Stable Fukaya categories of Milnor fibers

Kazushi Ueda

Mirror Symmetry and Differential Equations
Boğaziçi University
July 13, 2023

Abelian surface

- X: a principally polarized abelian surface
- $D \subset X$: the theta divisor (a curve of genus 2)
- $U:=X \backslash D$: an affine manifold
- $\widetilde{U} \rightarrow \mathbb{P}^{2}$: the blow-up at three points in general position
- $\widetilde{\breve{U}} \rightarrow \check{U}$: identification of the opposite sides of the toric momentum polytope of \widetilde{U}
- The toric boundary of \widetilde{U} goes to the union of there rational curves whose intersection complex is a θ-shaped graph.
- fuk $D \simeq \operatorname{scoh} \check{U}:=\operatorname{coh} \check{U} /$ perf \check{U} by Seidel.
- wfuk $U \simeq \operatorname{coh} \check{U}$ and fuk $U \simeq$ perf \check{U}, so that wfuk U / fuk $U \simeq$ fuk D ?

Stable Fukaya category

- The stable Fukaya category is the quotient

$$
\text { sfuk } U:=\text { wfuk } U / \text { fuk } U \text {. }
$$

- According to Ganatra-Gao-Venkatesh, if there is a Koszul duality between wfuk U and fuk U, then the stable Fukaya category is equivalent to the Rabinowitz Fukaya category.

Balanced Fukaya category

- A symplectic manifold (M, ω) is monotone if $c_{1}(M)=k[\omega]$ for $k \neq 0$.
- Fix a 1 -form θ on the principal S^{1}-bundle associated with the complex line bundle $\bigwedge^{n}(T M, J)$ such that $d \theta=\pi^{*} \omega$.
- A Lagrangian submanifold $L \subset M$ is balanced if $\left[i^{*} \theta\right]=0 \in H^{1}(L ; \mathbb{R})$.
- The balanced Fukaya category fuk M is decomposed into summands associated with eigenvalues of quantum multiplication by $c_{1}(M)$.
- The balanced Fukaya category is $\mathbb{Z} / 2 N \mathbb{Z}$-graded, where N is the minimal Maslov number.
- A $\mathbb{Z} / 2 N \mathbb{Z}$-graded category is the same as a $\mathbf{k}\left[u, u^{-1}\right]$-linear \mathbb{Z}-graded category for $\operatorname{deg} u=2 N$.

Complement of a smooth ample divisor

- X : a smooth projective n-fold
- $D \subset X$: a smooth ample divisor
- $U:=X \backslash D$: an affine manifold
- Assume $r D \sim K_{X}$ for some $r \in \mathbb{Z}$, so that $c_{1}(U)=0$.
- $\theta \in \mathrm{SH}^{2+2 r}(U)$: the Borman-Sheridan-Varolgüneș class
- θ should be the first order deformation class of fuk (X, D).
- fuk U is proper over $\mathbf{k}[\theta]$ by Pomerleano.
- It is natural to expect $\operatorname{Fun}^{\text {ex }}($ wfuk $U, \operatorname{perf} \mathbf{k}) \simeq$ fuk U, so that
sfuk $U \simeq \begin{cases}\text { wfuk } U \otimes_{\mathbf{k}[\theta]} k(\theta) & \text { if } U \text { is log Calabi-Yau, } \\ \text { wfuk } U \otimes_{\mathbf{k}[\theta]} \mathbf{k}\left[\theta, \theta^{-1}\right] & \text { otherwise. }\end{cases}$

Lagrangian correspondence

- $C:=\mathcal{S N}_{D / X}$: the sphere bundle of the normal bundle (the boundary of a tubular neighborhood)
- $C \rightarrow U \times D$: a Lagrangian correspondence
- C induces a functor Φ : wfuk $U \rightarrow$ fuk D.

Conjecture (Lekili-U).

If U is not \log Calabi-Yau, then Φ descends to an equivalence

$$
\Psi: \operatorname{sfuk} U \rightarrow \operatorname{fuk}(D ; \lambda)
$$

with the big summand of the balanced Fukaya category.

Cotangent bundle (with the canonical background)

- wfuk $T^{*} N \simeq \bmod C_{-\bullet}(\Omega N)$: the dg category of modules over chains on the based loop space equipped with the Pontryagin product (Abbondandolo-Schwarz, Fukaya-Seidel-Smith, Abouzaid).
- It is the global section of a locally constant cosheaf of dg categories (..., Kontsevich, ...).

Fukaya categories of $T^{*} S^{1}$

- $S^{1} \simeq K(\mathbb{Z}, 1)$
- $\Omega S^{1} \simeq \mathbb{Z}$
- $C_{-.}(\Omega N) \simeq \mathbf{k}[\mathbb{Z}] \simeq \mathbf{k}\left[x, x^{-1}\right]$
- wfuk $T^{*} S^{1} \simeq \bmod \mathbf{k}\left[x, x^{-1}\right] \simeq \operatorname{coh} \mathbb{G}_{\mathrm{m}}$
- fuk $T^{*} S^{1} \simeq \bmod _{\text {fin }} \operatorname{dim} \mathbf{k}\left[x, x^{-1}\right] \simeq \operatorname{coh}_{\text {cpt supp }} \mathbb{G}_{\mathrm{m}}$
- sfuk $T^{*} S^{1} \simeq \bmod \mathbf{k}(x)$

Fukaya categories of $T^{*} S^{n}$ for $n \geq 2$

- $C_{-.}\left(\Omega S^{n}\right) \simeq \mathbf{k}[x]$
- $\operatorname{deg} x=1-n$
- wfuk $T^{*} S^{n} \simeq \bmod \mathbf{k}[x]$
- fuk $T^{*} S^{n} \simeq \bmod _{\text {fin }}^{\operatorname{dim}} \mathbf{k}[x]$
- $\mathbf{k}[x]$ is non-(super)commutative for even n.
- wfuk $T^{*} S^{n} \simeq \operatorname{coh} \mathbb{A}^{1}[n-1]$ and fuk $T^{*} S^{n} \simeq \operatorname{coh}_{0} \mathbb{A}^{1}[n-1]$ for odd n.
- $\operatorname{sfuk} T^{*} S^{n} \simeq \bmod \mathbf{k}\left[x, x^{-1}\right]$

Brieskorn-Pham singularities

- A Brieskorn-Pham polynomial is a polynomial of the form $x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}$ for $a_{1}, \ldots, a_{n} \in \mathbb{N}$.
- A Brieskorn-Pham singularity is an isolated hypersurface singularity at the origin of the affine complex hypersurface defined by a Brieskorn-Pham polynomial.
- The Milnor fiber is the Liouville domain obtained as the intersection of a regular level set with a ball.
- The contact boundary of the Milnor fiber of a Brieskorn-Pham singularity is the Brieskorn manifold.
- The Brieskorn 7-spheres with $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,2,2,3,6 k-1)$ for $1 \leq k \leq 28$ give all 28 possible smooth structures on S^{7}.

Simple singularities

$$
\begin{aligned}
& A_{\ell}: x_{1}^{\ell+1}+x_{2}^{2}+\cdots+x_{n+1}^{2}=0, \quad \ell=1,2, \ldots \\
& D_{\ell}: x_{1}^{\ell-1}+x_{1} x_{2}^{2}+x_{3}^{2}+\cdots+x_{n+1}^{2}=0, \quad \ell=4,5, \ldots \\
& E_{6}: x_{1}^{4}+x_{2}^{3}+x_{3}^{2}+\cdots+x_{n+1}^{2}=0 \\
& E_{7}: x_{1}^{3}+x_{1} x_{2}^{3}+x_{3}^{2}+\cdots+x_{n+1}^{2}=0, \\
& E_{8}: x_{1}^{5}+x_{2}^{3}+x_{3}^{2}+\cdots+x_{n+1}^{2}=0 .
\end{aligned}
$$

- Q: a Dynkin quiver of the corresponding type
- \mathscr{G}_{Q} : the Ginzburg dg algebra of Q (without potential)
- \mathscr{G}_{Q} is smooth and Koszul dual to the trivial extension algebra $B_{Q}:=A_{Q} \oplus A_{Q}^{\vee}[-n]$ where A_{Q} is the path algebra of Q and $A_{Q}^{\vee}:=\operatorname{hom}_{\mathbf{k}}\left(A_{Q}, \mathbf{k}\right)$ (Keller).
- wfuk $U \simeq \operatorname{perf} \mathscr{G}_{Q}$ for $n \geq 2$ and char $\mathbf{k}=0$ (Etgü-Lekili)

Cluster category

- \mathscr{G}_{Q} is smooth but not proper.
- B_{Q} is proper but not smooth.
- \mathscr{G}_{Q} and B_{Q} are Koszul dual.
- pseu B_{Q} : the category of pseudo-perfect B_{Q}-modules (dg modules over B_{Q} which are perfect as \mathbf{k}-modules)
\rightarrow pseu $B_{Q} /$ perf $B_{Q} \simeq C_{n-1}\left(A_{Q}\right)$: the cluster category (the orbit category with respect to $\mathbb{S}[-n+1]$) (Keller)
- wfuk $U \simeq \operatorname{perf} \mathscr{G}_{Q} \simeq \operatorname{pseu} B_{Q}$
- fuk $U \simeq \operatorname{pseu} \mathscr{G}_{Q} \simeq \operatorname{perf} B_{Q}$
- sfuk $U \simeq C_{n-1}\left(A_{Q}\right)$

Trichotomy

- $U:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}=1\right\}$ is
- \log Fano if $\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}>1$,
- log Calabi-Yau if $\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}=1$, and
- of log general type if $\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}<1$.
- Milnor fibers of simple singularities in dimension 2 are log Fano, although they admit complete Ricci-flat Kähler metric.
- Mirrors of \log Calabi-Yau manifolds are log Calabi-Yau manifolds, and mirrors of others are Landau-Ginzburg models.

Koszul duality

- $U:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}=1\right\}:$ the Milnor fiber of a Brieskorn-Pham singularity
- $\left(S_{i}\right)_{i=1}^{\mu}$: a distinguished basis of vanishing cycles in U
- $\left(L_{i}\right)_{i=1}^{\mu}$: non-compact Lagrangians such that $\operatorname{dim} \operatorname{hom}\left(L_{i}, S_{j}\right)=\delta_{i j}$
- $\mathscr{F}:=\operatorname{end}\left(\bigoplus_{i=1}^{\mu} S_{i}\right), \quad \mathscr{W}:=\operatorname{end}\left(\bigoplus_{i=1}^{\mu} L_{i}\right)$
- If U is not \log Calabi-Yau, then
- $\mathscr{F} \simeq \operatorname{hom}_{\mathscr{W}}(\mathbb{k}, \mathbb{k})$
- $\mathscr{W}^{\mathrm{op}} \simeq \operatorname{hom}_{\mathscr{F} \circ \mathrm{op}}(\mathbb{k}, \mathbb{k})$
- Fun ${ }^{\operatorname{ex}}$ (fuk U, perf $\left.k\right) \simeq$ wfuk U
- Fun ${ }^{\text {ex }}($ wfuk U, perf $\mathbf{k}) \simeq$ fuk U
- $\mathrm{HH}^{*}($ fuk $U) \simeq \mathrm{HH}^{*}($ wfuk $U)\left(\stackrel{\text { Ganatra }}{\simeq} \mathrm{SH}^{*}(U)\right)$

Homological mirror symmetry

- $U:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}=1\right\}$
- $S:=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}-x_{0} \cdots x_{n}\right)$
- $K:=$
$\left\{\left(t_{0}, \ldots, t_{n}\right) \in\left(\mathbb{G}_{\mathrm{m}}\right)^{n+1} \mid t_{1}^{a_{1}}=\cdots=t_{n}^{a_{n}}=t_{0} \cdots t_{n}\right\}$
- $\check{U}:=[\operatorname{Spec} S / K]:$ the quotient stack
- scoh $\check{U}:=\operatorname{coh} \check{U} / \operatorname{perf} \check{U}:$ the stable derived category
(a.k.a. the singularity category)
- If U is not \log Calabi-Yau, then wfuk $U \simeq \operatorname{scoh} \check{U}$.

CY/LG correspondence in the log Calabi-Yau case

- $K:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{G}_{\mathrm{m}}\right)^{n} \mid t_{1}^{a_{1}}=\cdots=t_{n}^{a_{n}}\right\}$
- $\mathbb{X}:=\left[\left(\mathbb{A}^{n} \backslash \mathbf{0}\right) / K\right]$
- $\mathbb{D}_{0}:=V\left(x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}\right), \mathbb{D}_{\infty}:=V\left(x_{1} \cdots x_{n}\right)$.
- $\widetilde{\mathbb{X}} \rightarrow \mathbb{X}$: the blow-up along $\mathbb{D}_{0} \cap \mathbb{D}_{\infty}$
- $\breve{U}:=\widetilde{\mathbb{X}} \backslash$ (the strict transform of \mathbb{D}_{∞}) : smooth
- scoh $\check{U} \simeq$ coh \check{U} by a variation of Orlov's theorem

Stable derived categories

- $S:=\mathbf{k}\left[x_{0}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}-x_{0} \cdots x_{n}\right)$
- $K:=$
$\left\{\left(t_{0}, \ldots, t_{n}\right) \in\left(\mathbb{G}_{\mathrm{m}}\right)^{n+1} \mid t_{1}^{a_{1}}=\cdots=t_{n}^{a_{n}}=t_{0} \cdots t_{n}\right\}$
- $\check{U}:=[\operatorname{Spec} S / K]$
- $\check{E}:=\left\{x_{0}=0\right\} \subset \check{U}$
- $\check{D}:=\check{U} \backslash \check{E}$
- If U is not $\log C Y$, then $\check{D} \simeq[\operatorname{Spec} T / H]$ where $T:=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}}-x_{1} \cdots x_{n}\right)$ and $H:=K \cap\left\{t_{0}=1\right\}$.
- $\operatorname{coh} \check{D} \simeq \operatorname{coh} \check{U} / \operatorname{coh}_{\check{E}} \check{U}$
- $\operatorname{scoh} \check{D} \simeq \operatorname{scoh} \check{U} / \operatorname{scoh}_{\check{E}} \check{U}$
- If U is not $\log C Y$, then $\operatorname{scoh}_{\check{E}} \check{U}$ is mirror to fuk U inside wfuk $U \simeq \operatorname{scoh} \check{U}$, so that sfuk $U \simeq \operatorname{scoh} \check{D}$.

$\mathbb{P}^{n} \backslash$ (a smooth anticanonical divisor)

- $D:=\left\{\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n} \mid x_{0}^{n+1}+\cdots+x_{n+1}^{n+1}=0\right\}$
- $\widetilde{U}:=\left\{\left(x_{0}, \ldots, x_{n+1}\right) \in \mathbb{C}^{n+1} \mid x_{0}^{n+1}+\cdots+x_{n+1}^{n+1}=1\right\}$
- μ_{n+1} acts diagonally on \widetilde{U}.
- $\widetilde{U} / \mu_{n+1} \cong U:=\mathbb{P}^{n} \backslash D$
- $G:=$
$\left\{\left[\operatorname{diag}\left(t_{0}, \ldots, t_{n}\right)\right] \in \operatorname{PSL}_{n+1} \mid t_{0}^{n+1}=\cdots=t_{n}^{n+1}=1\right\}$
- $\mathbb{D}_{0}:=\left\{x_{0}^{n+1}+\cdots+x_{n}^{n+1}=0\right\} \subset \mathbb{P}:=\left[\mathbb{P}^{n} / G\right]$
- $\mathbb{D}_{\infty}:=\left\{x_{0} \cdots x_{n}=0\right\} \subset \mathbb{P}$
- $\widetilde{\mathbb{P}} \rightarrow \mathbb{P}$: the blow-up along $\mathbb{D}_{0} \cap \mathbb{D}_{\infty}$
- $\widetilde{\mathbb{D}}_{\infty} \subset \widetilde{\mathbb{P}}$: the strict transform of \mathbb{D}_{∞}
- $\breve{U}:=\widetilde{\mathbb{P}} \backslash \widetilde{\mathbb{D}}_{\infty}$
- wfuk $U \simeq$ coh U ?

$\mathbb{P}^{2} \backslash$ (an anticanonical divisor)

- If $n=2$, then $G \cong \boldsymbol{\mu}_{3}$ and the minimal resolution $X \rightarrow \mathbb{P}^{2} / \mu_{3}$ is a toric weak del Pezzo surface of degree 3 .
- The strict transform D_{∞} of \mathbb{D}_{∞} is the toric boundary of X consisting of three (-1)-curves and six (-2)-curves.
- The blow-up $\widetilde{X} \rightarrow X$ is a rational elliptic surface.
- The strict transform \widetilde{D}_{∞} of D_{∞} is an anticanonical cycle consisting of nine (-2)-curves, which is a singular fiber of an elliptic fibration $\widetilde{X} \rightarrow \mathbb{P}^{1}$.
- $\check{U}:=\widetilde{X} \backslash \widetilde{D}_{\infty}$ is mirror to the complement of a smooth anticanonical divisor in \mathbb{P}^{2}.
- \check{U} is projective over \mathbb{A}^{1}, whose coordinate should be mirror to the BSV class.
- In contrast, \mathbb{P}^{2} minus a conic and a line in general position is self-mirror, and hence affine in particular.
- \mathbb{P}^{2} minus three lines in general position is also self-mirror.

