On attractor points in the moduli space of CY 3-folds based on 2203.09426 w/ K. Bōnisch, A.Klemw
D. Zagier

Overview
SI Geometry of the moduli space of Calabi-Y au threefolds
§2 Attractor points
§3 Hodge - the oretic formulation
§4 Infer lude: Modularity of elliptic curves
§5 Arithmetic properties of attractor points
\$6 Examples

Sl Geometry of the moduli space of Calabi-Y au threefolds
$f: * \rightarrow M$ auricissal fami'y of swooth proj Culcebi-Yau 3 folds of fixed diffeomuonpluinutype. $\left(\mathbb{R}^{3} f_{*} \mathbb{Z}, F^{*}, Q\right)$ polarized VHS with a curviad flat comection T.
$\mathcal{L}=7^{3} \rightarrow M$ holom. Whe boll. (Godge buudle) M carries the shucture of a poojective special Kähler mawifold.
Sections of 2 : nowhere vanickily holom. 3 form Ω
HR biliuear neletion \Rightarrow
$\langle\Omega, \bar{\Omega}\rangle:=i \int_{x} e_{\wedge} \bar{\Omega}$ hemition watric on \mathcal{L} vievs Ω as à 10 cal fet on μ.
$e^{-K}=\langle\Omega, \bar{\Omega}\rangle$ define a kübler metric on $M \quad g_{i v}=0_{i} 0_{j} K$. Weit-Peterssonn
Kodaive-Speacer theory $\Rightarrow T_{s} M \subseteq H^{2,1}(X)$
\Rightarrow hasis for $\left.H^{2,1}\left(X_{S}\right): x_{i}=e^{k / 2}\left(\partial_{i} \Omega-\frac{\left\langle 0_{i} R, \Omega\right.}{\alpha_{\Omega}, \Omega}\right\rangle^{2}\right)$

$$
\Rightarrow g_{i j}=-i\left\langle x_{i}, \bar{x}_{j}\right\rangle
$$

§2 Attractor points
Physics: $N=2$ supergransty on $\mathbb{R}^{1,3}$ with $h^{2,1}(x)$ vector aultipleto, parametrizing \tilde{M} Scalar fields in the vector multiplets define a now liver σ model $z: \mathbb{R}^{1,3} \rightarrow \widetilde{\mu}$

Supersynmeatric, static speer ically symmetric black noble solutions' cheer acterized by electric, mafietic dinge $\quad \gamma \in H_{0}(x, \mathbb{Z})$ mass: $m^{2}=|z(\gamma ; z)|^{2}$

Where $Z(\gamma ; z):=e^{k / 2} \int_{\gamma} \Omega$
P-brave central charge function (function on μ)
Ferrarce, Galosh, shouwnger Iq 5 There is a gradient flow on \tilde{M}, called attractor flow.

$$
\mu \frac{\partial}{\partial \mu} z^{i}=-g^{i j} \bar{\partial}_{J} \log \left(\left.z(\gamma ; z(\mu))\right|^{2}\right.
$$

The fixed poruts z_{*} of this flew are called attractor points.
§3 Hodge-theoretic formulation
Thum (Marne'98)
$|z(\gamma ; z)|^{2}$ has stationcry point at $z=z_{*}(\gamma)$ sju with $Z\left(\gamma, z_{*}\right) \neq 0 \Leftrightarrow$

$$
\begin{equation*}
P D(\gamma) \in H^{3,0}\left(X_{z_{k}}\right) \oplus H^{6,3}\left(X_{z_{4}}\right) \cap H^{3}\left(X_{z} \notin\right) \tag{*}
\end{equation*}
$$

If $z_{*}(\gamma)$ exists in the interior of $\tilde{\mu}$, the n it is a cocal minimum of $|Z(\gamma, z)|^{2}$
laterpretation of $(*)$

$$
\begin{aligned}
& V_{z}=H^{3,0}\left(X_{z}\right) \oplus H^{0,3}\left(x_{z}\right) \\
& V_{z, \mathbb{R}}=V_{z} \cap H^{3}(x, \mathbb{R}) \\
& \Lambda_{z}=V_{z, \mathbb{R}} \cap H^{3}(x, \mathbb{z})
\end{aligned}
$$

couplex 2 plane in $H^{3}\left(X_{Y} \mathbb{C}\right)$ red 2 plane in $H^{3}(X, R)$

Def: $z \in \tilde{M}$ is an aftractur point of rank 1 or 2 if rauk $\lambda_{z}=1$ or 2 .
Reunk 2 attrectur porints are rave: First uon-trivial example :
Candelas - de (a Ossa - Eluni-van Straten (20ßB)

Simplifying assumption, $h^{21}(x)=1$.

$$
\begin{aligned}
& \Lambda_{z} \otimes \mathbb{C}=H^{30}\left(X_{2}\right) \oplus H^{0,3}\left(X_{z}\right) \\
& \Lambda_{z}^{+} \otimes \mathbb{C}=H^{2_{1}}\left(X_{z}\right) \oplus H^{1,2}\left(X_{z}\right) \\
& \Lambda_{z} \oplus \Lambda_{z}^{\perp} \subset H^{3}\left(X_{1} \mathbb{Z}\right) \text { of finite index } \\
& \Rightarrow H^{3}(X, Q)=\underbrace{\Lambda_{z, Q}}_{H_{1}} \oplus \underbrace{\Lambda_{z}^{1}, \mathbb{Q}}_{H_{2}}
\end{aligned}
$$

H_{1} : HS of weight 3 , type $(1,0,0,1)$
\Rightarrow HS of a rigid C C 3 -fold
H_{2} : HS of weight 3 , type $(0,1,1,0)$
$H_{2} \otimes \mathbb{Q}(1)$: " " 1 , type $(1,1)$
\Rightarrow HS of an elliptic curve
§4 Interlude: Modularity of elliptic curves

1) Thum (Wiles - Yaybor pt al.) E/Q elliptic arre is mochlear: $\exists f \in S_{Z}\left(\Gamma_{0}(N)\right)$ Hedee eiguform N conductirs of E s.t. $L(E, S)=L(f, s)$

$$
E(C) \cong \mathbb{C} / \Lambda_{f}, \Lambda_{f}=\frac{1}{2 \pi i} \int_{H_{1}\left(X_{0}(\omega), \mathbb{Z}\right)} f(z) d z
$$

modulur paraudrization
$X_{0}(N) \longrightarrow E$
$[\tau] \longmapsto P_{\tau}=\int_{\infty}^{\tau} f(z) d z \bmod \Lambda_{f}$ $\infty \mapsto 0$
Manin: $\Lambda_{f}=Z \omega_{f}{ }^{+} \oplus \mathbb{Z} \omega_{f}^{-}$ coof $_{f}^{ \pm}$are periods of f.
2) Let $\varepsilon \rightarrow X_{0}(N)$ be a univiversal feunly of ell. arres with cyclic subgroup uf order N
\exists special $p t s[E] \in X_{0}(N)$, Hecgner porits, at which $E_{n d_{K}} E_{[\tau]} * \mathbb{Z}$

1) $\tau \in \mathbb{Q}(\sqrt{-0}), D>0, j(\tau) \in \overline{\mathbb{Q}}$
2) L Q numper field, E / L ellipic unue Assame E has CM by O_{K} of $K C L$ Then $L(E / L, s)=L(\Theta, 4 E / L) L(s, \bar{\psi} E, L)$ Y Ell Hecke Guòssen dieeractar.
Modularity of nigid $C_{Y} 3$ folds $\quad\left(h^{2 c 1}=0\right)$
Thun: (Gouvea, KMi, Dicechlefert)
Let X / Q be a rigid smooth proy. CY 3 fold. Then X is modedar, ic.

$$
\begin{aligned}
& \exists N, f \in S_{4}\left(\Gamma_{0}(N)\right) \text { sat. } \\
& L(X, s)=L(f, s) .
\end{aligned}
$$

§5 Arithmetic properties of attractor points
For simplicity $h^{2 . i}=1$
Conjecture (Deligne, Golysher-Zagrer,
Boursh, Keemm, S, tapper
let π_{2} be the period mechrix of $f: X \rightarrow \mu$ in an integral symplectic basis.
Let σ_{*} be the period matrix of $X_{Z_{*}}$
Let $\pi_{x}=M_{x} \pi_{z}$

$$
\begin{array}{r}
\text { Thin } \exists N_{1}, N_{2}, f \in S_{4}\left(\Gamma_{0}\left(N_{1}\right)\right) \\
g \in S_{2}\left(\Gamma_{0}\left(N_{2}\right)\right)
\end{array}
$$

and a deice of basis of $H^{3}(X, w)$ si.

$$
M_{*}=\left(\begin{array}{cc}
\omega_{p}^{+} \omega_{f} & 0 \\
\eta_{E} & \eta_{F} \\
0 & \tilde{\omega}_{g}^{+} \\
\tilde{\omega}_{g} \\
0 & \tilde{\eta}_{G}+\tilde{\eta}_{G}^{-}
\end{array}\right)
$$

where ω_{f}^{\ddagger} are periods of $f, \eta_{F}^{ \pm}$are the quasi periods of a merromaphic parkin F of Si milarly for g, G st.

$$
L\left(x_{k}, s\right)=L(f, s) L(g, s)
$$

§6 Examples
Consider hypergeomekic families of CT 3 -folds Assume ∇ has 3 regular singularities

$$
\mu=\mathbb{P}^{\prime} \backslash\{0,1, \infty\}, \quad \mu=\mathbb{R}^{\prime}
$$

Thun: (Dorm, Morgen)
子 14 Q- VCH of Hodge Type $(1,1,1,1)$
st. $\left(T_{0}-1\right)^{4}=0,\left(T_{0}-1\right)^{3} \neq 0$

$$
\left(T_{1}-1\right)^{2}=0, \quad\left(T_{1}-1\right) \neq 0
$$

T_{z} : local monodroncy of ∇ around $z \in \bar{\mu}$ $\nabla_{\pi}=0 \omega$ hypergeomatric diff. eq. $\left(4 F_{3}\right)$

$$
\left(\theta^{4}-z \prod_{i=1}^{4}\left(\theta-\alpha_{i}\right)\right) \pi=0, \quad \theta=z \frac{d}{d z}
$$

z local parameter near $D \in \bar{M}$.
Famous example (Candelas, de (o Casa, Green

$$
\alpha_{i}=\frac{i}{5}, \quad i=1,2,3,4 .
$$

Conjecture (Bsonisch, Klein, S, zagier)

$$
\begin{aligned}
& \alpha=\left(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}, \frac{3}{4}\right), z=2^{-4} 3^{-3}, N_{1}=180, N_{2}=36 \\
& \alpha=\left(\frac{1}{3} \frac{1}{3} \frac{2}{3} \frac{2}{3}\right), z=2^{-3} 3^{-6}, N_{1}=N_{2}=54
\end{aligned}
$$

Then the conjecture holds with explicitly given $f_{1} F_{1} g_{1} G$.
Evidence: Namerially verified to very high precision ($\infty 100$ s of digits)

