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Background

Gamma conjecture for Calabi—Yau manifolds

» (X,w): a Calabi-Yau manifold with a symplectic structure
» {Z:},en+: a family of Calabi—Yau manifolds mirror to (X, w)
» C; C Z;: a Lagrangian cycle

» E£: a coherent sheaf on X mirror to C;

Then one has

/thzt/ Ty - (MF)?g h(E)+ O () (¢ — +0),

where
» Q;: the holomorphic volume form on Z;, and
> Tx € H* (X,R): the gamma class of X.



Gamma classes

» The gamma class of X is defined by
Tx = [[r@+d)eH (X,R),
where ¢; are the Chern roots of X, i.e., ¢(TX) =[]; (1+ ;).

» One can write it as
szexp< yer (TX) +Z (—1)% (k — 1)I¢(k )chk(TX)>,
k=2

where
» v =limy o (—logn—+ 3> ;_; 1/k): the Euler's constant, and
> ((s) =2, 1/n%: the Riemann zeta value.



Gamma conjecture and tropical geometry

Theorem (Abouzaid—Ganatra—lIritani-Sheridan=:AGIS)

One can compute the asymptotics of fCt Q; (t = +0) in the case
where

» X, Z:: a mirror pair of Calabi—Yau hypersurfaces of Batyrev
» (C;: a cycle mirror to an ambient line bundle £ on X

by using tropical geometry, and can see that

/ctQt /_w Fx: (%F)deg h(E) +O(t9) (t— +0)

holds in this case.



Goal /Plan of the talk

Goal

To generalize the computation by AGIS to the case where

» the hypersurfaces are not necessarily Calabi—Yau
hypersurfaces (geometric genus > 1), and

» the integrands are the Poincaré residues of meromorphic forms
having poles of higher order along the hypersurfaces.

Plan
» Tropical geometry
» |dea of computations by AGIS
» Sketch of its generalization
> Main result



Overview of tropical geometry

» Tropical geometry is algebraic geometry over the tropical
number semi-field (T := R U {oo}, ®, ®)

a® b := min{a, b}
a®b:=a+b.

» We study tropical varieties which are tropical counterparts of
algebraic varieties.

» Tropical varieties are polyhedral complexes equipped with a
certain kind of integral affine structures.

» Tropical varieties arise as limits of degenerating families of
complex algebraic varieties.



Tropical hypersurfaces

» (K,val): a valued field

» For a Laurent polynomial
o m my+1 + +
f= Z kmzy '+ Zy EK[21,~-,zd+1],
m=(my,,mg11)
the following are defined:

Definition
» The tropicalization trop (f) of f is the piecewise affine
function Rt — R defined by

trop(f)(Zl, cee 7Zd+1) = mni7n {val(km) + lel + -+ md+1Zd+1} .

» The tropical hypersurface V (trop (f)) C RI*! defined by
trop (f) is the corner locus of trop ().



Example

» K :=C{x} : the convergent Laurent series field
> val: K — ZU{—00}, > iy cixl = min{j € Z | ¢; # 0}
> f = 1—|—x(zl—|—22+zl_122_1) eK [zfc,zzi]

~trop (f)(Z) =min{0,1+ 21,1+ 2,1 — 43 — 2>}
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Amoebas of complex hypersurfaces
> 0<t<<l~ fp:=fl=t €Clzf, - 7Zdi+1]
> Z,:={ze(C) | f(z) =0}
> Log,: (C*)9+1 — RI*L

(21, ey Zd+1) — (Iogt ‘21’, RN |ogt |Zd+1|)

Theorem (Mikhalkin, Rullgard)

lim;—o Log.(Z;) = V(trop(f)).
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Sketch of the proof

Recall that for a Laurent polynomial ¥ = Zm kmz™,

trop(f)(ZL e 7Zd+].) = min {Val(km) +m- Z} .

Take a point Z € R+, On Log;1(2),
> we have kpnz™|,_, = O (tval(km)+m'z), and

» monomials knz™|,_, such that
val (km) + m - Z = trop(f)(Z)

are leading terms of f;.



Sketch of computations by AGIS

Example

> M:= @?:1 Ze;
> f(z) = =142 meanmpqo £ 27

> 7, = {z e (€| fi(2) = o}
> C = Ztm(R>0)3
> Q= df; /\?:1 d?7
> V (trop(f)) C R3
We consider
> i RS (Rs0)?,  (Z1, 22, Z3) = (t2, 122, t53)
> Bt = It_l (Ct)

and try to compute [ Q= [ if Q.



Sketch of computations by AGIS (continued)
> B, :=i; ' (C:) converges to the central part of V (trop (f)).

» Decompose B; into pieces according to the polyhedral
structure of V (trop (f)).




Sketch of computations by AGIS (continued)
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We can simplify fi(z) = =1+ > c(anmy oy t- 27 =0 to
> 1=tz (14 O(t%)) on i (W),
> 1=tz (1+tzp/tzy + O(t)) on ir (M), and
> 1=tz (1+ tzp/tz; + tz3/tz; + O (t)) on i (M).




Sketch of computations by AGIS (continued)
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Using the simplified equation on each region, we get
> [ iQ = vol (M) - (—log t)? + O (t9),
> g i = vol (M) (—logt)? —((2) + O(t°), and
> [ i = vol (M) - (—logt)? + O(t°).




Sketch of computations by AGIS (continued)

In total, we obtain

/ i*Q: = vol (the central sphere) - (— log t)? — 24 - ((2) 4+ O (t°)

B:

:/ £ . Tx + O(t9),
X

where

» (X,w): an anticanonical hypersurface of P! x P! x P! with
the anticanonical polarization, and

| 2 (E = Ox)



Generalization of the computations

Theorem (Y., rough version)

Similar computations are possible also for the case where the
Newton polytope A has more lattice points in its interior.

Example
> foi= =14 Y eanmn ot 27+ 22
> G =27 N (R>0)3
> Q= tz - dift/\?:]- dz%’
> V (trop (f)) c R3

We consider
> s R3— (R>o)3, (£41, 22, Z3) = (tzlv t%2, tZ3)
> B =i 1 (G)

and try to compute [ Q: = [ if Q.




Generalization of the computations (continued)
> V (trop(f)) C R3

> B;:=i; ' (C:) converges to the boundary of the right cube in
V (trop (f)) again.



Generalization of the computations (continued)
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> Integrals only over the above green regions are effective.

» Around an edge, we get

/-+- 70 = vol (W) - (— log £)2 — ¢(2) + O (£°).



Generalization of the computations (continued)

In total, we obtain
/ i*Q; = vol (facet) - (— log t)? — 4 - ¢(2) + O (t)
Bt
:/ t79. Dy T+ O(t),
Pl x Pl x Pl

where
» D := {0} x P! x P! C P! x P! x P!, and

> To:= <2 ({Di};: all toric divisors on P x P x PL).
Remark R

The restriction of g to an anticanonical hypersurface of

P! x P! x P! coincides with the gamma class of the hypersurface.



Setup of the main result

vVvyYyyvyy

A C Mg: a lattice polytope of dimension d +1 (d > 1)

> C Ng: a simplicial refinement of the normal fan of A

Ys: the toric variety over C associated with

w e Int(A)nM

Consider the hypersurface Z; C Ysx defined by the polynomial

fi(z) = — w4 Z Am Zm (Am € Z).
me(ANM)\{w}

We suppose (AN M) — Z, m — \p, extends to a strictly
convex affine function on a unimodular triangulation 7 of A.

Cr = Z: N (Rsg)?t?



Setup of the main result (continued)
> [ A:={l-me M| meA} (I € Zso)
> velnt(/-A)NM
» 7, € 7: the minimal cell suchthat ve /-7,
~ V=0 e am Pm M (Pm € L0, Pm = 1)
> wi": the meromorphic (d + 1)-form on Ys defined by

< dz\ zv
bl PmAm
/\ Zi) (ft)l H t

i=0 mer,NM

wi’v =(/-1)! (

The forms {wi’v} generate HO (Yx, Q1 (1- Zy)).
v

> QY € HY(Z,,C): the Poincaré residue of w"", i.e., the image
by the Poincaré residue map

Res: H° (Yz,Qd“(/ : zt)) — H(Z,,C)



Main result

Theorem (Y., simplified version)
One has

/ alv_ ) Jy, % Evw Tw+0(t) conv({w}ur)eT
G ] o) otherwise

as t — +0, for some € > 0, where

» Y, : the toric variety associated with the fan
Yo ={Rso-(r—w)| 7€ 7,75 w},
> Wy =3 ca, (Am — Aw) Dy with

> A, ={me(AnM)\{w}|conv({m,w})e T}
» DY (me Ay): the toric divisor on Y,, associated with the
1-dimensional cone R>q - (m

w) € X,
m_]- w w -1 w H
> Evw = lmea,nr [0~ (Dpy +0) - T12 " (X mea, D — 1)
» T = Hmeay, r(1+Dr”n”)

r(1+ZmEAw D"%) .



