)
l

∏
m∈τv∩M

tpmλm

The forms
{
ωl ,v
t

}
v
generate H0

(
YΣ,Ω

d+1 (l · Zt)
)
.

▶ Ωl ,v
t ∈ Hd (Zt ,C): the Poincaré residue of ωl ,v

t , i.e., the image
by the Poincaré residue map

Res : H0
(
YΣ,Ω

d+1 (l · Zt)
)
→ Hd (Zt ,C)



Main result

Theorem (Y., simplified version)

One has∫
Ct

Ωl ,v
t =

{ ∫
Yw

t−ωw
λ · Ev ,w · Γ̂w + O (tϵ) conv ({w} ∪ τv ) ∈ T

O (tϵ) otherwise

as t → +0, for some ϵ > 0, where

▶ Yw : the toric variety associated with the fan

Σw := {R≥0 · (τ − w) | τ ∈ T , τ ∋ w} ,

▶ ωw
λ :=

∑
m∈Aw

(λm − λw )D
w
m with

▶ Aw := {m ∈ (∆ ∩M) \ {w} | conv ({m,w}) ∈ T }
▶ Dw

m (m ∈ Aw ): the toric divisor on Yw associated with the
1-dimensional cone R≥0 · (m − w) ∈ Σw ,

▶ Ev ,w :=
∏

m∈Aw∩τv
∏pm−1

i=0 (Dw
m + i) ·

∏pw−1
i=0

(∑
m∈Aw

Dw
m − i

)
▶ Γ̂w :=

∏
m∈Aw

Γ(1+Dw
m )

Γ(1+
∑

m∈Aw
Dw

m)
.


