Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

A Categorical Description of Discriminants Mirror Symmetry and Differential Equations, Boğaziçi University, Istanbul, Turkey July 10-14, 2023

Paul Horja based on joint work with Ludmil Katzarkov

Combinatorics 0000000 Categorical statements 00000

Multiplicites

xamples 0000000 Remarks 00

Discriminants

Combinatorics of A-sets and birational toric geometry

Categorical statements

Multiplicites

Examples

Further remarks

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

Classical discriminants

The classical discriminant of a polynomial of degree $\leq n$

$$f(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n \in \mathbb{C}[x_1, \ldots x_n]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a polynomial $\Delta(f) \in \mathbb{Z}[a_0, \ldots, a_n]$ such that $\Delta(f) = 0$ if f has a double root.

Classical discriminants

The classical discriminant of a polynomial of degree $\leq n$

$$f(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n \in \mathbb{C}[x_1, \ldots x_n]$$

is a polynomial $\Delta(f) \in \mathbb{Z}[a_0, \ldots, a_n]$ such that $\Delta(f) = 0$ if f has a double root.

$$\Delta(a_0 + a_1x + a_2x^2) = 4a_0a_2 - a_1^2$$

$$\Delta(a_0 + a_1x + a_2x^2 + a_3x^3) =$$

$$27a_0^2a_3^2 + 4a_0a_2^3 + 4a_1^3a_3 - a_1^2a_2^2 - 18a_0a_1a_2a_3$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

$$\begin{aligned} &\Delta(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4) \\ = &256a_0^3a_4^3 - 192a_0^2a_1a_3a_4^2 - 128a_0^2a_2^2a_4^2 + 144a_0^2a_2a_3^2a_4 - 27a_0^2a_4^4 \\ &+ 144a_0a_1^2a_2a_4^2 - 6a_0a_1^2a_3^2a_4 - 80a_0a_1a_2^2a_3a_4 + 18a_0a_1a_2a_3^3 \\ &+ 16a_0a_2^4a_4 - 4a_0a_2^3a_3^2 - 27a_1^4a_4^2 \\ &+ 18a_1^3a_2a_3a_4 - 4a_1^2a_3^3 - 4a_1^2a_2^2a_4 + a_1^2a_2^2a_3^2 \end{aligned}$$

◆□→ ◆□→ ◆三→ ◆三→ 三三

Discriminants
00000

Categorical statements 00000

Multiplicites

xamples 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks 00

Discriminants à la GKZ

 $\mathcal{A} ext{-sets}$

- $\mathcal{A} = \{v_1, \dots, v_n\}$ is a collection of elements of the lattice $N \cong \mathbb{Z}^d$, such that \mathcal{A} generates N as a lattice
- There exists a group homomorphism $h: N \to \mathbb{Z}$ such that $h(v_i) = 1$ for any element $v_i \in \mathcal{A}$.

Notation:

$$Q := \operatorname{conv}(A) \subset \mathbb{R}^{d-1}, K := \sum_{1 \leq i \leq n} \mathbb{R}_{\geq 0} v_i = \mathbb{R}_{\geq 0} Q \subset \mathbb{R}^d$$

Discriminants
00000

Categorical statements 00000

Multiplicites 0 xamples 0000000 Remarks 00

Discriminants à la GKZ

 $\mathcal{A} ext{-sets}$

- $\mathcal{A} = \{v_1, \dots, v_n\}$ is a collection of elements of the lattice $N \cong \mathbb{Z}^d$, such that \mathcal{A} generates N as a lattice
- There exists a group homomorphism $h: N \to \mathbb{Z}$ such that $h(v_i) = 1$ for any element $v_i \in \mathcal{A}$.

Notation:

$$Q := \operatorname{conv}(A) \subset \mathbb{R}^{d-1}, K := \sum_{1 \leq i \leq n} \mathbb{R}_{\geq 0} v_i = \mathbb{R}_{\geq 0} Q \subset \mathbb{R}^d$$

- ∇_A is the Zariski closure in \mathbb{C}^n of the set of polynomials $f = \sum_{1 \le i \le n} a_i x^{v_i}$ in $\mathbb{C}[x_1, \ldots, x_d]$ such that there exists some $y \in (\mathbb{C}^{\times})^n$ with the property that f = 0 is singular at y.
- The discriminant Δ_A ∈ ℤ[a₁,..., a_n] is the irreducible polynomial (defined up to a sign) whose zero set is given by the union of the irreducible codimension 1 components of ∇_A. For the case codim ∇_A > 1, one sets ∇_A = 1.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
000●0	0000000		0	00000000	00

In the context of toric varieties, Danilov-Khovanskii, Batyrev introduced a more general version of regularity related to the restrictions of the Laurent polynomial f to all the non-empty faces Γ of the polytope Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000		0	00000000	00

In the context of toric varieties, Danilov-Khovanskii, Batyrev introduced a more general version of regularity related to the restrictions of the Laurent polynomial f to all the non-empty faces Γ of the polytope Q.

The principal A-determinant E_A is the polynomial in $\mathbb{Z}[a_1, \ldots, a_n]$ defined as

$$E_A := \prod_{\Gamma} (\Delta_{A \cap \Gamma})^{u(\Gamma) \cdot i(\Gamma)},$$

where the product is taken over all the non-empty faces Γ of the polytope $Q = \operatorname{conv}(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Combinatorics 0000000 Categorical statements

Multiplicites 0 Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks

Let Γ be a non-empty face Γ of the polytope $Q = \operatorname{conv}(A)$.

 i(Γ) := [N ∩ ℝΓ : ℤ(A ∩ Γ)] (= 0, if A ∩ Γ contains a basis of the restriction of N to the face determined by Γ) Discriminants Con

Combinatorics

Categorical statements

Multiplicites 0 Examples 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remarks 00

Let Γ be a non-empty face Γ of the polytope $Q = \operatorname{conv}(A)$.

- i(Γ) := [N ∩ ℝΓ : ℤ(A ∩ Γ)] (= 0, if A ∩ Γ contains a basis of the restriction of N to the face determined by Γ)
- $S = \mathbb{Z}_{\geq 0}A$ is the semigroup generated by A. If S/Γ denotes the image semigroup of S in the quotient free group $N_{\mathbb{R}}/\mathbb{R}\Gamma$, with $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. then

$$u(\Gamma) := \operatorname{vol}(\operatorname{conv}(S/\Gamma) \setminus \operatorname{conv}(S/\Gamma \setminus \{0\})),$$

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	•000000		0	00000000	00

To any A-set in the lattice N, we can associate two toric varieties (two sides of mirror summetry).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	•000000		0	00000000	00

To any A-set in the lattice N, we can associate two toric varieties (two sides of mirror summetry).

Y := Spec C[K[∨] ∩ N[∨]] is toric affine with Gorenstein singularities (due to the hyperplane condition)

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	•000000		O	00000000	00

To any A-set in the lattice N, we can associate two toric varieties (two sides of mirror summetry).

- Y := Spec C[K[∨] ∩ N[∨]] is toric affine with Gorenstein singularities (due to the hyperplane condition)
- Any regular triangulation of the polytope Q with vertices among the elements of A induces a simplicial fan Σ and the associated DM Calabi–Yau stack X_Σ and a natural crepant birational morphism π : X_Σ → Y.

Different triangulations give rise to different toric birational models X_{Σ} for the crepant resolution of the toric affine Gorenstein singularity Y.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Categorical statements 00000

Multiplicites 0 Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remarks

The secondary polytope

The secondary polytope S(A) is the convex hull in $\mathbb{R}^A = \mathbb{R}^n$ of the characteristics functions ϕ_{Σ} for all the simplicial fans Σ with

$$\phi_{\Sigma}(\mathbf{v}) := \sum_{\mathbf{v} \in \operatorname{Vert}(\sigma)} \operatorname{vol}(\sigma),$$

where the summation is taken over all the maximal cones.

Categorical statements 00000

Multiplicites 0 Examples

Remarks 00

The secondary polytope

The secondary polytope S(A) is the convex hull in $\mathbb{R}^A = \mathbb{R}^n$ of the characteristics functions ϕ_{Σ} for all the simplicial fans Σ with

$$\phi_{\Sigma}(v) := \sum_{v \in \operatorname{Vert}(\sigma)} \operatorname{vol}(\sigma),$$

where the summation is taken over all the maximal cones. The principal A-determinant E_A and the secondary polytope S(A) are related in a remarkable way as shown by GKZ.

Theorem

For a given set A, the Newton polytope of E_A coincides with the secondary polytope S(A).

Categorical statements 00000

Multiplicites 0 Examples F

The secondary polytope

The secondary polytope S(A) is the convex hull in $\mathbb{R}^A = \mathbb{R}^n$ of the characteristics functions ϕ_{Σ} for all the simplicial fans Σ with

$$\phi_{\Sigma}(v) := \sum_{v \in \operatorname{Vert}(\sigma)} \operatorname{vol}(\sigma),$$

where the summation is taken over all the maximal cones. The principal A-determinant E_A and the secondary polytope S(A) are related in a remarkable way as shown by GKZ.

Theorem

For a given set A, the Newton polytope of E_A coincides with the secondary polytope S(A).

S(A) (or its dual secondary fan) provides a toric compactification of the moduli stack of complex structures $\mathcal{M}_{cplex}(f)$.

Combinatorics

Categorical statements

Multiplicites

xamples 0000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remarks 00

Edges and circuits

• Two simplicial fans such that the corresponding vertices in the secondary polytope are joined by an edge *F* differ by a modification along a *circuit* in *A*.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Edges and circuits

- Two simplicial fans such that the corresponding vertices in the secondary polytope are joined by an edge *F* differ by a modification along a *circuit* in *A*.
- A circuit in A is a minimal dependent subset {v_i, i ∈ l} with I ⊂ {1,..., N}. In particular any circuit determines a relation of the form

$$\sum_{i\in I_+}l_iv_i+\sum_{i\in I_-}l_iv_i=0,$$

with $I = I_+ \cup I_-$, where the two subsets $I_+ := \{i : I_i > 0\}$ and $I_- := \{i : I_i < 0\}$ are uniquely defined by the circuit up to replacing I_+ by I_- .

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	00000000	00

The topological mirror symmetry map

Let $\beta \in N$ be a lattice element.

The *bbGKZ* hypergeometric system (Borisov-H (2013)) is a system of PDE's in $\Phi_v(z_1, \ldots, z_n)$ for all $v \in C \cap N$, $C = \sum \mathbb{R}_{\geq 0} v_i$:

$$\frac{\partial}{\partial z_i} \Phi_{\mathbf{v}} = \Phi_{\mathbf{v}_i + \mathbf{v}}, \mathbf{v} \in \mathcal{C} \cap \mathbf{N}, 1 \leq i \leq n,$$

$$\Big(-\beta+\nu+\sum_{i=1}^n\nu_iz_i\frac{\partial}{\partial z_i}\Big)\Phi_{\nu}=0, \nu\in\mathcal{C}\cap N.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

The topological mirror symmetry map

Let $\beta \in N$ be a lattice element.

The *bbGKZ* hypergeometric system (Borisov-H (2013)) is a system of PDE's in $\Phi_v(z_1, \ldots, z_n)$ for all $v \in C \cap N$, $C = \sum \mathbb{R}_{\geq 0} v_i$:

$$\frac{\partial}{\partial z_i} \Phi_{\mathbf{v}} = \Phi_{\mathbf{v}_i + \mathbf{v}}, \mathbf{v} \in \mathcal{C} \cap \mathbf{N}, 1 \leq i \leq n,$$

$$\Big(-\beta+\nu+\sum_{i=1}^n\nu_iz_i\frac{\partial}{\partial z_i}\Big)\Phi_{\nu}=0, \nu\in\mathcal{C}\cap N.$$

It can be defined even if N has torsion.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000		0	00000000	00

• Gelfand, Kapranov and Zelevinsky (GKZ) showed that this system is holonomic with regular singular points, so the number of solutions at a generic point is finite. For the bbGKZ the generic rank is vol(Q) even when it is not the case for the classical GKZ.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	00000000	00

- Gelfand, Kapranov and Zelevinsky (GKZ) showed that this system is holonomic with regular singular points, so the number of solutions at a generic point is finite. For the bbGKZ the generic rank is vol(Q) even when it is not the case for the classical GKZ.
- GKZ computed the corresponding characteristic cycle in (ℂⁿ)[∨] × ℂⁿ. It has the form

$$\sum_{\Gamma \subset Q} m_{\Gamma} T^*_{X_{\Gamma}}(\mathbb{C}^n)^{\vee}$$

where X_{Γ} is a toric subvariety in $(\mathbb{C}^n)^{\vee}$ determined by the face Γ , and m_{Γ} are combinatorially defined.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000●		0	00000000	00

• *Batyrev* was the first to notice that a special case of the GKZ system is satisfied by the periods describing the variations of complex structures of Calabi–Yau hypersurfaces in toric varieties.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000●	00000	O	00000000	00

- *Batyrev* was the first to notice that a special case of the GKZ system is satisfied by the periods describing the variations of complex structures of Calabi–Yau hypersurfaces in toric varieties.
- There exists an open domain U_Σ ⊂ Cⁿ and a topological mirror symmetry map

$$MS_{\Sigma}: (K_0(X_{\Sigma}) \otimes \mathbb{C})^{\vee} \to Sol(U_{\Sigma}),$$

for any stacky fan Σ . The map is compatible with the action of Fourier–Mukai functors on $D^b(coh(X_{\Sigma}))$ and the monodromy action on the GKZ solutions obtained by analytic continuation (*Borisov-H. (2006*)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Categorical Statements

Intuitive picture (compatible with HMS) of the moduli spaces (stringy Kähler and mirror complex, respectively) with a compactification given by the secondary polytope S(A) in the toric case.

Categorical Statements

Intuitive picture (compatible with HMS) of the moduli spaces (stringy Kähler and mirror complex, respectively) with a compactification given by the secondary polytope S(A) in the toric case.

(日) (四) (日) (日) (日)

 $D^{b}(coh(X)) \cong D^{b}(coh(X') \text{ (Bondal-Orlov, Kawamata,...)}$

iscriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Rema
0000	0000000	•0000	0	0000000	00

Categorical Statements

Intuitive picture (compatible with HMS) of the moduli spaces (stringy Kähler and mirror complex, respectively) with a compactification given by the secondary polytope S(A) in the toric case.

 $D^b(coh(X)) \cong D^b(coh(X')$ (Bondal-Orlov, Kawamata,...) The Aspinwall-Plesser-Wang conjecture (2016) is a proposal about the categorical picture along the components of the discriminant. It is reminiscent of the (Φ, Ψ) "vanishing–nearby cycle" construction in singularity theory.

Spherical functors

The "wall monodromy" spherical functor.

Theorem

For any edge F of the secondary polytope S(A), there exists a toric DM stack Z_F and an EZ–spherical wall–monodromy functor $D^b(Z_F) \rightarrow D^b(X)$ where X is the toric DM stack induced by either one of the simplicial fans corresponding to the edge F.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000	00000	0	00000000	00

Let Γ be a non-empty face of the polytope $Q = \operatorname{conv}(A)$ and Σ a stacky fan supported on K.

The stacky fan Σ_{Γ} is induced by the canonical projection $\pi: N \to N/\mathbb{Z}(A \cap \Gamma)$. The one dimensional cones of this stacky fan Σ_{Γ} are independent of Σ but the cones of the cones of the induced fan Σ_{Γ} are not.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000	00000	0	0000000	00

Let Γ be a non-empty face of the polytope $Q = \operatorname{conv}(A)$ and Σ a stacky fan supported on K.

The stacky fan Σ_{Γ} is induced by the canonical projection $\pi: N \to N/\mathbb{Z}(A \cap \Gamma)$. The one dimensional cones of this stacky fan Σ_{Γ} are independent of Σ but the cones of the cones of the induced fan Σ_{Γ} are not.

Theorem

 For any two choices of stacky fans Σ_Γ and Σ'_Γ as above, the bounded derived categories of coherent categories D^b(coh(X_{ΣΓ})) and D^b(coh(X_{Σ'_Γ})) are equivalent.

• rk
$$K_0(X_{\Sigma_{\Gamma}}) = u(\Gamma) \cdot i(\Gamma).$$

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000	00000	0	0000000	00

Let Γ be a non-empty face of the polytope $Q = \operatorname{conv}(A)$ and Σ a stacky fan supported on K.

The stacky fan Σ_{Γ} is induced by the canonical projection $\pi: N \to N/\mathbb{Z}(A \cap \Gamma)$. The one dimensional cones of this stacky fan Σ_{Γ} are independent of Σ but the cones of the cones of the induced fan Σ_{Γ} are not.

Theorem

 For any two choices of stacky fans Σ_Γ and Σ'_Γ as above, the bounded derived categories of coherent categories D^b(coh(X_{ΣΓ})) and D^b(coh(X_{Σ'_Γ})) are equivalent.

• rk
$$K_0(X_{\Sigma_{\Gamma}}) = u(\Gamma) \cdot i(\Gamma).$$

Set $D^b(Z_{\Gamma}) := D^b(coh(X_{\Sigma_{\Gamma}}))$

Dis	crin	in	ants
00	000)	

Categorical statements 00000

Multiplicites

xamples 0000000 Remarks 00

The Conjecture

Conjecture.

1) (Aspinwall–Plesser–Wang) For each face Γ , there exist spherical functors $D^b(Z_{\Gamma}) \rightarrow D^b(X)$ for any toric DM stack X determined by a triangulation corresponding to a vertex of the secondary polytope.

Dis	scri	min	ants
00	00	0	

Categorical statements 00000

Multiplicites 0 xamples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks 00

The Conjecture

Conjecture.

1) (Aspinwall–Plesser–Wang) For each face Γ , there exist spherical functors $D^b(Z_{\Gamma}) \rightarrow D^b(X)$ for any toric DM stack X determined by a triangulation corresponding to a vertex of the secondary polytope.

2) (H.–Katzarkov) For any edge F of the secondary polytope, the category $D^b(Z_F)$ admits a semiorthogonal decomposition consisting of $n_{\Gamma,F}$ components $D^b(Z_{\Gamma})$ for each face Γ of the polytope Q.

Discr	imir	nants
000	00	

Categorical statements 00000

Multiplicites 0 xamples 0000000

Remarks 00

The Conjecture

Conjecture.

1) (Aspinwall–Plesser–Wang) For each face Γ , there exist spherical functors $D^b(Z_{\Gamma}) \rightarrow D^b(X)$ for any toric DM stack X determined by a triangulation corresponding to a vertex of the secondary polytope.

2) (H.–Katzarkov) For any edge F of the secondary polytope, the category $D^b(Z_F)$ admits a semiorthogonal decomposition consisting of $n_{\Gamma,F}$ components $D^b(Z_{\Gamma})$ for each face Γ of the polytope Q.

The first part is a direct consequence of the second: the wall monodromy functors $D^b(Z_F) \rightarrow D^b(X)$ are spherical, so a result of Kuznetsov and Halpern-Leistner–Shipman implies that each component of the semiorthogonal decomposition determines a spherical functor.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000		0	00000000	00

Theorem (H.–Katzarkov)

For any edge F of the secondary polytope S(A), the following equality holds:

$$\operatorname{rk}(\mathcal{K}_0(D^b(Z_F))) = \sum_{\Gamma \subset Q} n_{\Gamma,F} \cdot \operatorname{rk}(D^b(\mathcal{K}_0(Z_\Gamma))),$$

for some combinatorially defined non-negative integer multiplicities $n_{\Gamma,F}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Combinatorics 0000000 Categorical statements 00000

Examples 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remarks 00

Asymptotic Multiplicites

The proof is based on an analysis of the asymptotic properties of the A-determinant E_A in a limit corresponding to the edge F of the secondary polytope. Each edge F determines a circuit I, and a discriminant Δ_I . The asymptotic expansions are expressed as powers of Δ_I .

Combinatorics 0000000 Categorical statements 00000

Multiplicites

Examples DOOOOOOO

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks 00

Asymptotic Multiplicites

The proof is based on an analysis of the asymptotic properties of the A-determinant E_A in a limit corresponding to the edge F of the secondary polytope. Each edge F determines a circuit I, and a discriminant Δ_I . The asymptotic expansions are expressed as powers of Δ_I .

For each face Γ of $Q = \operatorname{conv}(A)$, and edge F of S(A), the multiplicities $n_{\Gamma,F}$ are defined by the fact that the leading asymptotic term is up to a monomial of the form $(\Delta_I)^{n_{\Gamma,F}}$.

Combinatorics 0000000 Categorical statements 00000

Examples

Remarks

Asymptotic Multiplicites

The proof is based on an analysis of the asymptotic properties of the A-determinant E_A in a limit corresponding to the edge F of the secondary polytope. Each edge F determines a circuit I, and a discriminant Δ_I . The asymptotic expansions are expressed as powers of Δ_I .

For each face Γ of $Q = \operatorname{conv}(A)$, and edge F of S(A), the multiplicities $n_{\Gamma,F}$ are defined by the fact that the leading asymptotic term is up to a monomial of the form $(\Delta_I)^{n_{\Gamma,F}}$.

The leading asymptotic term of E_A is $\Delta_I^{\mathrm{rk}(K_0(D^b(Z_F)))}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

• X is the resolution of the A_3 singularity, with $v_0 = (1,0), v_1 = (1,1), v_2 = (1,2), v_3 = (1,3), v_4 = (1,4).$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

An example

• X is the resolution of the A_3 singularity, with $v_0 = (1, 0), v_1 = (1, 1), v_2 = (1, 2), v_3 = (1, 3), v_4 = (1, 4).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• S(A) is combinatorially equivalent to a cube in \mathbb{R}^3 .

An example

- X is the resolution of the A_3 singularity, with $v_0 = (1,0), v_1 = (1,1), v_2 = (1,2), v_3 = (1,3), v_4 = (1,4).$
- S(A) is combinatorially equivalent to a cube in \mathbb{R}^3 .

$$\begin{split} E_A &= a_0 a_4 \ \Delta_Q = a_0 a_4 (256 a_0^3 a_4^3 - 192 a_0^2 a_1 a_3 a_4^2 - 128 a_0^2 a_2^2 a_4^2 \\ &+ 144 a_0^2 a_2 a_3^2 a_4 - 27 a_0^2 a_4^4 + 144 a_0 a_1^2 a_2 a_4^2 \\ &- 6a_0 a_1^2 a_3^2 a_4 - 80 a_0 a_1 a_2^2 a_3 a_4 + 18 a_0 a_1 a_2 a_3^3 \\ &+ 16a_0 a_2^4 a_4 - 4a_0 a_2^3 a_3^2 - 27 a_1^4 a_4^2 \\ &+ 18 a_1^3 a_2 a_3 a_4 - 4a_1^3 a_3^3 - 4a_1^2 a_3^2 a_4 + a_1^2 a_2^2 a_3^2). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々⊙

Combinatorics 0000000 Categorical statements

Multiplic 0 Examples 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks 00

Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).

Combinatorics 0000000 Categorical statements

Multiplicit o Examples 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remarks 00

- Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).
- *F*₁ edge corresponding to the birational transformation X ↔ X₁, where X₁ is the toric DM stack with cones determined by the pairs v₀, v₁ and v₁, v₄.

Categorical statements 00000

Multiplici o Examples 0000000

- Remarks 00
- Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).
- *F*₁ edge corresponding to the birational transformation *X* ↔ *X*₁, where *X*₁ is the toric DM stack with cones determined by the pairs *v*₀, *v*₁ and *v*₁, *v*₄.
- The associated polyhedral subdivision is $(\operatorname{conv}\{v_0, v_4\}, \{0, 1, 4\})$, and the circuit relation *I* is $3v_0 4v_1 + v_4 = 0$.

Categorical statements 00000

Multiplici o Examples 0000000

Remarks

- Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).
- *F*₁ edge corresponding to the birational transformation X ↔ X₁, where X₁ is the toric DM stack with cones determined by the pairs v₀, v₁ and v₁, v₄.
- The associated polyhedral subdivision is $(\operatorname{conv}\{v_0, v_4\}, \{0, 1, 4\})$, and the circuit relation *I* is $3v_0 4v_1 + v_4 = 0$.
- Δ_I is $256a_0^3a_4 27a_1^4$

Categorical statements 00000

Multiplici o Examples 0000000

- Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).
- *F*₁ edge corresponding to the birational transformation *X* ↔ *X*₁, where *X*₁ is the toric DM stack with cones determined by the pairs *v*₀, *v*₁ and *v*₁, *v*₄.
- The associated polyhedral subdivision is $(\operatorname{conv}\{v_0, v_4\}, \{0, 1, 4\})$, and the circuit relation *I* is $3v_0 4v_1 + v_4 = 0$.
- Δ_I is $256a_0^3a_4 27a_1^4$
- The leading term with respect to the edge F_1 in Δ_Q is

$$256a_0^3a_4^3 - 27a_1^4a_4^2 = a_4^2 \cdot \Delta_I.$$

Categorical statements 00000

Multiplici o Examples 0000000

- Remarks
- Z_Q is the point Spec C. X = [C²/Z₄] is the stacky resolution determined by the cone (v₀, v₄).
- *F*₁ edge corresponding to the birational transformation X ↔ X₁, where X₁ is the toric DM stack with cones determined by the pairs v₀, v₁ and v₁, v₄.
- The associated polyhedral subdivision is $(\operatorname{conv}\{v_0, v_4\}, \{0, 1, 4\})$, and the circuit relation *I* is $3v_0 4v_1 + v_4 = 0$.
- Δ_I is $256a_0^3a_4 27a_1^4$
- The leading term with respect to the edge F_1 in Δ_Q is

$$256a_0^3a_4^3 - 27a_1^4a_4^2 = a_4^2\cdot\Delta_I.$$

• The spherical functor is

$$D^b(\operatorname{Spec} \mathbb{C}) \to D^b([\mathbb{C}^2/\mathbb{Z}_4]).$$

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	000000	00000	0	0000000	00

*F*₂ denote the edge corresponding to the birational transformation *X* ↔ *X*₂, where *X*₂ is the toric DM stack with cones determined by the pairs *v*₀, *v*₂ and *v*₂, *v*₄.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000		0	0000000	00

- F_2 denote the edge corresponding to the birational transformation $X \leftrightarrow X_2$, where X_2 is the toric DM stack with cones determined by the pairs v_0, v_2 and v_2, v_4 .
- The circuit relation *I* is $v_0 2v_2 + v_4 = 0$. The discriminant Δ_I is $4a_0a_4 a_2^2$.

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

- F_2 denote the edge corresponding to the birational transformation $X \leftrightarrow X_2$, where X_2 is the toric DM stack with cones determined by the pairs v_0, v_2 and v_2, v_4 .
- The circuit relation *I* is $v_0 2v_2 + v_4 = 0$. The discriminant Δ_I is $4a_0a_4 a_2^2$.
- The the leading term with respect to the edge F₂ in the quartic discriminant Δ_Q is

$$256a_0^3a_4^3 - 128a_0^2a_2^2a_4^2 + 16a_0a_2^4a_4 = 16a_0a_4 \cdot \Delta_I^2.$$

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

- F_2 denote the edge corresponding to the birational transformation $X \leftrightarrow X_2$, where X_2 is the toric DM stack with cones determined by the pairs v_0, v_2 and v_2, v_4 .
- The circuit relation *I* is $v_0 2v_2 + v_4 = 0$. The discriminant Δ_I is $4a_0a_4 a_2^2$.
- The the leading term with respect to the edge F₂ in the quartic discriminant Δ_Q is

$$256a_0^3a_4^3 - 128a_0^2a_2^2a_4^2 + 16a_0a_2^4a_4 = 16a_0a_4\cdot\Delta_I^2.$$

• $n_{Q,F_2} = 2$ and the spherical functor is

$$D^b([\operatorname{Spec} \mathbb{C}/\mathbb{Z}_2]) \to D^b([\mathbb{C}^2/\mathbb{Z}_4]).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	R
00000	000000	00000	0	0000000	0

Another example

Classical baby example (String the only papers 705) (Z11) 2n= 23=0) : thow up The sought ₽ 1 (Hitzzebrude su (+ (+ F2 Dia (K # (R 11)) - [Tot (0

▲ロト▲舂 ▼▲目 ▼ 目 ● ● ● ●

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	00000000	00

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

s Combinatorics Categorical statements Multiplicites Categorical statements 0000000 0000000000000000000000000000	00
--	----

Discriminants Combinatorics Categorical statements Multiplicites Examples ocooco ococo oco oco oco oco oco ococo oco ococo oco oco oco oco oco o	Remai
--	-------

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

Wall monodromies around the component y = 1/4

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

Wall monodromies around the component y = 1/4

x = k - -constant, *k* very small.

$$E = \mathbb{A}^1 \times \mathbb{P}^1 \longrightarrow X_1$$

$$q \downarrow$$

$$Z = \mathbb{A}^1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000	00000	0	0000000	00

Wall monodromies around the component y = 1/4

x = k - -constant, k very small.

$$E = \mathbb{A}^1 \times \mathbb{P}^1 \longrightarrow X_1$$

$$q \downarrow$$

$$Z = \mathbb{A}^1$$

x = k - -constant, k very large.

$$E = [\mathbb{A}^1/\mathbb{Z}_2] \times \mathbb{P}^1 \longrightarrow X_3 = [\mathbb{C}^3/\mathbb{Z}_4]$$

$$q \downarrow$$

$$Z = [\mathbb{A}^1/\mathbb{Z}_2]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Categorical statement

Multiplicites 0 xamples

Remarks

Questions and Remarks

• Is there an analogous story for higher dimensional faces of the secondary polytope *S*(*A*)?

Multiplicites 0 Remarks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Is there an analogous story for higher dimensional faces of the secondary polytope *S*(*A*)?
- The conjectured semi-orthogonal decompositions encode the braid monodromy associated to the complement of the discriminant locus (Aspinwall-Horja-Karp). Braid monodromy categorification.

Categorical statements

Multiplicites 0 amples Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Is there an analogous story for higher dimensional faces of the secondary polytope *S*(*A*)?
- The conjectured semi-orthogonal decompositions encode the braid monodromy associated to the complement of the discriminant locus (Aspinwall-Horja-Karp). Braid monodromy categorification.
- Wall-crossing phenomena along the components of the discriminant locus; Riemann-Hilbert correspondence

Categorical statements 00000 Multiplicites 0 amples Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Is there an analogous story for higher dimensional faces of the secondary polytope *S*(*A*)?
- The conjectured semi-orthogonal decompositions encode the braid monodromy associated to the complement of the discriminant locus (Aspinwall-Horja-Karp). Braid monodromy categorification.
- Wall-crossing phenomena along the components of the discriminant locus; Riemann-Hilbert correspondence
- What is the associated schober?

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

•0

- Is there an analogous story for higher dimensional faces of the secondary polytope S(A)?
- The conjectured semi-orthogonal decompositions encode the braid monodromy associated to the complement of the discriminant locus (Aspinwall-Horja-Karp). Braid monodromy categorification.
- Wall-crossing phenomena along the components of the discriminant locus; Riemann-Hilbert correspondence
- What is the associated schober?
- Is there a Landau–Ginzburg version?

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

•0

- Is there an analogous story for higher dimensional faces of the secondary polytope S(A)?
- The conjectured semi-orthogonal decompositions encode the braid monodromy associated to the complement of the discriminant locus (Aspinwall-Horja-Karp). Braid monodromy categorification.
- Wall-crossing phenomena along the components of the discriminant locus; Riemann-Hilbert correspondence
- What is the associated schober?
- Is there a Landau–Ginzburg version?
- Relation to Bridgeland's stability conditions and the theory of limiting stability conditions (Katzarkov)

Discriminants	Combinatorics	Categorical statements	Multiplicites	Examples	Remarks
00000	0000000		O	00000000	○●

Thank you for your attention!

