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1. Feb 24, 2022: Introduction, 0th and 1st Cohomology of
Open Subsets of Euclidean Space (ad-hoc Definitions)

Consider the n dimensional Euclidean space

Rn = {(x1, . . . , xn) : xi ∈ R, i ∈ [n]},

where [n] := {1, . . . , n}. Abusing notation xi’s will denote coordinate
values of points but also coordinate functions.

Rn has a metric given by

d(x⃗, y⃗) =

(
n∑

i=1

(xi − yi)2
)1/2

This induces a topology on Rn. Let U ⊂ Rn be an open subset. Note
that this can be a complicated space.

Today and the next lecture, we will discuss differential 0 and 1 forms
on U and see how these can be used to analyze the topology of U .

Figure 1. An example of an open subset of Euclidean space

Before that, some general remarks:

• In this class, we will measure the complexity of the topology of
U (or more generally manifolds) using singular homology and
cohomology. We don’t know anything about these yet. Today
we will give some ad-hoc definitions but the general discussion
will start in the third week.
• There is a widely accepted definition of the singular cohomology
of a topological space, but there are many, drastically different
ways of computing it for smooth manifolds. Our class is about
using differential forms to do this: deRham theory.
• Up to many technical details, you can intuitively think about a
degree k cohomology class β on U as a way of associating a real
number β(Z) to each compact, boundariless, not necessarily
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connected1, oriented submanifold2 Z of dimension k such that
the following condition (⋆) holds.

If Z is the oriented boundary of a (k + 1)−dimensional
submanifold with boundary, then β(Z) = 0.

Let’s refer to such Z as “k−cycles” - in quotation marks
because we will use this word with a different meaning later
• The main operation that one does with a differential k−form is
to integrate them along k−dimensional oriented submanifolds
and we use this to associate real numbers to “k−cycles”.
• Property (⋆) will only hold if the differential form is closed.

1.1. Cohomology of U ⊂ Rn. Let π0(U) be the set of all connected
components of U .

Definition 1. H0(U,R) is defined as the vector space of all maps from
π0(U) to R. □

Let b ∈ U and π1(U, b) be the fundamental group of U with base
point b. Recall that

π1(U, b) :=
{(S1, ∗)→ (U, b) continuous}

homotopy preserving the base points
,

where S1 = [0,1]
0∼1

and ∗ = [0] ∈ S1.
Here are some properties

• π1(U, b) is a group.
• Choosing a continuous path γ : [0, 1]→ U from b to b′ gives rise
to a group isomorphism fγ : π1(U, b)→ π1(U, b

′).

Definition 2. Assuming that U is connected we define H1(U,R)b as the
vector space of group homomorphisms

π1(U, b)→ R.

□

Exercise 1. Prove that for any b, b′ ∈ U , as long as U is connected,
there is a canonical isomorphism H1(U,R)b → H1(U,R)b′ . □

As a consequence of this exercise we can write H1(U,R) without any
ambiguity.

1I write the last two only to stress the point
2submanifold here means a subset that locally looks like a k dimensional Eu-

clidean space
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Example 1. Let U be defined as below.

Then, dim(H1(U,R)) = 3. □

2. Feb 24, 2022: Degree 0 and 1 Differential Forms on
Open Subsets of Euclidean Space, a Special Case of de

Rham Theorem

• A differential 0-form on U is a smooth3 function U → R.
• A differential 0-form f is called closed if ∂f

∂xi
≡ 0,∀i ∈ [n]

Proposition 1. There is a canonical linear isomorphism

H0
dR(U) := {closed differential 0-form on U} ≃ H0(U ;R)

Remark 1. In general Hk
dR :=

{closed differential k-form on U}
{exact differential k-form on U} □

• A differential 1-form on U is an expression f1dx1 + ... + fndxn
where fi : U → R are smooth functions

• A differential 1-form α =
n∑

i=1

fidxi is called exact, if for some

smooth V : U → R,

fi =
∂V

∂xi
,∀i ∈ [n].

In this case we write α = dV .
• A differential 1-form is closed if for all i ̸= j ∈ [n],

∂fi
∂xj
− ∂fj
∂xi

= 0.

Lemma 1. If α =
n∑

i=1

fidxi is exact, then it is closed.

Proof. Since it is exact, ∃V : U → R, such that fi =
∂V
∂xi

, so

∂fi
∂xj

=
∂2V

∂xj∂xi
=

∂2V

∂xi∂xj
=
∂fj
∂xi

.

3note that this is a condition much stronger than differentiable, it means that
all iterated partial derivatives exist. please read the wikipedia page if you are not
familiar.
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□

Exercise 2. For n = 2 and n = 3 explain what it means for the dif-

ferential 1-form α =
n∑

i=1

fidxi to be closed in terms of the vector field

F =
n∑

i=1

fi
∂
∂xi

using terms from your calculus classes. Recall Green’s

and Stokes theorems. □

Theorem 1. Assuming that U is connected, there exists a linear iso-
morphism,

(1) H1
dR :=

{closed differential 1-forms on U}
{exact differential 1-forms on U}

≃ H1(U ;R)

Proof sketch. First we want to define a linear map∫
: {closed 1-forms} → {π1(U, b)→ R group homomorphisms}

Recall: X ⊂ Rn arbitrary subset. A map g : X → Rm is called
smooth if it extends to a smooth map N(X)→ Rm where N(X) is an
open neighbourhood of X.

Fact:

• Any class in π1(U, b) can be represented by a smooth map
(S1, ∗)→ (U, b).
• Any two smooth maps S1 → U that are homotopic continuously
are homotopic smoothly.

Recall: Given α =
n∑

i=1

fidxi and a smooth path γ : [0, 1] → U , we

can define the line integral
∫
γ
α :=

∫ 1

0
F · γ′dt, where F =

n∑
i=1

fi
∂
∂xi

.

• The map
∫
is independent of the parametrization of γ, meaning,

if ϕ : [0, 1]→ [0, 1] is a smooth bijective map with ϕ′ ̸= 0, then∫
γ
α =

∫
γ◦ϕ α. So line integral only depends on the image of γ.

Back to the map
∫
: we send a given α ∈ {closed 1-forms} to the map∫

· α : π1(U, b)→ R defined by

α 7→
∫
γ̄

α,

where γ̄ is an arbitrary smooth representative of a. In the exercise
below you will show that this is well defined. Assuming that for now,
it is easy to see that

∫
· α is a group homomorphism4, so an element of

H1(U ;R), and the resulting
∫
is a linear map.

4I forgot to say this in class, so please check it for yourself!
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Exercise 3. Show that the map
∫

is well defined by proving if α =
n∑

i=1

fidxi is closed and γ, γ′ : S1 → U are smooth maps that are

smoothly homotopic, then
∫
γ
α =

∫
γ′ α. (Hint: Start by analyzing

n = 2, 3 and where the smooth homotopy S1 × [0, 1]→ U is injective,
then reduce the statement to Green’s theorem. Additionally, you may
want to check proof of Stokes theorem.)

□

Figure 2. An example of an injective smooth homo-
topy’s image for n = 2.

Goals:

(1) Prove that
∫

sends an exact differential 1-form to zero. We

obtain a linear map
∫̃
: H1

dR(U,R)→ H1(U,R).
(2) Prove that

∫̃
is injective. (”Construct a potential”)

(3) Prove that
∫̃
is surjective.

We start with 1). Let us integrate α = df along a smooth loop γ.∫
γ

α =

∫ 1

0

∇f · γ′(t)dt FTC
= f(b)− f(b) = 0.

Denote the resulting map by∫̃
:
Closed differential 1-forms

Exact differential 1-forms
→ H1(U,R).

For 2), we need to show that if
∫
γ
α = 0 for all γ : (S1, ⋆)→ (U, b),

then α = df for some f : U → R.

Exercise 4. Do this! This is the same task as constructing a potential
(recall work integrals, conservative fields etc.) for the corresponding
vector field. □

Let us make a simplifying assumption on U to not deal with orthog-
onal difficulties in 3). Assume there exists γ1, γ2, .., γn ∈ π1(U, b) that
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freely generates the abelianization of π1(U, b). This implies that giving
a group homomorphism π1(U, b) → R is equivalent to assigning real
numbers to each of γ1, γ2, .., γn (arbitrarily).

Figure 3

Now we need to create a differential 1-form that integrates to any
a1, a2, .., an ∈ R along γ1, γ2, .., γn. This is still quite difficult. That
will follow from DeRham Theorem, which will be the highlight of our
course.

Remark 2. Once we give the general definition of singular cohomology,
I will assign a homework exercise which shows that it agrees with what
we defined today in degrees 0 and 1. The analogous statement will be
automatic for DeRham cohomology. □

Exercise 5. Finish the proof of surjectivity in the case

U = R2 − finitely many points.

(Hint:Start with R2− (0, 0) and use the closed differential 1-form α =
− ydx

x2+y2
+ xdy

x2+y2
.) □

3. March 03, 2022: Manifolds, Charts, Smooth Atlases

Riemann was looking for a class of spaces which exist by themselves,
(for example, they don’t have to be embedded in an Euclidean space
RN) with the following properties5. Let X be such a space:

• X admits local coordinates. This means that the points x
sufficiently near any x0 ∈ X are determined uniquely by the
values of a set of real valued coordinates x1, x2, · · · , xn:

x = (x1, . . . , xn).

This is sometimes called a generalized coordinate system in
physics. There could be many such generalized coordinate sys-
tems near a given point. It is important that often generalized
coordinates do not extend to the entirety of X.

5particularly vague phrases are underlined
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Figure 4

• One can use techniques of calculus. This means, in particu-
lar, that there should be a large class of C1/C2/ · · · / smooth
functions X → R. If two generalized coordinate systems are re-
lated to each other by a non-differentiable transformation, then
a function X → R that is differentiable with respect to one may
not be differentiable with respect to the other.

Definition 3. A topological space X is called a topological manifold
if for every x ∈ X, there exists a nonnegative integer nx ≥ 0, an
open subset U ⊂ Rnx , an open neighbourhood V ⊂ X of x and a
homeomorphism ϕ : V → U (See Figure 4). □

Remark 3. Note that being a topological manifold is a property. Usu-
ally in this definition one also assumes that X is Hausdorff and, less
often but still quite often, second countable. We will focus on the core
part of the definition today. Later on we will start assuming these two
properties when they are needed. □

Definition 4. Let X be a topological space. Let us call U ⊂ Rn, V ⊂ X
open and ϕ : V → U homeomorphism a coordinate chart in X. V is
called the domain of the chart and the functions x1, · · · , xn obtained

by xi : V → U
pri−→ R the coordinates of the chart. □

Fact (A consequence of Invariance of Domain)
If an open subset of Rn is homeomorphic to an open subset of Rm, then
m = n.

Exercise 6. Using the fact above, prove that nx in the definition is
uniquely determined. Also, prove that X → Z≥0, x 7→ nx is constant
on connected components of X. □

Definition 5. If nx = n for all x ∈ X, then we say thatX is n−dimensional.
We write this briefly by Xn. □
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Figure 5. Non-Examples of Manifolds

From now on, when we say X is a topological manifold, we assume
that there is such an n ≥ 0.

Example 2. Topological Manifolds

• Rn

• Sn : {x21 + · · ·+ x2n+1 = 1} ⊂ Rn+1.

□

To see that Sn is a topological manifold, we can use the stereographic
projection. Let us consider a point y0 ∈ Sn, and let H0 be the hyper-
plane that is tangent to the point opposite to y0 ∈ Sn (we call this point
−y0). For every, y ∈ Sn \ {y0} the straight line ly passing through y
and y0 intersects H0 at precisely one point.

Sy0 : S
n\ {y0} −→ H0 ≃ Rn

y 7−→ ly ∩H0

Note that H0
∼=Parallel hyperplane passing through the origin∼= Rn.

The second homeomorphism can be obtained by choosing a basis.

Proposition 2. Sy0 is a homeomorphism.

Proof. (sketch)
n = 0 case is given in the figure. In this case the map is identity.

Exercise 7. Do the n = 1 case. □

We can deduce the n > 1 case by using rotational symmetry around
the line that contains the diameter (passing through y0 that is perpen-
dicular to H0). The stereographic projection in dimension n is given by
spinning around ly the stereographic projection in dimension n−1. □
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Figure 6. Stereographic Projection

Figure 7. n = 0 case

Remark 4. Stereographic projection

• Preserves angles.
• It preserves circles (n = 2).
• But, it distorts distances.

□

Exercise 8. Prove that {x2 − y3 = 1} ⊂ C2 is a topological manifold.
(Hint: Use projections to x and y.) □

Definition 6. Let X be a topological space, and ϕ1 : V1 → U1 and ϕ2 :
V2 → U2 be coordinate charts. Then, the map ϕ2 ◦ϕ−1

1 : ϕ1(V1 ∩V2)→
ϕ2(V1 ∩ V2) is called the transition map form the chart ϕ1 to the chart
ϕ2. Note that transition maps are automatically homeomorphisms. □

Definition 7. A smooth atlas on a topological space X is a collection
of charts {ϕi : Vi → Ui}i∈I such that
1)
⋃

i∈I Vi = X
2) The transition map from any chart in the collection to any other in
the collection is smooth. □

Remark 5. Atlas means a book of maps, i.e. images of charts ϕ : V →
U ⊂ R2 on the manifold that is the surface of the earth. It is likely
that some of these maps are drawn using stereographic projection. □
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Figure 8. Transition map between charts

Exercise 9. Using latitude and longitude, define a chart on S2 with
domain S2\0th−meridian and prove that it has smooth transition maps
to all stereographic projections. You can assume that stereographic
projection charts form a smooth atlas. □

4. March 07, 2022: Definition of Singular Homology

Convention: Unless otherwise stated, all of our vector spaces and
chain complexes (to be defined) are over R.

Definition 8. A graded vector space V∗ is a collection of vector spaces
{Vi}i∈Z indexed by Z. V∗ is non-negatively graded if Vi = 0 for i < 0.6

□

Definition 9. A chain complex (C∗, ∂∗) is a graded vector space C∗
with a collection of linear maps ∂n : Cn → Cn−1, n ∈ Z, such that
∂n ◦ ∂n+1 = 0 for all n ∈ Z. We call ∂n’s boundary maps. □

. . .←− C−2
∂−1←−− C−1

∂0←− C0
∂1←− C1

∂2←− C2 ←− . . .

Definition 10. The homology of a chain complex (C∗, ∂∗) is a graded
vector space H∗(C∗, ∂∗) defined by

Hn ((C∗, ∂∗)) :=
Ker(∂n : Cn → Cn−1)

Im(∂n+1 : Cn+1 → Cn)

□

It immediately follows from ∂i ◦ ∂i+1 = 0 that Im(∂i+1) ⊂ Ker(∂i).
There is a slight variant of the last two definitions.

6V=0 stands for the trivial vector space with 0 as the only element, V = {0}.
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Definition 11. C∗ graded vector space with dn : Cn → Cn+1 cobound-
ary maps such that dn ◦dn−1 = 0. (C∗, d∗) is called a co-chain complex.

Hn ((C∗, d∗)) :=
Ker(dn)

Im(dn−1)

is called cohomology. □

. . . −→ C−2 d−2−−→ C−1 d−1−−→ C0 d0−→ C1 d−1−−→ C2 −→ . . .

Now we move on to define the singular chain complex C∗(X;R) of a
topological manifold X.

Definition 12. The n-dimensional simplex ∆n for n ≥ 0 is defined as

∆n :=

{
(x0, . . . , xn)

∣∣∣∣ xi ≥ 0, ∀i = 0, . . . , n
x0 + . . .+ xn = 1

}
□

Figure 9. 0-dimensional simplex.

Figure 10. 1-dimensional simplex.

For each subset S ⊂ {0, 1, . . . , n}, we can define a subset (a face) by

FS :=

{
(x0, . . . , xn)

∣∣∣∣ xi = 0, if i ∈ {0, . . . , n} \ S
(x0, . . . , xn) ∈ ∆n

}
As an example, F{i}, i = 0, . . . , n correspond to vertices.

Exercise 10. • Prove that the dimension of FS is |S|−1. Explain
what you mean by dimension.
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Figure 11. 2-dimensional simplex.

Figure 12. 3-dimensional simplex.

• Prove that FS1 ∩ FS2 = FS1∩S2 .

□

Definition 13. For each n ≥ 1 and 0 ≤ i ≤ n we define the face map
fi,n : ∆n−1 → ∆n with (x0, ..., xn−1) 7→ (y0, ..., yn) where

yj =

{ xj , j < i
0 , j = i
xj−1 , j > i

□

• This simply adds a zero to the (i+ 1)th slot.
• The image of fi,n is F{0,...,n}\{i}

We need one last notion before we define the singular chain complex.

Definition 14. Given any set A, we define the vector space generated
by A as the vector space of all finite formal linear combinations of the
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elements of A.{∑
a∈A

ca · a
∣∣ca ∈ R and ca ̸= 0 for finitely many elements

}
.

□

Exercise 11. Construct a natural linear map from the vector space
generated by A to the vector space of all maps A→ R. Prove that this
map is an isomorphism if and only if A is finite. Bonus: analyze when
these two vector spaces are isomorphic - by an arbitrary map. □

Consider the subspace topology on simplices.

4.1. Singular Homology of a Topological Space. LetX be a topo-
logical space. For n ≥ 0, Cn(X;R) is defined to be the vector space
generated by the set of all continuous maps ∆n → X. The elements of
Cn(X;R) are called singular chains of degree n. We set Cn(X;R) = 0
for all n < 0. So C∗(X;R) is a non-negatively graded vector space.
Now we will equip it with boundary maps and turn it into a chain
complex. Let n ≥ 1. For any continuous g : ∆n → X we define

∂ng =
n∑

i=0

(−1)ig ◦ fi,n ∈ Cn−1(X;R)

where g ◦ fi,n : ∆n−1 fi,n−−→ ∆n g−→ X. We then extend to all singular
chains so that map is linear and we get

∂n : Cn(X;R)→ Cn−1(X;R) for n ≥ 1

and ∂n = 0 for n < 1.
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Example 3. As an example, consider the following figure □

Figure 13. Example

Now we look at the boundary maps ∂2f of f .

Figure 14. Boundary maps of the example above.
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Proposition 3. ∂n−1 ◦ ∂n = 0

Proof. For n < 2 it is obvious. For n ≥ 2 it suffices to show that for
g : ∆n → X we should have ∂n−1(∂n(g)) = 0.

∂n−1(∂n(g)) = ∂n−1

( n∑
i=0

(−1)ig ◦ fi,n
)

=
n∑

i=0

(−1)i∂n−1(g ◦ fi,n)

=
n∑

i=0

(−1)i
( n−1∑

j=0

(−1)jg ◦ fi,n ◦ fj,n−1

)
=
∑
i,j

(−1)i+jg ◦ fi,n ◦ fj,n−1

Where fi,n ◦ fj,n−1 : ∆
n−2 → ∆n...

□

Exercise 12. Finish the proof of this proposition. If you were not able
to follow in class, first do it for n = 2 using the pictures above - no
need to write this, just to get yourself oriented. □

Definition 15. We define the singular homology of X as the homology
of its singular chain complex

Hn(X;R) := Hn(C∗(X;R), ∂∗) .

□

5. March 10, 2022: Constructing Singular Cycles,
Homology of a Point, Star Shaped Open Subsets of

Euclidean Space

Definition 16. Let us call the elements of

Zn(X;R) := ker(∂n : Cn(X;R)→ Cn−1(X;R))

the singular n-cycles and the elements of

Bn(X;R) := im(∂n+1 : Cn+1(X;R)→ Cn(X;R))

the singular n-boundaries. □

In this class, often we will omit the adjective singular from these
phrases for brevity. Then, by definition

Hn(X;R) =
Zn(X;R)
Bn(X;R)

=
n-cycles

n-boundaries
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5.1. Singular n-cycles From Geometric n-cycles - Slightly In-
formal Discussion. Let X be a topological manifold. Let us define
a geometric n-cycle to be the image of a continuous map f : Y n → X
where Y is a compact oriented (We will define precisely for smooth
manifolds later) topological manifold.

I want to briefly explain how a geometric n-cycle gives rise to an n-
cycle on X. Oriented compact submanifolds are examples of geometric
n-cycles.

Under some mild conditions (for example if it is Hausdorff and admits
a smooth structure), Y admits a triangulation. This, in particular,
means we can find

Y =
N⋃
j=1

Aj with homeomorphisms ϕj : ∆
n → Aj

such that the intersections Ai ∩ Aj for i ̸= j are either empty or equal
to the images of equi-dimensional faces under both ϕi and ϕj.

The idea then is to add up all f ◦ ϕj : ∆
n → X and get an n-cycle

seeing how the boundaries seem to cancel each other.
The issue is that we do not actually know, it depends on whether

the signs work out.
We could also add ±f ◦ ϕj of course. Note that we can modify ϕj

also by homeomorphism, ∆n → ∆n which permute the coordinates of
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Rn+1. If the result is ϕ̃j and the permutation π−1

∂n(f ◦ ϕ̃j) =
n∑

i=0

(−1)if ◦ ϕ̃j ◦ facei,n

π(l) = i =
n∑

l=0

(−1)π(l)f ◦ ϕ̃j ◦ faceπ(l),n

=
n∑

l=0

(−1)π(l)−l(−1)lf ◦ ϕj ◦ facel,n

The interesting result is that whether one can modify ϕi’s using these

so that ∂n(
∑N

i=1±ϕ̃i) = 0 is a condition that depends only on Y and
is called orientability7.

If this is true, then we obtain at least two n-cycles in Y , we can
multiply everything by −1. Actually orienting Y , we would pick out
one of them.

Exercise 13. Consider S1 ⊂ R2. Construct a nonzero 1-cycle in R2

corresponding to this geometric 1-cycle. Prove that it is actually a
1-boundary directly. □

5.2. Some Computations. Let X be a point. What is H∗(X;R) ?
For every n ≥ 0, there exists exactly one continuous map ∆n cn−→ X.

Therefore,

Cn(X;R) = R · cn.

7The first step is to choose a total order on the vertices of the triangulation.
Then orientability guarantees that the signs can be chosen to achieve the necessary
cancellations.
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How about the boundary map?

∂ncn =
n∑

i=0

(−1)icn−1

=

{
cn−1 n is even

0 n is odd

The singular chain complex looks like

← 0← 0← R 0←− R id←− R 0←− R id←− ...

=⇒ H0(X;R) = R and Hn(X;R) = 0, n ̸= 0.

Let us now consider U ⊂ Rn open and star-shaped, that is, there
exists an x0 ∈ U such that the line segment x0 and y lies inside U for
all y ∈ U .

We claim that H∗(U ;R) ∼= H∗(point;R). The idea is that for a given
f : ∆n → U , we can define a Pf : ∆n+1 → U as: follows
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Exercise 14. Write down an explicit formula for Pf in terms of f .
Extending f 7→ Pf linearly, define a linear map P : Cn(X;R) →
Cn+1(X;R). For n > 0, σ ∈ Cn(X;R), prove that

∂n+1Pσ = −P (∂nσ) + σ.

For n = 0, σ ∈ C0(X;R), what is ∂1Pσ ? □

If σ ∈ Zn(U ;R) and n > 0, then ∂n+1Pσ = σ. This implies σ ∈
Bn(U ;R) and hence Hn(U ;R) = 0 for n ̸= 0.

Exercise 15. Let Y be a topological space. Prove that H0(Y ;R) is
isomorphic to the vector space generated by the set of connected com-
ponents of Y . □

6. March 14, 2022: Induced Maps on Homology,
Homeomorphism Invariance, Homotopy Invariance of

Induced Maps

Definition 17. Let (C•, ∂•) and (C̃•, ∂̃•) be chain complexes. A chain

map is a collection of linear maps Cn
fn−→ C̃n, ∀n ∈ Z such that each

square in the diagram

· · · Cn−1 Cn · · ·

· · · C̃n−1 C̃n · · ·

fn−1

∂n

fn

∂̃n

is commutative, i.e.

fn−1 ◦ ∂n = ∂̃n ◦ fn, ∀n ∈ Z.

□

Given a chain map f• : C• → C̃• we canonically obtain a linear map
of graded vector spaces

H(f) : H∗(C)→ H∗(C̃).

Remark 6. Let us make a notational clarification. For any chain com-
plex (C, ∂) we define

Zn(C) := ker(∂n) · n-cycles
Bn(C) := im(∂n+1) · n-boundaries
Hn(C) =

Zn(C)⧸Bn(C)
When C• = C∗(X;R) then we may add the adjective ”singular”. □
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Definition 18. If two n-cycles in a chain complex differ by an n-boundary
(that is they define the same class in homology), we say that these two
cycles are homologous. □

Back to constructing Hn(C)→ Hn(C̃).

(1) If σ ∈ Zn(C), then f(σ) ∈ Zn(C̃) :

f(∂σ) = ∂̃f(σ) =⇒ ∂̃f(σ) = 0
(2) If σ ∈ Bn(C), then f(σ) ∈ Bn(C̃) :

σ = ∂γ =⇒ f(σ) = f(∂γ) = ∂̃f(γ)

=⇒ We obtain the map shown in dashes below.

Bn(C) Zn(C) Zn(C̃)
Zn(C̃)⧸Bn(C̃)

Zn(C)⧸Bn(C)

We can compose chain maps as in the following exercise.

Exercise 16. Prove that if f : C∗ → C̃∗ and g : C̃∗ → ˜̃C∗ are chain

maps, then h : C∗ → ˜̃C∗ defined by hn := gn ◦ fn is a chain map. For
such f, g, h prove that H(h) = H(g) ◦H(f). □

Definition 19. Let φ : X → Y be continuous. Then for every continu-
ous map ρ : ∆n → X, we obtain the continuous map φ ◦ ρ : ∆n → Y .
Linearly extending we obtain a map (φ∗)n : Cn(X;R) → Cn(Y ;R).
These form a chain map

φ∗ : C∗(X;R)→ C∗(Y ;R).
□

Exercise 17. Prove that φ∗ is indeed a chain map. □

We also obtain

Hφ∗ : H∗(X;R)→ H∗(Y ;R).

Exercise 18. For continuous maps φ̃ : X → Y and φ : Y → Z, prove
that φ∗ ◦ φ̃∗ = (φ ◦ φ̃)∗. □

Corollary 1. Hφ∗ ◦Hφ̃∗ = H(φ ◦ φ̃)∗. □

Since (id)∗ is the identity map, we immediately obtain that if φ :
X → Y is a homeomorphism then Hφ∗ : H∗(X;R) → H∗(Y ;R) is a
linear isomorphism.

Hence singular homology can distinguish non-homeomorphic topo-
logical spaces (it does not have to!) Actually singular homology is in
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general only sensitive to the homotopy equivalence class. Let’s explain
this.

Recall: •f, g : X
cts−→ Y are called homotopic if there exists a con-

tinuous
F : X × [0, 1]→ Y s.t.

F |{0} = f & F |{1} = g.

• A continuous f : X → Y is called a homotopy equivalence if
∃g : Y → X such that f ◦ g and g ◦ f are homotopic to identity maps
(of Y and X).

Exercise 19. Let U ⊂ Rn be star shaped with respect to x0. Prove the
map pt.→ U with image x0 is a homotopy equivalence. □

Theorem 2. If f & g : X → Y are homotopic, then Hf∗ = Hg∗.

I don’t want to spend time proving this homotopy invariance theo-
rem, but it is quite important and the proof is not too difficult. If you
want we can discuss during office hours. You are responsible from the
statement, not the proof. The key idea in the proof is essentially the
one that we used on proving H∗(star shaped) ∼= H∗(pt.).

The corollary below can be proved using the same logic that showed
that homeomorphisms induce isomorphisms on homology but this time
using Theorem 2.

Corollary 2. If f : X → Y is a homotopy equivalence, then Hf :
H∗(X;R)→ H∗(Y ;R) is an isomorphism. □

Exercise 20. Prove this corollary assuming Theorem 2. □

7. March 17, 2022: Mayer-Vietoris Property, Special
Properties of Singular Homology for Manifolds,

Singular Cohomology

Definition 20. An exact sequence is a sequence of vector spaces Vn,

n ∈ Z and maps Vn
fn−→ Vn−1 such that ∀n ∈ Z ker(fn) = im(fn+1)

Vn−1 Vn Vn+1 Vn+2
fn fn+1 fn+2

ker = Im

□

Remark 7. This is the same data as chain complex with 0-Homology.
□
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Exercise 21. Let Vn be an exact sequence. Assume that
∑

dimVn <∞.
Show that

∑
n even dimVn =

∑
n odd dimVn. □

Theorem 3 (Mayer-Vietoris Theorem). Let X be a topological space
and U, V ⊆ X open subsets.
There are canonical maps

Hn+1(U ∪ V )
cn+1−−→ Hn(U ∩ V )

called connecting maps that makes the following

· · · Hn+2(U ∪ V )

Hn+1(U ∩ V ) Hn+1(U)⊕Hn+1(V ) Hn+1(U ∪ V )

Hn(U ∩ V ) Hn(U)⊕Hn(V ) Hn(U ∪ V )

Hn−1(U ∩ V ) · · ·

cn+2

cn+1

in jn
cn

an exact sequence, where in and jn are the natural maps given by

in : Hn(U ∩ V )→ Hn(U)⊕Hn(V )

a 7→ (iU∩V⊂U
∗ a, iU∩V⊂V

∗ a)

and

jn : Hn(U)⊕Hn(V )→ Hn(U ∪ V )

(a, b) 7→ iU⊂U∪V
∗ a− iV⊂U∪V

∗ b.

We will discuss the proof of Mayer-Vietoris theorem later when we
state it for DeRham Theory.

7.1. Applications.

Example 4. Let Y, Z be topological spaces. Consider their direct sum
8 X = Y ⊔ Z. Since Y ∩ Z = ∅, by Mayer-Vietoris’ Theorem, we
have Hn(X) ≃ Hn(Y ) ⊕ Hn(Z). This also follows from the fact that
Cn(X) = Cn(Y )⊕ Cn(Z). □

Example 5. Computing H∗(S
1) Now for a more serious application.

Consider the two intervals U ⊂ S1 and V ⊂ S1.

8The disjoint union of Y and Z, equipped with the topology consisting of open
sets of the form U ∪ V where U ⊂ Y and V ⊂ Z are open.
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Both are homeomorphic to an open interval (0, 1) ⊂ R, which is
contractible. Hence H∗(U) ∼= H∗(V ) ∼= H∗((0, 1)) ∼= H∗(pt). And
U ∩ V is homeomorphic to a disjoint union of two open intervals. So
H∗(U ∩V ) ∼= H∗(R)⊕H∗(R) ∼= H∗(pt)⊕H∗(pt). Since S

1 is connected,
we have H0(S

1) = R. Plugging all this data into the Mayer-Vietoris se-
quence we get

· · · 0⊕ 0 H2(S
1)

0⊕ 0 0⊕ 0 H1(S
1)

R⊕ R R⊕ R H0(S
1) = R

0 · · ·

c2

c1

i0 j0

c0

Simply by observing the diagram and counting dimensions we get
Hi(S

1) = 0 for i > 1 and H1(S
1) ∼= R. The only non-canonical isomor-

phism we have here is H1(S
1) ∼= R. To understand this isomorphism

better we have to inspect this sequence further.
Since ker c1 = 0, we may identify H1(S

1) = im c1 = ker i0. Let’s
introduce some notation to communicate better, denote by W1 ⊔W2 =
U ∩V whereWi are the two disjoint intervals. Let pi : ∆

0 → Wi be any
specific map. It’s clear that each element of H0(U ∩ V ) is represented
uniquely by a cycle of the form ap1+bp2, where a, b ∈ R. Also, we have
iU∩V⊂U
∗ p1 = iU∩V⊂U

∗ p2 ∈ H0(U) and iU∩V⊂V
∗ p1 = iU∩V⊂V

∗ p2 ∈ H0(V ),
so ker i0 = {ap1 − ap2 ∈ H0(U ∩ V )}. There are two natural bases for
this space: p1 − p2 and p2 − p1. These two choices give us two choices
of isomorphisms H1(S

1) ∼= R and correspond to the two choices of
orientation we have on S1

□

Exercise 22. Compute H∗(S
n,R). □

Example 6. Sketch for H∗(S
2)

Consider the following open sets U, V ⊂ S2.
Since U, V ∼= R2, we have H∗(U) ∼= H∗(V ) ∼= H∗(R2) ∼= H∗(pt).

Notice that the circular belt U ∩ V can be retracted onto the equator
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of the sphere, which is homeomorphic to S1. Since this is a homotopy
equivalence, by Theorem 2 we have H∗(U ∩ V ) ∼= H∗(S

1). Plugging all
we know into the Mayer-Vietoris sequence

0→ 0⊕ 0→ H3(S
2)

0→ 0⊕ 0→ H2(S
2)

R→ 0⊕ 0→ H1(S
2)

R→ R⊕ R→ H0(S
2)

∼= R

∼= 0

∼= 0

∼= R

we get that Hi(S
2) = 0 for i < 2, H1(S

2) = 0 and H2(S
2) ∼= H0(S

2) ∼=
R. □

7.2. Singular Homology Of Manifolds. From now on, we’ll assume
that our manifolds are Hausdorff. When we write manifold we will
mean a topological manifold below.

Remark 8. We needed this condition for the existence of a triangulation
as well. □

Later when we go back to smooth manifolds we’ll add another con-
dition, being second countable.

Exercise 23. Find a non-Hausdorff manifold which can be equipped
with a smooth atlas. □

Theorem 4. Let M be an n-dimensional manifold, then Hi(M ;R) = 0
for i > n.

Hence the singular homology of M can only live in degrees i =
0, 1, . . . , n.
If we assume that M is also connected, then H0(M ;R) ∼= R This

isomorphism is canonical, where we identify any map from a point to
M with 1 ∈ R. It turns out that we know quite a bit about the top
degree as well
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Theorem 5. Let M be an n-dimensional manifold. Then

Hn(M ;R) ∼=

{
R if M is compact and orientable

0 otherwise.

Here the isomorphism with R depends on our choice of orientation.

Theorem 6 (Poincaré Duality). Let M be a compact, oriented9 n-
dimensional manifold. Then we have the canonical isomorphisms

Hn−k(M ;R) ∼=
(
Hk(M ;R)

)∨
for all k ∈ Z.

Exercise 24. Recall that the linear dual V ∨ of a vector space V is the
vector space of linear maps V → R. Prove the following: V ∨ ∼= V if
and only if dimV <∞. The only if part is optional, similar to Exercise
11 □

Exercise 25. Let f : V → W be a linear map. Define f∨ : W∨ → V ∨

by f∨α = α ◦ f . Show that f∨ is a linear map. Describe kerf∨ and
imf∨ in terms of kerf and imf .
Let g : W → P be another linear map, show that (g ◦ f)∨ = f∨ ◦ g∨. □

7.3. Singular Cohomology.

Definition 21. Let X be a topological space. The singular cochain
complex C∗(X;R) is defined by

Cn(X;R) =
(
Cn(X;R)

)∨
and the coboundary maps δn = ∂∨n+1 are given by

δn : Cn(X;R)→ Cn+1(X;R)
α 7→ α ◦ ∂n+1.

The cohomology of this complex is called the singular cohomology of
X. We denote it by

H∗(X;R) = H∗(C∗(X;R)).
□

Exercise 26. Prove that the above defined graded vector space is indeed
a cochain complex, viz δn+1 ◦ δn = 0. □

Exercise 27. Prove that Hn(X;R) ∼=
(
Hn(X;R)

)∨
. Hint: Start by

constructing a map. □
9That is, we have chosen a specific orientation and so we are equipped with an

isomorphism Hn(M ;R) ∼= R.
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Exercise 28. Deduce a Mayer-Vietoris sequence for singular cohomol-
ogy from the Mayer-Vietoris sequence for singular homology. Be care-
ful! □

8. March 21, 2022: Smooth Manifolds, Smooth Maps,
Gluing

Recall that for a topological spaceX, we call U ⊂ Rn, an open subset
V ⊂ X and a homeomorphism φ : V → U a (coordinate) chart.

Definition 22. With the same notation, V is called the domain of the

chart and the functions x1, . . . , xn defined by xi : V
φ−→ U

pri−→ R are
called the cooordinates of the chart. Here pri is the projection from
U ⊂ Rn to the ith Euclidean coordinate. □

Definition 23. Let φ1 : V1 → U1 and φ2 : V2 → U2 be two charts of the
topological space X. The map φ2 ◦ φ−1

1 = φ1 (V1 ∩ V2)→ φ2 (V1 ∩ V2)
is called the transition map from the chart φ1 to the chart φ2.
The charts φ1 and φ2 are called smoothly compatible if the transition
maps φ2 ◦ φ−1

1 and φ1 ◦ φ−1
2 are both smooth. □

Figure 15. Transition map between charts.

Also recall that a smooth atlas on a topological spaceX is a collection
of charts φi : Vi → Ui|i∈I (of the same dimension) such that

• ∪i∈IVi = X
• For any i, j ∈ I, φi and φj are smoothly compatible.

Warning: There is no such thing as a smooth chart unless we have a
smooth atlas.

Definition 24. We call a smooth atlas A maximal if any chart that is
smoothly compatible with A is already in A. □
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Exercise 29. Prove that every smooth atlas is contained in a unique
maximal smooth atlas. □

Definition 25. A smooth manifold is a second countable and Hausdorff
topological space equipped with a maximal smooth atlas. □

Warning: A maximal smooth atlas is still extra data. We will call
it the smooth structure. Let us also call the charts that are in the
maximal smooth atlas the smooth charts.

Exercise. Prove that every open subset of Rn is second countable.

8.1. Examples of Smooth Manifolds.

• Rn

• Sn ⊂ Rn+1

• {x2 + y3 = 1} ⊂ C2

• Gr(2, 4) := {2 dimensional linear subspaces of R4}
What we really mean here is that these have natural topologies which

are second countable and Hausdorff and they are equipped with a stan-
dard smooth structure.

Exercise 30. Describe each of these topologies and smooth structures.
As long as you are correct, you don’t need to prove anything. □

• Open subsets of smooth manifolds
• Products of smooth manifolds

Exercise 31. Explain what these mean precisely and actually prove
what you wrote. □

8.2. Smooth Maps. Recall that for an open subset U ⊂ Rn, a map
U → R being smooth means the existence of all iterated partial deriva-
tives; and U → V ⊂ Rn being smooth means that each component is
smooth.

Definition 26. Let X be a smooth manifold. We call a function f :
X → R smooth if for every smooth chart φ : V → U , f ◦ φ−1 : U → R
is smooth. □

Exercise 32. Prove that it suffices to check the smoothness of f on an
atlas contained in the maximal smooth atlas. □

Definition 27. Let X, Y be smooth manifolds and f : X → Y be
continuous. We say that f is smooth if for every smooth chart φX :
VX → UX in X and φY : VY → UY such that f(VX) ⊂ VY , φY ◦f ◦φ−1

X :
UX → UY is smooth. □
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8.3. Gluing. Let {Xα}α∈I be a collection of topological spaces indexed
by a set I. If we are given open subsets Xαβ ⊂ Xα for every α ̸= β ∈ I,
and homeomorphisms φαβ : Xαβ → Xβα and the following conditions
are satisfied, then we call this a gluing data and in particular, φαβ

gluing maps:

• For every α, β ∈ I, φαβ ◦ φβα = id.
• For every α, β, γ, pairwise distinct,
φαβ (Xαβ ∩Xαγ) ⊂ Xβα ∩Xβγ.
• (Cocycle condition)
φβγ ◦ φαβ = φαγ on Xαβ ∩Xαγ.

Under these assumptions, we can define an equivalence relation on
X = ⊔α∈IXα by a ≡ b if a ∈ Xα, b ∈ Xβ such that α ̸= β and
φαβ(a) = b. We equip X with its natural topology, that is, the quotient
of the disjoint union topology.

Proposition 4. Assume that each Xα is a smooth manifold, each φαβ

is smooth (as in Definition 27) and X is second countable and Haus-
dorff. Then, there exists a unique smooth structure on X such that the
induced smooth structure on the open subset Xα ⊂ X is the given one.

Exercise. Prove this proposition.

Remark 9. I countable ⇒ X is second countable. □

Exercise. Prove that every smooth manifold can be obtained by gluing
open subsets of Rn.

9. March 24, 2022: Diffeomorphisms, Tangent Bundle of a
Manifold, Differential of a Smooth Map

Definition 28. Let X and Y be smooth manifolds, and f : X → Y be a
bijective smooth map. If the inverse map is also smooth, then we call
f a diffeomorphism. We also say that X and Y are diffeomorphic. □

Exercise. LetX be Hausdorff and second countable topological space.Let
S1 and S2 be two maximal smooth atlases. Prove that the identity map
X → X is a diffeomorphism if and only if S1 = S2.

Exercise 33. Consider the real line R as a topological space. Equip it
with (i) its ”standard” smooth structure. (ii) smooth structure that
admits a chart (U, ϕ) with U = R and ϕ(x) = x3. Prove that (i) and
(ii) are not the same smooth structure, but they are diffeomorphic. □

We have talked about the differentiability of maps between smooth
manifolds but we didn’t take any actual derivatives yet. Note that
the partial derivatives of a function as we learned in calculus courses
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depend on the coordinates that we are given and we do not have such
preferred coordinates in a general smooth manifold. We have to develop
the notion of tangent bundle to get a head start. Then we will define
the differential of a smooth map.

First, we need to deal with the case of open subsets of Euclidean
spaces. If you remember your multivariable calculus class well, this is
at best a reformulation of what you already know.

Let U ⊂ Rn and V ⊂ Rm be open subsets, and f : U → V be
a smooth map. Then the Jacobian matrix of f at a point p is the
following matrix.

Jacp(f) =


∂f1
∂x1

(p) ∂f1
∂x2

(p) . . .
...

. . .
∂fm
∂x1

(p) ∂fm
∂xn

(p)


We define the tangent bundle of an open set U ⊂ Rn as

TU := U × Rn,

which is an open subset of R2n. It is very important to be able to
visualize points of TU as a point p in U and a vector at p effectively,
see Figure 19.

We define the differential

df : TU → TV

of f : U → V (as above) by formula

df(p, v) = (f(p), Jacp(f)v)

Exercise. Prove that if we have open subsets U ⊂ Rn , V ⊂ Rm and
W ⊂ Rk and smooth maps f : U → V , g : V → W , we have the
following reinterpretation of the chain rule.

d(g ◦ f) = dg ◦ df

You can use the multivariable calculus chain rule without proof.

Now we introduce the tangent bundle of an arbitrary smooth mani-
fold.

Remark 10. If X ⊂ Rn is a submanifold (will be defined next lecture
but you can imagine Sn ⊂ Rn+1), its tangent bundle is the union of
tangent spaces at all points ofX. See Figure 17. This is where the name
”tangent bundle” comes from. The description uses the embedding,
which we do not want for a definition. □
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Figure 16. A point (p, v) of TU = U × Rn can be
thought of the vector v at p.

Figure 17

Definition 29. Let M be a smooth manifold with maximal atlas {φα :
Vα → Uα}α∈I . Define Uαβ := φα(Vα ∩ Vβ).

We define TM by gluing TUα along TUαβ ⊂ TUα using

d(φβ ◦ φ−1
α ) : TUαβ → TUβα

as gluing maps. □

Exercise. Check that this is a valid gluing data.

We also define a smooth map π : TM →M by sending (p, v) ∈ TUα

to φα
−1(p).

Exercise 34. Prove that π is well-defined. Prove that ∀p ∈ M , π−1(p)
is canonically a dimM dimensional vector space. □

Proposition 5. Let f : X → Y be a smooth map between smooth
manifolds. Then, there is a canonical smooth map

df : TX → TY

with the following proprieties:
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(1) For any φX : VX → UX and φY : VY → UY coordinate charts
such that f(VX) ⊂ VY , the diagram

TUX TUY

TX TY .
df

commutes. Here
• The top map is d(φY ◦ f ◦ φ−1

X ) which was already defined.
• The vertical maps are the canonical inclusions coming from
the gluing construction.

Clearly, if satisfied, this property determines df uniquely.
(2) The diagram

TX TY

X Y .

πX πY

commutes. For all x ∈ X, the induced map π−1
X (x)→ π−1

Y (f(x))
is linear.

(3) If g : Y → Z is another smooth map, then dg ◦ df = d(g ◦ f).
Finally d(idX) = idTX .

Exercise 35. Prove part (1) of this theorem. □

Exercise. Prove the remaining parts of this theorem.

Hint: To prove part (1), construct the map df by gluing the maps

TUα → TUβ

with f(Vα) ⊂ Vβ. You need to check that these are compatible with
each other. If you can do this one, the other two will be easy.

Remark 11. The map df contains the information of first order deriva-
tives of f . □

Definition 30. Xn smooth manifold

• TX π−→ X is called the tangent bundle of X.
• For x ∈ X, the n dimensional real vector space π−1(x) is called
the tangent space of x and is defined by TxX.

Let Y be a smooth manifold and f : X → Y smooth map

• The map df : TX → TY is called the differential of f : X → Y .
• We obtain linear maps called dfx : TxX → Tf(x)Y for all x ∈ X.

□
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10. March 29, 2022: Submanifolds, Regular Value
Theorem

Definition 31. A subset Z of a smooth manifold Xn is called a sub-
manifold of dimension k ≥ 0 if for every z ∈ Z, there exists a smooth
chart φ : V → U of X such that

φ(V ∩ Z) = U ∩ (Rk × {0}) ⊂ Rk × Rn−k = Rn.

□

Figure 18

Exercise. Prove that a submanifold Z ⊂ X with its subspace topol-
ogy can be equipped with a natural smooth structure such that the
inclusion map Z ↪→ X is smooth.

There are two main ways of obtaining submanifolds:

(1) As solutions of smooth equations, i.e. preimages of points in

the domain of maps such as X R2

Y
(2) As subsets parametrized by other manifolds, e.g. S2 → X.

Let’s start with (1). Consider a smooth map f : X → Y . We call
y ∈ Y a regular value if for every x ∈ X such that f(x) = y, the linear
map dfx : TxX → TyY is surjective.

Theorem 7 ( Regular Value Theorem ). Let f : X → Y be a smooth
map. If y ∈ Y is a regular value, then f−1(y) ↪→ X is a submanifold.
Moreover, there are canonical isomorphisms

Txf
−1(y) ∼= ker(dfx),

for every x ∈ f−1(y).
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Figure 19

Proof Sketch:

• Can easily reduce to X ⊂ Rn, Y ⊂ Rk open subsets.
• Implicit Function Theorem: We can reorder the coordinates of
Rn such that in an open neighbourhood x ∈ U , f−1(y) ∩ U is
the graph of a smooth map

φ = (φ1, . . . , φk) : W → Rk

where W = prn−k(U) ⊂ Rn−k is open and Rn = Rn−k × Rk.
• Remark ( =⇒ ) This already gives a smooth atlas on f−1(y)
• Use the map U → Rn

(x1, . . . , xn−k, xn−k+1−φ1(x1, . . . , xn−k), . . . , xn−φk(x1, . . . , xn−k))
• This gives a chart by the inverse function theorem.
• For the statement with tangent spaces, note the diagram of
smooth maps

f−1(y) ∗

x Y y

and use Exercise 36.

Exercise. Make this statement intuitive for yourself.

Definition 32. A smooth map f : X → Y is called an immersion if
dfx : TxX → Tf (x)Y is injective for all x ∈ X. □

Exercise 36. Prove that inclusions of submanifolds into smooth mani-
folds are injective immersions. □

Example 7. Consider T 2 = S1 × S1, which can be represented as the
[0, 1]×[0, 1] with the ends identified as indicated in Figure 20, and draw
on it a line with irrational slope which gives an injective immersion
R→ T 2. The image is a dense subset and is not a submanifold. □
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Figure 20

Proposition 6. Assume that f : Z → X is an injective immersion.
Then f(Z) is a submanifold if and only if Z → f(Z) is a homeomor-
phism, where f(Z) has the subspace topology.

Exercise 37. Prove this. □

Proposition 7. Assume that f : Z → X is an injective immersion.
Then f(Z) is a submanifold and a closed subset if and only if f is a
proper map.

Remark 12. The properness condition in the proposition is automatic
if Z is compact. □

Exercise. Find a submanifold of a smooth manifold which is not a
closed subset.

Theorem 8 (Whitney Embedding Theorem). Any smooth manifold
Xn can be injectively immersed into RN by a smooth proper map for
some N > 0.

Remark 13. We can take N = 2n, but this is sharp, e.g. RP2 and Klein
bottle. Whitney embedding theorem is not as useful as it might seem
because the embeddings are usually inexplicit and complicated. □

11. March 31, 2022: Partitions of Unity

Recall that for a topological space X and a function f : X → R,
support of f is defined as supp(f) = {f(x) ̸= 0} ⊂ X.

Let Br(0) ⊂ Rn be the open ball of radius r centered at the origin.

Lemma 2. There exists a smooth function f : Rn → R with the fol-
lowing properties.

(1) supp(f) ⊂ B2(0)
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(2) f |B1(0) = 1
(3) 0 ≤ f(x) ≤ 1 , for all x ∈ Rn

It is customary to call such functions bump functions.

Proof. The key is that we can construct a smooth function g : R→ R
which vanishes on R≤0 but is positive and increasing on R>0. Here is
an example

g(x) =

{
0 for x ≤ 0

e−
1
x for x > 0

The smoothness is an easy consequence of the smoothness and the
decay of the exponential function e−x.

□

Exercise 38. Using g(x), construct a bump function f . For n > 1 you
might find it convenient to construct one that only depends on the
distance from the origin. □

Remark 14. A special case of the Whitney extension theorem says that
for any closed subset C ⊂ Rn, there exists a smooth function Rn → R
which vanishes precisely on C. This becomes useful sometimes. Note
that C can be wild, like the Cantor set. □

A collection of subsets of a topological space is called locally finite if
for every x ∈ X, there is an open neighbourhood of x intersecting only
finitely many members of the collection.

Definition 33. Let X be a smooth manifold and assume that the collec-
tion of open subsets {Uα}α∈I covers X. We call a collection of smooth
functions {fα : X → R}α∈I a partition of unity subordinate to {Uα}α∈I
if the following properties are satisfied,

(1) For every α ∈ I, supp(fα) ⊂ Uα

(2) {supp(fα)}α∈I is locally finite.
(3) For every α ∈ I and x ∈ X, fα(x) ≥ 0
(4)

∑
α∈I fα = 1 .

□

Note that the sum in (4) makes sense because of (2). The name
comes from (4), where one should think of the constant function 1
as the unit of the algebra of smooth functions on X. If you have a
partition of unity subordinate to {Vα}α∈I , where each Vα is the domain
of a chart, we can write any smooth function q : X → R as a sum of
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functions supported inside the domains of those chart, which can then
can all thought of as functions defined on Rn,

q = 1 · q =

(∑
α∈I

fα

)
q =

∑
α∈I

fαq .

More often though, you use partitions of unity to patch together
locally defined things to a global one. We will see an example soon.

Proposition 8. Let X be a smooth manifold, and assume that the col-
lection of open subsets {Uα}α∈I covers X. Then, there exists a partition
of unity subordinate to {Uα}α∈I .

Proof. (Sketch) Second countability implies that one can find another
cover {Vβ}β∈J with the following properties:

(1) J is countable.
(2) For every β ∈ J , there exists an α ∈ I such that Vβ ⊂ Uα.
(3) For every β ∈ J , Vβ is the domain of a coordinate chart ϕβ :

Vβ → Ṽβ, where Ṽβ = B3(0).
(4) For every β ∈ J , define Wβ = ϕ−1

β (B1(0)). Then, the collection
of open sets {Wβ}β∈J covers X.

(5) {Vβ}β∈J , which automatically covers X, is locally finite.

Now let ρ : Rn → R be a bump function as above. Let ρβ be the
extension by zero of ρ ◦ ϕβ : Vβ → R. Define

gβ :=
ρβ∑
β∈J ρβ

.

This is a partition of unity for {Vβ}β∈J . To find it for {Uα}α∈I , choose
a map a : J → I such that Vβ ⊂ Ua(β) and set

fα :=
∑

β∈J, a(β)=α

gβ .

□

Definition 34. Let X be a smooth manifold. A Riemannian metric g
on X is a smoothly varying positive definite symmetric bilinear form
gx(·, ·) on TxX for every x ∈ X. □

Exercise 39. Define smoothly varying. □

Example 8. X = U ⊂ Rn =⇒ TxU = Rn for all x ∈ U . For v, w ∈ TxU
define gx(v, w) = v · w =

∑n
i=1 viwi, which is called the flat metric. □

Proposition 9. Every smooth manifold admits a Riemannian metric.



LECTURE NOTES - MATH 58J (SPRING 2022) 39

Proof. Let X be our manifold and pick a cover {Vα}α∈I by domains of
coordinate charts φα : Vα → Uα with partition of unity {fα : X →
R}α∈I . Using the flat metric on each Uα we can define a Riemannian
metric on Vα called gα. We define our Riemannian metric by

gx(·, ·) =
∑
α∈I

fα(x)gα,x(·, ·)

for all x ∈ X. □

Exercise 40. Check that g is a Riemannian metric. □

Remark 15. A submanifold of Rn can be equipped with a Riemannian
metric by restricting the flat metric to the tangent spaces. It turns out
that any Riemannian metric on a smooth manifold X can be obtained
by embedding it into an Euclidean space and using this restriction
procedure. This is a very difficult theorem called Nash embedding
theorem. □

12. April 4, 2022: Vector Bundles

Definition 35. A smooth map (of smooth manifolds) π : E → B is
called a vector bundle of rank n if

(1) ∀b ∈ B, π−1(b) is equipped with a real vector space structure
(2) ∀b ∈ B, there is an open neighbourhood b ∈ U ⊂ B and a

commutative diagram

π−1(U) U × Rn

U

π

Φ

proj

such that Φ is a diffeomorphism and Φb : π
−1(b)→ {0} ×Rn is

a linear isomorphism for every b ∈ U .

□

Remark 16. We call such a map Φ a local trivialization and E is called
the total space. □

Exercise. Let Md be a smooth manifold. Prove that TM → M is a
vector bundle of rank d.

Example 9. Mobius bundle: Rank 1 vector bundle over S1 = [0, 1]/0 ∼
1 defined as

R× [0, 1]/(s, 0) ∼ (−s, 1)→ S1,

see Figure 21. □
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Figure 21

12.1. Constructions of Vector Bundles.

12.1.1. Gluing. Let {Uα}α∈I be an open cover of a smooth manifold B.
Let V be a finite dimensional vector space. Assume that we are given
smooth maps

tαβ : Uα ∩ Uβ → GL(V ) ⊂ Rn2

for every α, β ∈ I such that . . . . . .

Then we can construct a smooth manifold via the formula

E :=
⋃
α∈I

Uα × V/ ∼

where (x, v) ∼ (y, w) if x = y in B and tαβ(x).v = w.

The canonical map E → B is a vector bundle of rank dim(V ).

Exercise 41. Fill in the blanks and prove the statement. □

The maps tαβ are called transition functions. Let’s reserve the phrase
”transition map” to atlases.

Definition 36. A homomorphism/map of vector bundles E → B and
E ′ → B over the same B is a map E → E ′ which preserves fibers and
is fiberwise linear. □

Definition 37. Given vector bundles E
π−→ B and E ′ π′

−→ B′ and smooth
map f : B → B′, a smooth map E → E ′ is called a vector bundle
homomorphism/map covering f if the diagram
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E E ′

B B′

commutes and π−1(b)→ (π′)−1(f(b)) is a linear map. □

Exercise. Prove that df : TX → TY covers f : X → Y .

Exercise. Define what it should mean for two vector bundles over the
same base to be isomorphic.

Definition 38. We call a vector bundle E → B trivial if there is an
isomorphism.

E Rn ×B

B

□

Remark 17. There are many vector bundles that are not trivial, e.g.

• Mobius bundle
• TS2 → S2

□

Exercise 42. Prove that TS1 → S1 is trivial. □

Definition 39. A section of a vector bundle E
π−→ B is a smooth map

B
s−→ E such that π ◦ s = id. □

A section is a choice of a smoothly varying vector at every fiber.

Trivial vector bundles have many sections which are not zero any-
where. The non-trivial bundle examples we gave do not have any such
sections.

Sections of TM →M are called vector fields of M .

Theorem 9 (Hairy Ball Theorem). S2 does not have a non-vanishing
vector fields.

To understand the name properly let us make something from the
previous class more explicit.

Definition 40. Let E → B vector bundle, Eb := π−1(b). We call S ⊂ E
a subbundle, if
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(1) For every b ∈ B, S ∩ Eb ⊂ Eb is a subspace
(2) S ⊂ E is a submanifold
(3) π|S : S → B is a vector bundle.

□

Remark 18. I remember proving that (1) and (2) implies (3). □

Exercise 43. Let Z ⊂ X be submanifold, ı : Z ↪→ X be inclusion map.
Define ı∗TX := π−1(Z), where π : TX → X. Prove

(1) ı∗TX → Z is a vector bundle
(2) S :=

⋃
z∈Z im(diz) ⊂ ı∗TX is a subbundle.

(3) S → Z and TZ → Z are canonically isomorphic vector bundles.

□

This means that for example we can think TS2 as the union of tan-
gent planes of S2 ⊂ R3; a vector field on S2 as a collection of smoothly
varying tangent vectors at every point of S2.

Figure 22. arrows = hair after being combed
hairy ball theorem = you can not comb the hair without
creating discontinuity

Remark 19. It is customary among non-geometers to work only with
the sections of a vector bundle and never talk about the vector bundle
itself. Here you think of sections as a collection of local vector valued
functions, which transform according to some rules (i.e. the transition
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functions, which in case of vector bundles related to the tangent bundle
can be expressed in terms of changes of coordinates - this expression
transforms as xxx, Einstein conventions etc.) I think it is a shame and
the only reason to do this could be that the mental effort to conceptual-
ize a non-trivial bundle is non-trivial. This is similar to the insistence
of some physicists to never talk about the flow of a vector field but
only individual solutions of the corresponding ODE. Neither of these
geometric notions (flows and global bundles) will help if all you want is
to compute something, but they definitely help in thinking about what
you are doing when you are doing the computation. Laziness turns
into a defense mechanism that causes people to think mathematicians
are just being fancy. □

There is also a converse to gluing, namely given a vector bundle
π : E → B, you choose an open cover {Uα}α∈I of B with trivializations

Φα : π−1(Uα)→ Uα × Rn

We obtain t̃αβ := Φβ ◦ Φ−1
α

(Uα ∩ Uβ)× Rn ∼−→ (Uα ∩ Uβ)× Rn

or equivalently tαβ : Uα ∩ Uβ → GL(Rn). We can use this data to glue
a new vector bundle that is canonically isomorphic to E → B.

13. April 7, 2022: More on Vector Bundles, Cotangent
Bundle, Orientations

I want to start by noting a useful result about subbundles.

Proposition 10. Assume that we have a vector bundle homomorphism

ϕ : E E ′

B

If ϕb : Eb → E ′
b has the same rank for all b ∈ B, then

(1)
⋃

b∈B ker ϕb ⊂ E
(2)

⋃
b∈B im ϕb ⊂ E ′

are both subbundles.

Example 10. The constant rank assumption is not always satisfied. For
example consider the map of vector bundles:
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(x, t) 7−→ (x, x.t)

Rt × Rx Rt × Rx

Rx

One can immediately check that the conclusion of the proposition does
not hold. □

Let’s now assume that we have the vector bundle E → B constructed
by gluing {Uα × V → Uα}α∈I where V is a finite dimensional vector
space and {Uα}α∈I is an open cover of B with the transition functions
tαβ : Uα ∩ Uβ → GL(V ) for every α, β ∈ I.

Now let W be another finite dimensional vector space and

Ψ : GL(V )→ GL(W )

be a group homomorphism.
Using Ψ we can construct a new vector bundle by gluing

{Uα ×W → Uα}α∈I with the transition maps

ψ ◦ tαβ : Uα ∩ Uβ → GL(W )

.

Exercise. Prove that this is a valid gluing data.

13.1. The Dual Vector Bundle. Let us consider the case

W = V ∨ := Hom(V,R)
and

GL(V )→ GL(V ∨)→ GL(V ∨)

A 7→ A∗

B 7→ B−1

where the first map takes the dual map of a linear map.

Remark 20. If we choose a basis for V , then we get V ∼= Rn, V ∨ ∼= Rn

and GL(Rn) ∼= invertible nxnmatrices . Then the first map takes the
transpose and the second inverts. □

These are both anti-homomorphisms and the composition is a ho-
momorphism.

=⇒ We get a new vector bundle π∨ : E∨ → B.
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Proposition 11. There are canonical isomorphisms (E∨)b ∼= (Eb)
∨.

Exercise 44. Prove this. □

Definition 41. The dual vector bundle to TM →M is called the cotan-
gent bundle and is denoted by T ∗M →M . We will denote (T ∗M)b by
T ∗
bM and identify it with TbM

∨ using the canonical map.
Elements of T ∗

bM are called covectors at b and sections of T ∗M →M
are called covector fields or differential 1-forms. □

13.2. The Determinant Vector Bundle. Now consider the case
V = Rn, W = R and

GL(Rn)→ GL(R)
A 7→ det(A) · .

For example, we can apply this to TM → M and obtain the line
bundle det(TM)→M .

Remark 21. In the next lecture, we will define the exterior powers of a
vector space, and in particular

det(V ) := ∧dim(V )V.

It will be the case that

det(TM)b ∼=
can.

det(TbM).

□

13.3. Orientation. Any two bases e, f of a finite dimensional vector
space V are related by a unique change of basis matrix A(e, f) whose
entries are defined by ei = ΣjAjifj. We say that e and f are positively
related if detA(e, f) > 0.
This divides the set of bases of V into two groups so that members of

each group are pairwise positively related. Let o(V ) be the set whose
elements are the two groups.

Definition 42. An orientation of V is a choice of an element of o(V ) as
the positively oriented bases and the other as the negatively oriented
bases. □

Note that if V is one-dimensional,

o(V ) ∼=
can.

V − {0}⧸∼,

v ∼ v′ if v = cv′ for c > 0.
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Let π : E → B be a line bundle and let ZB ⊂ E be the image of the
zero section. We can construct a 2 : 1 covering space o(π) : o(E)→ B
by

o(E) := E \ ZB⧸∼,

with v ∼ v′ if v, v′ ∈ Eb for some b ∈ B and v = cv′ with c > 0.

Exercise 45. Prove that the canonical map o(E)→ B is a 2 : 1 covering
space. □

By construction o(E) is canonically identified with
⋃

b∈B o(Eb). A
section of o(E) → B is nothing but a continuously varying choice of
orientations for each Eb.

Of course such a section does not always exist – equivalent to 2 : 1
cover being trivial.

Example 11. The orientation bundle of the Mobius bundle is isomorphic
to the nontrivial cover S1 → S1, θ 7→ 2θ □

If there is a continuous section of its orientation bundle we call E →
B orientable and the choice of a section an orientation of E → B.

Definition 43. M is called orientable if det(TM) → M is orientable.
An orientation of this bundle is called an orientation of M . □

Remark 22. Next Lecture: For any finite dimensional vector space V ,

o(V ) ∼=
can.

o(det(V )).

□

=⇒ An orientation of M is equivalent to a continuously varying
choice of orientations for each tangent space TxM , x ∈M .

Definition 44. If U ⊂ Rn open, the standard orientation of U is the
one where the basis e1, . . . , en of TbU is positive for all b ∈ U . □

Proposition 12. Let M be a smooth manifold. M is orientable if
and only if there exists a subatlas {ϕα : Vα → Uα}α∈I of the smooth
structure such that the transition map ϕβ ◦ ϕ−1

α : Uαβ → Uβα satisfies

det(Jacp(ϕβ ◦ ϕ−1
α )) > 0

for all p ∈ Uαβ, where Uαβ := ϕα(Vα ∩ Vβ).

Definition 45. Let us call such a subatlas an oriented subatlas. □
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14. April 11, 2022: Constructing Vector Spaces, The
Exterior Algebra

Definition 46. Let V and W be vector spaces. The direct sum V ⊕W
is the vector space with underlying set V ×W endowed with the vector
space structure given by

c(v, w) = (cv, cw)

(v, w) + (v′, w′) = (v + v′, w + w′)

□

If e1, . . . , en and f1, . . . , fm are bases of V and W , respectively, then
ẽi := (ei, 0) and f̃j := (0, fj) together form a basis of V ⊕W .

Exercise 46. Let E → B and E ′ → B be vector bundles. Define the
Whitney sum vector bundle

E ⊕ E ′ → B

such that each fiber
(
E ⊕E ′)

b
is canonically identified with Eb ⊕E ′

b.
□

14.1. Tensor Products. We’ll now define the tensor product V ⊗W
of two vector spaces V and W .

Let T (V,W ) be the vector space generated by the set V ×W . Let
Q(V,W ) ⊂ T (V,W ) be the smallest subspace that contains

c(v, w)− (cv, w)

c(v, w)− (v, cw)

(v + v′, w)− (v, w)− (v′, w)

(v, w + w′)− (v, w)− (v, w′)

for all c ∈ R and v, v′ ∈ V and w,w′ ∈ W . Define

V ⊗W :=
T (V,W )

Q(V,W )
·

The equivalence classes [(v, w)] are denoted by v ⊗ w and are called
pure tensors. Every element of V ⊗W is a finite sum of pure tensors.

Exercise 47. Let e1, . . . , en and f1, . . . , fm be bases of V and W , re-
spectively. Show that ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m is a basis of
V ⊗W . In particular Rn ⊗ Rm ∼= Rnm. □

Tensor products can be tricky to work with but it will be worth our
time.
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Lemma 3. Given linear maps f : V → W and f ′ : V ′ → W ′, there
exists a unique map

f ⊗ f ′ : V ⊗ V ′ → W ⊗W ′

which satisfies

f ⊗ f ′ : v ⊗ v′ 7→ f(v)⊗ f ′(v′).

Proof. Define a linear map

ϕ : T (V, V ′)→ T (W,W ′)

(v, v′) 7→ (f(v), f ′(v′))

by linearly extending. All we have left to check is that ϕ(Q(V, V ′)) ⊂
Q(W,W ′), which is easy. □

Exercise 48. Let A : Rn → Rn′
and B : Rm → Rm′

be linear maps.
Describe the matrix of A⊗B in terms of the matrices of A and B. □

Exercise. Suppose that in the above exercise n = n′ and m = m′, that
is, A and B are endomorphisms. Then A⊗B is also an endomorphism.
Describe

• The trace trA⊗B in terms of trA and trB.
• The determinant detA⊗B in terms of detA and detB.
• The eigenvalues/vectors of A⊗B in terms of those of A and B.

Exercise. Let E → B and E ′ → B be vector bundles. Define the
vector bundle E⊗E ′ → B so that

(
E⊗E ′)

b
is canonically isomorphic

to Eb ⊗ E ′
b.

Lemma 4. There is a unique isomorphism(
U ⊗ V

)
⊗W → U ⊗

(
V ⊗W

)
(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).

Proof. Routine but tedious to write down. Define the only possible
map and see that it works. □

Definition 47. With this in mind we can define inductively

V ⊗(k+1) := V ⊗ V ⊗k.

v0 ⊗ v1 ⊗ · · · ⊗ vk := v0 ⊗ (v1 ⊗ · · · ⊗ vk).
by taking V ⊗0 = R. Also, we take

U ⊗ V ⊗W := U ⊗
(
V ⊗W

)
u⊗ v ⊗ w := u⊗ (v ⊗ w)

□
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14.2. The Exterior Algrebra. We have finally arrived at the exterior
product operation.

Definition 48. Let k ≥ 1, we define

ΛkV = V ⊗k

⧸Sk

where Sk is the smallest subspace of V ⊗k that contains the set

{v1 ⊗ · · · ⊗ vk ∈ V ⊗k : v1, . . . , vk are linearly dependent}.

We denote the class of v1 ⊗ · · · ⊗ vk by v1 ∧ · · · ∧ vk. The space ΛkV
is called the kth exterior product of V . We also take Λ0V = V ⊗0 = R.
Also notice that ΛkV = 0 for k > dimV . □

Remark 23. The space Sk could also be described to be the smallest
subspace of V ⊗k that contains all elements of the form · · ·⊗v⊗v⊗· · · ∈
V ⊗k. One could also see that

⊕∞
k=1 Sk is a two-sided ideal in the graded

algebra(to be defined later)

T (V ) =
∞⊕
k=0

V ⊗k

that is generated by v ⊗ v : v ∈ V . □

Proposition 13. Let e1, . . . , en be a basis of V . Let Ik be the set of
order preserving functions

i : {1, . . . , k} → {1, . . . , n}.
Then

{ei(1) ∧ · · · ∧ ei(k)}i∈Ik
is a basis of ΛkV .

We’ll omit the proof for now. The statement is much more important.

Definition 49. A graded algebra is a graded vector space {Vn}n∈Z and
a collection of bilinear maps

ϕn,m : Vn × Vm → Vn+m.

A graded algebra gives an algebra structure on

V :=
⊕
n∈Z

Vn

by defining (∑
n∈Z

vn
)
·
(∑
m∈Z

wm

)
=
∑

n,m∈Z

ϕn,m(vn, wm).
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Note that the right hand side has Vk component given by∑
n+m=k

ϕn,m(vn, wm).

This is non-zero only for finitely many k ∈ Z.
Most of the terminology of algebras carry over, e.g associative and

unital algebras BUT commutative means that for x ∈ Vn, y ∈ Vm we
have that

x · y = (−1)nmy · x.
□

Proposition 14. The graded vector space {ΛkV }k≥0} forms a commu-
tative graded algebra together with the product

ΛkV × ΛlV → Λk+lV

(v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wl) 7→ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl.

This is called the exterior algebra or the Grassmann algebra of V .We
denote

Λ∗V =
∞⊕
k=0

ΛkV.

The product we defined here is called the exterior product, which we’ll
denote by ∧.

Exercise 49. Write a concrete description of Λ∗Rn for n = 0, 1, 2, 3, 4.
□

15. April 14, 2022: More on the Exterior Algebra,
Wedge Product, Alternating Multilinear Maps

Recall: For a vector space V ,

• ΛkV is the kth exterior power,
• ΛkV = 0 for k > dimV ,
• Λ0V ∼= R,Λ1V ∼= V ,
• Assume V is finite dimensional and let e1, . . . , en be a basis. Let

Ik := {{1, . . . , k} → {1, . . . , n} injective, order-preserving maps.} .
Then, {ei(1) ∧ . . . ∧ ei(k)}i∈I forms a basis of ΛkV . In particular
ΛdimV V ∼= R, but this isomorphism is not canonical since we
have chosen a basis.

Definition 50. Let V be a finite dimensional vector space. We define
detV := ΛdimV V . Choosing a connected component of ΛdimV V/{0} is
the same thing as choosing an element of o(V ). □
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Proposition 15. Given a linear map f : V → W , there is a unique
homomorphism

ΛkV → ΛkW such that

v1 ∧ . . . ∧ vk 7→ f(v1) ∧ . . . ∧ f(vk).

Proof. We already have a canonical map V ⊗k → W⊗k such that v1 ⊗
. . . ⊗ vk 7→ f(v1) ⊗ . . . ⊗ f(vk). We need to show that if v1, . . . , vk
is linearly dependent, then so is f(v1), . . . , f(vk), and this is true by
linearity. □

Exercise 50. If f : V → V is a linear map, we can define det(f) ∈ R.
Prove that the induced map ΛdimV V → ΛdimV V is given by multipli-
cation with det(f). □

15.1. Wedge product. We define the wedge product, also denoted
by ∧ as

∧ : ΛkV × Λk′V → Λk+k′ such that

(v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk′) 7→ v1 ∧ . . . ∧ vk ∧ w1 ∧ . . . ∧ wk′ .

∧ is graded commutative: for α ∈ ΛkV, β ∈ ΛkV , we have

α ∧ β = (−1)kk′(β ∧ α).
The algebra

Λ∗V = ⊕∞
k=0Λ

kV

is called the exterior algebra. Recall Definition 49.

Remark 24. We have another graded algebra T (V ) =
⊕∞

k=0 V
⊗k, de-

fined by

⊗ : V ⊗k × V ⊗k′ → V ⊗k+k′ ,

where

(v1 ⊗ . . .⊗ vk, w1 ⊗ . . .⊗ wk) 7→ v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ wk.

For v ̸= w nonzero elements of V , v⊗w ̸= ±w⊗v so this algebra is not
commutative. It is also infinite dimensional unless V = {0}. Quotient
map T (V )→ Λ∗V is an algebra homomorphism. □

Proposition 16. Given a linear map f : V → W , there is a unique
homomorphism for every k ≥ 0,

ΛkV → ΛkW such that

v1 ∧ . . . ∧ vk 7→ f(v1) ∧ . . . ∧ f(vk).

This map respects the wedge product.
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Proof. We alredy have a map V ⊗k → W⊗k satisfying v1 ⊗ . . . ⊗ vk 7→
f(v1) ⊗ . . . ⊗ f(vk). We need to show that if v1, . . . , vk is linearly
dependent, then so is f(v1), . . . , f(vk). This is true by linearity. □

15.2. Alternating Multilinear Maps. Let W be a finite dimen-
sional vector space and V := W V =Hom(W,R). We will give a more
concrete description of Λ∗V .

Definition 51. A multilinear map α : W × . . . × W → R is called
alternating if α(. . . , wi, wi+1 . . .) = −α(. . . , wi+1, wi . . .). □

Proposition 17. Let V = W V be as above. Then, ΛkV is canonically
isomorphic to the vector space Altk(W ) of alternating multilinear maps
W × . . .×W → R. The isomorphism sends v1∧ . . .∧ vk to the element
of Altk(W ) defined by

(w1, . . . , wk) 7→
∑
σ∈Σk

sign(σ)v1(wσ(1)) . . . vk(wσ(k))

where Σn is the set of all permutations {1, . . . , k} → {1, . . . , k}.

Note that the multilinearity and alternating properties are obvious
from the definition. It is also not too difficult to check that the map is
well-defined.

Exercise 51. Prove that this map is an isomorphism.
Hint: One option is to show surjectivity (or injectivity) and do a di-
mensioun count. □

The isomorphism induces a map

∧ : AltkW × Altk
′
W → Altk+k′W

(α, β) 7→ α ∧ β,
where direct (but confusing) computation shows

α ∧ β(w1, . . . , wk+k′)

=
∑

σ∈Sh(k,k′)

sign(σ)α(wσ(1), . . . , wσ(k))β(wσ(k+1), . . . , wσ(k+k′))

where Sh(k, k′) ⊂ Σk+k′ that satisfy σ(1) < . . . < σ(k) and σ(k + 1) <
. . . < σ(k + k′). This product is sometimes called the shuffle product.

Remark 25. Sh(k, l) is the set of all ways of taking k + l cards, and
shuffling the first k cards and the last l cards. □

Instead of a proof, we give an example. Assume that V is a four
dimensional vector space with basis e1, . . . , e4. Let’s check that the
diagram commutes when we input e∨1 ∧ e∨2 and e∨3 ∧ e∨4 in the diagram
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Λ2V × Λ2V ∧ Λ4V

∼ = ∼ =

Alt2(W )× Alt2(W ) Shuffle Alt4(W )

We just need to follow the definitions here. Note that in order to
specify an alternating multilinear map with k inputs, we only need
to say what it does on all the inputs of the form ei(1), . . . , ei(k) with
i : [k] → [4] increasing and injective. Below we only write the inputs
where the result is non-zero.

e∨1 ∧ e∨2 7→ ((e1, e2) 7→ 1)

e∨3 ∧ e∨4 7→ ((e3, e4) 7→ 1)

e∨1 ∧ e∨2 ∧ e∨3 ∧ e∨4 7→ ((e1, e2, e3, e4) 7→ 1) .

Shuffle (((e1, e2) 7→ 1) , ((e3, e4) 7→ 1)) = ((e1, e2, e3, e4) 7→ 1) .

I leave it to you to fill in the words.

Remark 26. We will freely use the isomorphisms Λk(W V ) ∼= Altk(W ),
when W is finite dimensional. □

16. April 18, 2022: Differential Forms, Pull-back

15 Minutes for Questions. Let W be a finite dimensional vector
space and V := W∨

W W∨ Λk(V )

Altk(W )

Here by the equal sign we mean that there is a an isomorphism
between the two that we agreed to use.

Reminding you again that Λ0V := R,

∧ : Λ0V × ΛkV → ΛkV ?

Think of Alt0(W ) as a multi-linear map with 0-inputs, which is sim-
ply a real number.
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Exercise 52. Let e1, e2, ..., en be basis ofW and let e∨1 , e
∨
2 , ..., e

∨
n be dual

basis of V = W∨. Compute

e1 ∧ ... ∧ en(w1, ..., wn)

for arbitrary elements w1, w2, .., wn ∈ W by writing them as a linear
combination of basis elements. Assuming that W = Rn and e1, .., en is
standard basis interpret your result as a geometric quantity related to
w1, w2, .., wn as vectors in the Euclidian space.
(After some computation it can be seen that e1 ∧ ... ∧ en(w1, ..., wn)
is equal to the determinant of the matrix consisting of the coefficients
of wi’s in standard basis. Therefore the resulting quantity will be the
volume of n-parallelepiped generated by wi’s.) □

If you have a linear map f : W → U , you can define

f ∗ : Λ∗(U∨)→ Λ∗(W∨)

by the formula

f ∗α(w1, .., wn) = α(f(w1), .., f(wn)).

This is the same operation as the one induced from f ∗ : U∨ → W∨ on
ΛkU∨ → ΛkW∨.

Given a vector bundle E → B we can construct a vector bundle
ΛkE → B whose fibers are canonically identified with ΛkEB.

How do we check that

GL(V )→ GL(ΛkV )

is a group homomorphism?

16.1. Differential k-forms.

Definition 52. Let M be a smooth manifold. A differential k-form is a
smooth section of ΛkT ∗M →M □

Note that we can think of a differential k-form as a collection of
smoothly varying alternating multi-linear maps TxM × ...× TxM︸ ︷︷ ︸

k

→ R

for ∀x ∈M .
We denote the vector space of all differential k-forms by Ωk(M). We

have a graded commutative algebra Ω∗(M) :=
⊕∞

k=0 Ω
k(M). What is

Ω0(M)?
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16.2. Pull-back of Differential Forms.

Definition 53. Given a smooth map f : X → Y and a differential
k-form α on Y we can define a differential k-form f ∗α on X by

(f ∗α)p(v1, .., vk) = αf(p)(dfpv1, ..., dfpvn).

This is called the pullback of α by f .

f : X → Y f ∗ : Ω∗(Y )→ Ω∗(X)

□

Proposition 18. If g : Y → Z is also smooth

(g ◦ f)∗ = f ∗ ◦ g∗

Exercise 53. Prove the proposition above. □

Proposition 19. f ∗ preserves the wedge product of differential forms.

Exercise 54. Prove the proposition above. □

Exercise 55. Describe the pull-back operation when k = 0. □

17. April 21, 2022: Differential Forms on Open Subsets
of the Euclidean Space, Computing Pullback in

Coordinates, Directional Derivative

17.1. Differential Forms on Open Subsets of Rn. Let U ⊂ Rn

be open. Let’s start with vector fields, TU ≃ U × Rn, x1, · · · , xn are
coordinates on U . Then, ∂

∂xi
is defined to be the constant vector field

equal to ei = (0, · · · , 1, · · · , 0) at every p ∈ U . Then ∂
∂x1
, ..., ∂

∂xn
gives

a basis of TpU at every p ∈ U .

Figure 23. Constant Vector Field

Every vector field on U can be written uniquely as
n∑

i=1

fi
∂
∂xi

where

fi : U → R are smooth.
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Now, we move on to covector fields (alternatively called differential
1-forms/sections of T ∗U → U/elements of Ω1(U)): We have T ∗U ≃
U × (Rn)∨. Let dxi be the constant covector field equal to e∨i at every
p ∈ U and dx1, ..., dxn gives a basis of T ∗

pU at every p ∈ U .

Every covector field on U can be written uniquely as
n∑

i=1

fidxi where

fi : U → R are smooth.

Note. e∨i ∧ e∨j = −e∨j ∧ e∨i ∈ Λ2(Rn)∨. This implies dxi ∧ dxj =

−dxj ∧ dxi ∈ Ω2(U).

Finally getting to general differential forms, note

ΛkT ∗U ∼= U × Λk((Rn)∨)

We define the differential k-form dxI := dxI(1) ∧ ... ∧ dxI(k) for I :
{1, ..., k} → {1, ..., n}. Every differential k-form on U can be written
uniquely as

∑
I∈Ik

fIdxI , fI : U → R smooth, and Ik = {I : {1, ..., k} →

{1, ..., n} : I strictly increasing}.

Example 12. U ⊂ R3; coordinates are x, y, z. Every differential two
form on U can be written as fdx∧dy+ gdy∧dz+hdx∧dz (uniquely).

□

Exercise. Write (
∑3

i=1 fidxi) ∧ (
∑3

i=1 gidxi) in this form.

17.2. Computing Pullback in Coordinates. Let U ⊂
x1,...xn

Rn, V ⊂
y1,...ym

Rm be open, and φ : V → U be a smooth map. Let α =
∑
I∈Ik

fIdxI be a

differential k-form on U . Let us write down φ∗α in coordinates y1, ...ym.
The case for 0-forms is as follows: α = f : U → R =⇒ φ∗f = f ◦ φ.
How about φ∗dxi? It should be of the form

∑m
j=1□dyj, where □ is to

be calculated as below:

φ∗dxi(
∂

∂yj
)(p) = dxi(dφp

∂

∂yj
) = dxi(

n∑
k=1

∂φk

∂yj
(p)

∂

∂xk
) =

∂φi

∂yj
(p).

Thus, φ∗dxi =
∑m

j=1
∂φi

∂yj
dyj. For a general k−form, we can use the fact

that pullback preserves wedge products to obtain:

φ∗α =
∑

fI ◦ φ ·

(
n∑

i=1

∂φI(1)

∂yi
dyi

)
∧ ... ∧

(
n∑

i=1

∂φI(k)

∂yi
dyi

)
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Exercise 56. Assume m = n = k, and that φ is a diffeomorphism.
Show that

φ∗(dx1 ∧ · · · ∧ dxn) = det(Jac(φ))dy1 ∧ · · · dyn.

□

Remark. Assume U, V are bounded.∫
U

fdx1 · · · dxn =

∫
V

(f ◦ φ)|det(Jac(φ))|dy1 · · · dyn.

If φ is orientation-preserving, that is, det(Jac(φ)) > 0, then we obtain
the desired coordinate independence of

∫
U
α.

Exercise 57. Let {φi : Vi → Ui}i∈I be a smooth atlas forM . Concretely,
write what a differential n-form on M is using coordinates. □

17.3. Directional Derivative. let M be a smooth manifold. Given
f : M → R, and a tangent vector v ∈ TpM , we can take directional
derivative of f at p in the direction of v:

v · f = dfp(v) ∈ Tf(p)R ≃ R.

If we take a coordinate chart near p with coordinates x1, · · ·xn, then

dfp(v) = (
∂f

∂x1
(p), · · · , ∂f

∂xn
(p))(v1 · · · vn)T =

n∑
i=1

∂f

∂x
(p) · vi.

Notice that the formula we obtained above coincides with the usual
calculus directional derivative.
Remark. Note that on Rn, we have

(
∂
∂xi
· f
)
(p) = ∂f

∂xi
(p).

Definition 54. For a smooth f : M → R we define the covector field
df ∈ Ω1(M) by

df(v) = v · f, ∀p ∈M, v ∈ TpM.

□

Exercise 58. Let U ⊂ Rn be open. We already defined dxi ∈ Ω1(U).
Thinking of xi : U → R as a smooth function, justify this notation.
Write down df for f : U → R in coordinates as before. □

Next time:

• define d : Ωk(M)→ Ωk+1(M)
•
∫
M
α, for α differential n-form, Mn oriented compact

• Stokes Theorem:
∫
X
dβ =

∫
∂X
β.
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18. April 29, 2022: Differential k-forms on Smooth
Manifolds, Exterior Differentiation, De Rham

Cohomology

Let M be a smooth manifold and {φi : Vi → Ui}i∈I a subatlas of
the defining maximal smooth atlas. The transition maps are φj ◦φ−1

i :
ϕi(Vi ∩ Vj)→ ϕj(Vi ∩ Vj), and we introduce the notation Uij = ϕi(Vi ∩
Vj) ⊂ Ui.

A differential k-form on M is equivalent to the following data,

• αi ∈ Ωk(Ui) ∀i ∈ I such that,

(φj ◦ φ−1
i )∗αj|Uji

= αi|Uij

Exercise 59. Find a subatlas with two elements for S2 and write in
coordinates what it means to give a differential 0, 1 and 2-form on S2.

□

We will now define an operation called exterior differentiation.

d : Ωk(M)→ Ωk+1(M) , k ≥ 0.

We have already defined this for k = 0,

(0)

f 7−→ df.

We also want the following properties,

(1) d is additive,

d(α + β) = dα + dβ.

(2) d2 = 0 (d : Ωk → Ωk+1 is a coboundary.)
(3) (Leibniz rule) For α ∈ Ωk(M), β ∈ Ωl(M)

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.
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Proposition 20. For U ⊂ Rn open, there exists a unique d : Ωk(U)→
Ωk+1(U) , k ≥ 0 such that (0), (1), (2) and (3) are satisfied.

Proof. Recall our notation, dxI = dxI(1) ∧ · · · ∧ dxI(k), I : {1, . . . , k} →
{1, . . . , n} and Ik is the set of I which is strictly increasing.
We have to define

d(dxI) = 0

d(dxI(1) ∧ · · · ∧ dxI(k)) =
k∑

j=1

(−1)j−1 · · · ∧ d(dxI(j)) ∧ · · · = 0

For f : U → R smooth, we then need

d(fdxI) = df ∧ dxI

We know that every α ∈ Ωk(U) can uniquely be written as
∑

I∈Ik fIdxI .
Using (1), we are forced to define for α =

∑
I∈Ik fIdxI ,

dα =
∑
I∈Ik

dfI ∧ dxI

What is left is to check that this definition of d indeed satisfies the
properties (0), (1), (2) and (3). Property (0) is trivially satisfied, α =
f =⇒ dα = df . For (1), first observe that d(f + g) = df + dg. Then
for α =

∑
I∈Ik fIdxI and β =

∑
I∈Ik gIdxI ,

d(α + β) = d

(∑
I∈Ik

(fI + gI)dxI

)
=
∑
I∈Ik

d(fI + gI) ∧ dxI

=
∑
I∈Ik

dfI ∧ dxI +
∑
I∈Ik

dgI ∧ dxI

= dα + dβ .

Now let us check the generalized Leibniz rule (3) first. By additivity,
it suffices to prove for α = fdxI and β = gdxJ ,

d(fdxI ∧ gdxJ) =?

Start with k = 0. Then for every v ∈ TpU ,

d(fg)(v) = v · (fg) = f(v · g) + g(v · f) = (fdg + gdf)(v)
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where the second equality follows from the usual Leibniz rule. If con-
fused, note that v =

∑n
i=1 ai

∂
∂xi .

d(α ∧ β) = d(fdxI ∧ gdxJ) = d(fgdxI ∧ dxJ)
= d(fg) ∧ dxI ∧ dxJ
= (fdg + gdf) ∧ dxI ∧ dxJ
= gdf ∧ dxI ∧ dxJ + fdg ∧ dxI ∧ dxJ
= (df ∧ dxI) ∧ gdxJ + (−1)kfdxI ∧ (dg ∧ dxJ)
= dα ∧ β + (−1)kα ∧ β

Lastly, we check d2α = 0. Start with d2f
?
= 0.

d

(
n∑

i=1

∂f

∂xi
dxi

)
=

n∑
i=1

d

(
∂f

∂xi

)
∧dxi =

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
dxj

)
∧dxi = 0

Then for α =
∑

I∈Ik fIdxI ,

d2α = d(dα) = d

(∑
I∈Ik

dfI ∧ dxI

)
=
∑
I∈Ik

d(dfI ∧ dxI)

=
∑
I∈Ik

d2fI ∧ dxI −
∑
I∈Ik

dfI ∧ d(1dxI)

= 0

□

Proposition 21. Let φ : V → U be a diffeomorphism between open
subsets of Rn. Then d commutes with φ∗, that is for every α ∈ Ωk(U),

d(φ∗α) = φ∗(dα) .

Exercise. Check this for k = 0, f : U → R, φ∗df = d(f ◦φ) using chain
rule.

Proof. Note that φ∗ ◦ (φ−1)∗ = id, therefore, φ∗ is invertible and its
two-sided inverse is (φ−1)∗. We check that

Ωk(U) −→ Ωk+1(U) , k ≥ 0

α 7−→ (φ−1)∗d(φ∗α)

satisfies (0), (1), (2), and (3).

(0) (φ−1)∗d(φ∗f) = d((φ−1)∗φ∗)f = df by Exercise.
(1) (φ−1)∗, d, and φ∗ is additive.
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(2) (φ−1)∗d (φ∗(φ−1)∗d(φ∗α)) = 0
(3) Follows immediately from Leibniz rule for d and that φ∗ pre-

serves ∧.
By uniqueness,

(φ−1)∗d(φ∗α) = dα =⇒ d(φ∗α) = φ∗(dα)

□

Finally, we can define

d : Ωk(M) −→ Ωk+1(M)

Let {φi : Vi → Ui}i∈I be the defining maximal smooth atlas. Given
α ∈ Ωk(Ui) satisfying

(φj ◦ φ−1
i )∗αj|Uji

= αi|Uij
,

we can define a differential k + 1-form by patching together dαi ∈
Ωk+1(Ui), since

(φj ◦ φ−1
i )∗(dαj|Uji

) = d
(
(φj ◦ φ−1

i )∗αj|Uji

)
= d(αi|Uji

) = dαi|Uji

Exercise. Check (0)-(3) for d : Ωk(M)→ Ωk+1(M), k ≥ 0 that we have
just defined.

18.1. De Rham Cohomology. The cohomology of

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ . . .
d−→ Ωdim(M)(M)

d−→ 0

is defined to be H∗
dR(M).

Exercise 60. Check that this agrees with our definition of H0
dR(U) and

H1
dR(U) from lectures 1 and 2. □

After defining
∫
M
α, and proving Stokes’ theorem, we will follow the

outline,

• Step 1: Define a chain map∫
: Ωk(M) −→ C∗

sm(M ;R)

• Step 2: Prove that H∗(
∫
) is an isomorphism.

Exercise 61. Define the map
∫
: Ωk(M) −→ C∗

sm(M ;R). What is the
big theorem needed to prove that this is a chain map? □

Exercise 62. Read “Smooth Singular Homology”, pages 473-480 frın
Lee. Summarize its contents and its role in the proof of de Rham
theorem (you must have some idea what this theorem will say at this
point). □
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19. May 9, 2022: Manifolds with Boundary, Integration
of Differential Forms

We start by introducing manifolds with boundary. The local models
for manifolds with boundary are open subsets of Hn and Rn, where

Hn := {(x1, . . . xn)|xn ≥ 0} ⊂ Rn,

is called the half space. Note that we have int(Hn) = {xn > 0} and
∂Hn = {xn = 0}.

Recall that we call a function from a subset of an Euclidean space
smooth if it can be extended to a smooth map in an open neighbour-
hood.

Lemma 5. Let U and V be open subsets of Hn, if ϕ : U → V is a
smooth bijection with a smooth inverse, then it sends U ∩ (Rn−1×{0})
diffeomorphically to V ∩ (Rn−1 × {0}).

Proof. It suffices to show ϕ(U ∩ ({0} × Rn−1)) ⊂ V ∩ ({0} × Rn−1).
Assume that ϕ(u) = v and u ∈ int(U). Choose un → u with

ϕ(un) = vn ∈ int(U).
We have dϕ−1

vn ◦ dϕun = id. Letting n → ∞ and using C1-ness of ϕ
and ϕ−1, dϕu is an isomorphism.
Applying the IFT at u to ϕ|int(u) : int(U) → Rn, we find that v has

an open neighbourhood N(V ) inside Rn that lies in the image of ϕ and
hence inside V , so v ∈ int(V ).
This implies that if u /∈ int(U), then ϕ(U) /∈ int(V ) by applying the

result we just proved to ϕ−1.
□

Exercise 63. Define a smooth manifold with boundary using atlases.
Define the boundary of a smooth manifold with boundary and prove
that it is canonically a smooth manifold. □

We can define the following exactly as we did for manifolds:

• Tangent Bundle
• Cotangent Bundle
• Differential Forms
• Exterior Differentiation
• Partitions of Unity Subordinate to an Open Cover Specifically
we will need:M smooth manifold with boundary, V1, . . . , VN ⊂
M open sets =⇒ ∃ρi :M → R smooth such that:
(1) supp(ρi) ⊂ Vi
(2)

∑N
i=1 ρi(x) = 1
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• Orientation: A choice of continuously varying orientations of
TxM for all x ∈M .

Standart orientation on Hn ≡ standard orientation on Rn.

19.1. Integration of Differential Forms. We call a differential k-
form α on a manifold with boundaryM compactly supported if supp(α) =

{p ∈M |αp ̸= 0} is compact (or equivalently bounded).

Remark 27. Already forM = Rn if α is not compactly supported
∫
M
α

may not exist! □

Assume that M is n-dimensional oriented, and α ∈ Ωn(M) is com-
pactly supported (imagine M is compact first).

We will now define
∫
M
α ∈ R.

19.2. Step 1: Assume that α is supported inside the domain of a con-
nected coordinate chart (could be of either type), for example φ : V →
U . Then α = fdx1 ∧ . . . ∧ dxn in coordinates, where f : U → R is
compactly supported.

Define
∫
M
α := ±

∫
U
fdx1 . . . dxn, + if the orientation induced on

U is the same as the standard one, and − otherwise. We are using
ordinary Riemann integral for the right hand side, in particular the
symbol dx1 . . . dxn is really a place-holder.
Assume that φ′ : V ′ → U ′ is another such chart. Let ψ : φ(V ∩V ′)→

φ′(V ∩ V ′) be the transition map.
We know that α is supported inside V ∩V ′ and if α = f ′dx′1∧ . . . dx′n

on U ′, then f = (f ′ ◦ ψ)det(Jac(φ)).∫
U

f =

∫
φ(V ∩V ′)

f =

∫
φ(V ∩V ′)

(f ′◦φ)det(Jac(ψ)) = ±
∫
ϕ′(V ∩V ′)

f ′ = ±
∫
U ′
f ′.

Then
∫
M
α is well defined (signs work out exactly as needed).

20. May 12, 2022: Integration of differential forms
completed, Stokes theorem (statement)

Let Mn be oriented manifold with boundary (its boundary might be
empty) and let α ∈ Ωn(M) be compactly supported. We are trying to
define

∫
M
α ∈ R.

• Step 1: If α is supported inside the domain of a connected coor-
dinate chart, we did this. If α = fdx1 ∧ · · · ∧ dxn in coordinate
charts, then

∫
M
α := ±

∫
Rn f.

Partitions of Unity: Let V1, . . . , VN ⊂M be open subsets, then
there exist ρi :M → R such that
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(1) supp(ρi) ⊂ Vi
(2)

∑N
i=1 ρi(x) = 1, x ∈ ∪Ni=1Vi

Remark 28. We can also make some ρi ≥ 0 if we need it. □

Remark 29. Unless M is one dimensional with nonempty bound-
ary, we can find positively oriented subatlas. □

Now, back to the general task.

Figure 24

• Step 2: (General Case, definition)
Cover supp(α) with connected domains of coordinate charts

V1, . . . , VN with

ϕi : Vi → Ui

Choose a partitions of unity ρ1, . . . , ρN on ∪N
i=1Vi as above.

Define

∫
M

α :=
N∑
i=1

∫
M

ρiα

• Step 3: (General, well definedness)
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Let Ṽ1, . . . , Ṽn be another cover and ρ̃1, . . . , ρ̃n another parti-
tions of unity.

N∑
i=1

∫
M

ρiα =
N∑
i=1

∫
M

ρi(
n∑

j=1

ρ̃j)α (Why?)

=
N∑
i=1

∫
M

n∑
j=1

ρiρ̃jα

=
N∑
i=1

n∑
j=1

∫
M

ρiρ̃jα

=
n∑

j=1

N∑
i=1

∫
M

ρ̃jρiα

=
n∑

j=1

∫
M

ρ̃jα

Note that in the step from second to third line we changed the order
of summation and integration. This is possible because this can be
interpreted as doing the same operation for Riemann integrals inside
Ui.

This finishes the definition of
∫
M
α. Note that if we change the

orientation of M the integral gets negated.
This is a great definition but it is not good for computations.

Proposition 22 (Integration Over Parametrizations). Let M be a ori-
ented smooth n-manifold with or without boundary, and let w be a com-
pactly supported n-form on M . Suppose D1, . . . , Dk are open domains
of integration in Rn, and for i = 1, . . . , k, we are given smooth maps
Fi : Di →M satisfying

(1) Fi restricts to an orientation-preserving diffeomorphism from
Di onto an open subset Wi ⊆M :

(2) Wi ∩Wj = ∅ when i = j:
(3) supp(w) ⊆ W1 ∪ · · · ∪Wk.

Then ∫
M

w =
k∑

i=1

∫
Di

F ∗
i w

This is a statement directly taken from Lee. Domain of integration
means bounded and topological boundary is measure 0.
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Exercise 64. Define a nowhere vanishing differential two form α on S2.
Use it to orient S2. Compute

∫
S2 α.

Directly show that there is no β such that dβ = α □

20.1. Boundary orientation. Mn an oriented manifold with bound-
ary, then ∂M is canonically a smooth manifold (without boundary).

Claim 1. ∂M is canonically oriented.

Proof. Let x ∈ ∂M and V1, . . . , Vn−1 be a basis of Tx∂M .

We declare V1, . . . , Vn−1 to be positive if N, V1, . . . , Vn−1 is positive
for TxM , where N ∈ TxM is a strictly outward pointing vector in some
chart ϕ : V → U ⊂ Hn.

Figure 25

□

Exercise 65. Prove that this indeed defines an orientation. □

Theorem 10 (Stokes Theorem). Let Mn be an oriented manifold with
boundary, ∂M be oriented as above and α ∈ Ωn−1(M) compactly sup-
ported. ∫

M

dα =

∫
∂M

i∗∂Mα

Exercise 66. Carefully write down the four famous special cases from
Calculus of this theorem. Start with notations used in Calculus and
translate them into integrals of differential forms. □

Corollary 3. Let M be a manifold with boundary, Xk ⊂ M be a
compact and oriented submanifold (without boundary). Let α ∈ Ωk(M)
closed (dα = 0) and assume ∫

S

i∗Xα ̸= 0.

Then

(1) X does not bound a (k+1) dimensional submanifold with bound-
ary.
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(2) α is not exact (dβ, for some β ∈ Ωk−1(M))

□

Corollary 4. If Mn is a connected, closed (compact without boundary)
oriented manifold and α ∈ Ωn(M) is nowhere vanishing, then α is not
exact. □

Proof. Let’s prove that
∫
M
α ̸= 0 which finishes the proof by Stokes

theorem.

Let us cover M by domains of positively oriented connected coordi-
nate charts ϕ : Ui → Vi and choose partitions of unity ρ1, . . . , ρN with
ρi ≥ 0.

Write α = fidx1 ∧ · · · ∧ dxn, i = 1, . . . , N .

Each fi is either everywhere positive or everyhwhere negative on U .

We claim that all fi’s have the same sign. If Vi∩Vj ̸= 0, then fi and
fj have the same sign as both charts are positively oriented. We finish
by connectedness. Then∫

M

α =
N∑
i=1

∫
R⋉
ρifi ̸= 0

□

We will continue with the following proposition next time.

Proposition 23. Every oriented manifold Mn with boundary admits
a nowhere vanishing differential n-form.

21. May 16, 2022: Volume forms, Poincare duality in
deRham theory, proof of Stokes theorem

Let us start with the proof of the proposition from the end of last
lecture.

Proof. M admits a Riemannian metric g. For every x ∈ M , there is a
canonical element

volg,x ∈ ΛkT ∗M

such that if {e1, · · · , en} is an oriented orthonormal basis of TxM then

volg,x(e1, · · · , en) = 1.
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Exercise. Prove that this defines a nowhere vanishing differential n-
form. Explain how it is related to ds, dA, dV (line, surface/area, and
volume) elements from Calculus.

□

Corollary 5. If Mn is closed oriented manifold, then Hn
dR(M) ̸= 0. □

Theorem 11. If Mn closed oriented connected manifold. Then, we
have the isomorphism

Hn
dR(M)

∼−→ R

[α] 7→
∫
M

α

This is equivalent to showing that if
∫
M
α =

∫
M
β, then α and β are

cohomologous. Which in turn is equivalent to∫
M

α = 0⇔ α is exact.

As far as I know this does not have a simple proof.

Remark 30. There is a proof in Guillemin-Haine for going from a
slightly generalized version of this statement (using compactly sup-
ported forms) in the special case Rn to the general case and I do not
understand it. It is in the section ”Degree theory on manifolds.” □

This theorem is a special case of Poincaré duality. We will cover this
next year but here is an overview.

Let Mn be an oriented smooth manifold without boundary. We can
define H∗

dR,c(M) by considering compactly supported differential forms:

H∗(Ω0
cp(M)

d−→ Ω1
cp(M)→ · · · )

Here is the main statement

Theorem 12. There is a perfect pairing

Hk
dR(M)×Hn−k

dR,c(M)→ R,

([α], [β]) 7→
∫
M

α ∧ β.

Corollary 6. Hk
dR(M) ∼= (Hn−k

dR,c(M))V .
If M is closed, remove c. □

The canonical proof of this is very similar to the proof of deRham
theorem that we will give.
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ForM closed, there is also an approach called ”Hodge theory” (in the
historical account of Samelson from the website attributed to Volterra).

In this approach, one fixes a Riemannian metric g and finds canonical
(harmonic, notion depends on g) representatives of deRham cohomol-
ogy classes. These are differential forms which satisfy dα = 0 and
d∗ω = 0. Equivalently: for ∆ : dd∗ + d∗d “Laplacian”, ∆α = 0.

Harmonic differential forms are closed under multiplication by an
operator called Hodge star

∗ : Ωk(M)→ Ωn−k(M).

Concretely, ∆α = 0 =⇒ ∆ ∗ α = 0
Moreover,

∫
M
α ∧ ∗α ̸= 0 (α ̸= 0) implies the Poincaré Duality.

Finally, note that if Xk ⊂ M closed submanifold, then we obtain a
well defined element in (Hk

dR(M))V :

[α] 7→
∫
X

ixα

Under Poincaré duality, this must be given by some class inHn−k
dR,c(M).

One can construct a representation of this class as a Dirac delta form
located at X - Thom forms. This leads us to an approach to Intersec-
tion Theory of submanifolds using differential forms.
Back to proof of Stokes’ theorem:

Theorem 13. Let Mn be an oriented manifold with boundary and α ∈
Ωn−1(M) compactly supported.∫

M

dα =

∫
∂M

i∗∂Mα

Proof. We start with the case Mn = Hn. We can write

α =
n∑

i=1

fidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=⇒ dα =
n∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ . . . ∧ dxn

=⇒
∫
M

dα =
n∑

i=1

(−1)i−1

∫
Hn

∂fi
∂xi

(dx1 . . . dxn).

For the other side of Stokes theorem, we have∫
∂M

i∗α = (−1)n
∫
Rn−1×{0}

fn(dx1 . . . dxn−1)(2)

Exercise 67. Write a full proof of (2). □
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Exercise 68. Finish the proof of M = Hn case. Hint: You only need
Fubini’s theorem on integrals and Fundamental theorem of Calculus.
□

The proof of M = Rn is even easier and also left as an exercise.
Let us move on to the general case. Choose a partition of unity

ρ1, . . . , ρN which can be used in the definition of
∫
M
dα. Then ρ1

∣∣
∂M
, . . . , ρN

∣∣
∂M

can be used to define
∫
∂M

i∗α.

∫
M

dα =
N∑
i=1

∫
M

ρidα

∫
∂M

i∗α =
N∑
i=1

∫
∂M

ρi
∣∣
∂M
i∗α

=
N∑
i=1

∫
M

d(ρiα)

Exercise. Justify this step using the M = Hn and M = Rn cases.

Using Leibniz rule

∫
∂M

α =
N∑
i=1

(∫
M

ρidα +

∫
M

dρi ∧ α
)

=

∫
M

dα +

∫ ( N∑
i=1

dρi

)
∧ α.

Finally, note that the second summand is 0 since d(1) = 0. □

Exercise. Justify the commutativity of integral and summation that we
just did.

22. May 22, 2022: Proof of de Rham Theorem, part 1

LetM be a smooth manifold without boundary. Let us identify ∆k ⊂
Rk+1 with its image in Rk under the projection to last k coordinates.

Orient ∆k ⊂ Rk in the standard way. We can define a linear map∫
: Ωk(M)→ Ck

sm(M ;R)

α 7→

(σ : ∆k →M) 7→
∫
∆k

σ∗α


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Figure 26. Projection to last k coordinates

Claim: This is a chain map.

Proof. We need to show

dα 7→

(γ : ∆k+1 →M) 7→
k+1∑
i=0

(−1)i
∫
∆k

(γ ◦ facei)∗α

 .

In other words ∫
∆k+1

γ∗dα =
k+1∑
i=0

(−1)i
∫
∆k

(γ ◦ facei)∗α

Using Stokes theorem for the LHS, and working out the signs for the
RHS we can show that both are equal to∫

∂∆k+1

(γ|∂∆k+1)∗ α .

□

Theorem 14. (de Rham):
∫

: Ωk(M) → C∗
sm(M ;R) induces an

isomorphism on homology.

If for M this is true, let us call it a good manifold. We want to
prove that all manifolds are good. Note that empty set is good. It is
easy to see that goodness is preserved under diffeomorphisms.

Let us define a good cover M =
⋃
i∈I
Ui by open subsets as a cover

where each finite intersection
⋂
j∈J

Uj is good. Additionally, if {Ui}i∈I is

a basis of the topology we call {Ui}i∈I a good basis.
Here are the main steps:
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(1) All open boxes

(a1, b1)× . . .× (an, bn) ⊂ Rn

are good.
(2) If M has a finite good cover, then it is good.

There are two more steps:

(3) If Mi is good for i ∈ N , then
⊔
Mi is good.

(4) If M has a good basis, then it is good.

We end with:

(5) If U ⊂ Rn is open, U is good.
(6) All smooth manifolds are good.

Exercise 69. Deduce (5) and then (6) from (1)-(4). □

We will focus on (1) and (2). (3) is about following definitions cor-
rectly and figuring out correctly what is a direct sum and what is a
direct product. (4) relies on the fact that M admits on exhaustion by
compact domains,

K1 ⊂ K2 ⊂ ... ⊂M s.t⋃
Ki =M and Ki ⊂ int(Ki+1)

and uses (2) and (3).
The proof is short and cool. Please think about it and check with

Lee. (2) relies on the Mayer-Vietoris property for both deRham and
singular cohomology (next time). Today we focus on (1).

Lemma 6 (Poincaré Lemma). Hk
dR(Rn) = 0 for k > 0. Please check

that this implies (1).

Proof. We prove this by induction on dimension n. It is true for n = 0.
Let us define a h : Ωk(Rn)→ Ωk−1(Rn) as follows: for α =

∑
I∈Ik fIdxI

hαx :=
∑

I∈Ik,I(1)=1

(

∫ x1

0

fI)dxI(1) ∧ . . . ∧ dxI(k)

dhα =
∑

I∈Ik,I(1)=1

fIdxI(1)∧. . .∧dxI(k)+
∑

I∈Ik,I(1)=1,j>0

∂

∂xj
(

∫ x1

0

fI)dxj∧dxI(2) . . .∧dxI(k)

hdα =
∑

I∈Ik,I(1)>1

(

∫ x1

0

∂fI
∂x1

)dxI−
∑

I∈Ik,I(1)>1,j>1

(

∫ x1

0

∂fI
∂xj

)dxj∧dxI(2) . . .∧dxI(k)
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=⇒ dhα− hdα = α−
∑

I∈Ik,I(1)>1

fI(0, x2, .., xn)dxI

Writing this more concisely,

dhα− hdα = α− π∗ι∗α,

where ι : Rn−1 → Rn is the inclusion by setting the first coordinate to
0 and π : Rn → Rn−1 is the projection to the last n− 1 coordinates.

If α is closed,

d(hα) = α− π∗(closed k-form in Rn−1)

We finish using the induction hypothesis. □

The larger context for this statement is homotopy invariance maps
induced on deRham cohomology (similar to what we discussed for sin-
gular homology). The main point in establishing this is Cartan’s magic
formula Lvω = ιvdω + dιvω (next year).

23. May 23, 2022: Proof of de Rham Theorem, part 2

We start with some homological algebra.

Definition 55. A short exact sequence of a vector space is a diagram of
two linear maps defined as

V
f→ V ′′ g→ V ′

such that

(1) f is injective,
(2) ker(g) = im(f),
(3) g is surjective.

□

Definition 56. A short exact sequnce of cochain complexes is two chain
maps

A
F→ B

G→ C

such that for all n ∈ Z

An Fn

→ Bn Gn

→ Cn

is a short exact sequence. □
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A short exact sequence of cochain complexes look like this:
· · ·

0 An Bn Cn 0

0 An+1 Bn+1 Cn+1 0

· · ·

δn−1 δn−1 δn−1

δn

Fn

δn

Gn

δn

δn+1

Fn+1

δn+1

Gn+1

δn+1

All squares are commutative.

Lemma 7. A short exact sequence of cochain complexes A→ B → C
give rise to a long exact sequence:

. . .

Hn+1(A) Hn+1(B) Hn+1(C)

Hn(A) Hn(B) Hn(C)

. . .

where
cn : Hn(C)−→Hn+1(A)

are canonical maps called connecting maps.

Proof. Take α ∈ Cn cocyle (δα = 0). Find β ∈ Bn such that Gnβ =
α. We have Gn+1δβ = δGnβ = δα = 0 ⇒ ∃!γ ∈ An+1 such that
F n+1γ = β. We set cn([α]) = [γ]. □

Exercise. Check that δγ = 0, [γ] is independent of choices and the
resulting sequence is a long exact sequence.

We now construct the Mayer-Vietoris sequence for the deRham co-
homology.

Theorem 15. M smooth manifold. U, V ∈M open subsets. Then

Ω∗(U ∪ V )→ Ωk(U)⊕ Ωk(V )→ Ωk(U ∩ V )

α 7→ (ι∗Uα, ι
∗
V α)

(βU , βV ) 7→ ι∗βU − ι∗βV

is a short exact sequence of cochain complexes. Therefore we obtain
the long exact sequence
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Figure 27. f(σ) = 1 otherwise 0

. . . . . .

Hn
dR(U ∪ V ) Hn

dR(U)⊕Hn
dR(V ) Hn

dR(U ∩ V )

. . . −→ Hn+1
dR (U ∩ V )

Proof. Injectivity and the middle statement is easy to prove. It suffices
to show surjectivity. Let β ∈ Ωn(U ∩ V ). We need to find βU ∈
Ω(U), βV ∈ Ωn(V ) such that β = ι∗βU − ι∗βV . Choose ρU , ρV

(1) ρU + ρV = 1 on U ∪ V
(2) supp(ρU) ⊂ U, supp(ρV ) ⊂ V

βU,x :=

{
ρV (x)β, x ∈ U ∩ V
0, x /∈ supp(ρV )

, βV,x :=

{
−ρU(x)β, x ∈ U ∩ V
0, x /∈ supp(ρu)

These are easily seen to be smooth and we have β = ι∗βU − ι∗βV . □

Let us also briefly discuss the Mayer-Vietoris for singular cohomol-
ogy. Is the following

C∗(U ∪ V )→ C∗(U)⊕ C∗(V )→ C∗(U ∩ V )

a short exact sequence? Here surjectivity and middle slot is fine, but
injectivity is actually wrong! See Figure 27.

Let’s focus on the Mayer-Vietoris for singular homology. We have
an obvious exact sequence.

C∗(U ∪ V )→ C∗(U)⊕ C∗(V )→ C∗(U) + C∗(V )
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Figure 28. Baryocentric Subdivision Operator

Then, using bary-centric subdivision, we prove that C∗(U) + C∗(V ) ⊂
C∗(U ∪V ) induces isomorphism on homology. This takes serious effort
(see Hatcher for example for proof.)

Upshot for us: There exists canonical Mayer-Vietoris exact sequence.

Hn+1(U ∪ V ) Hn+1(U)⊕Hn(V ) Hn+1(U ∩ V )

Hn(U ∪ V ) Hn(U)⊕Hn(V ) Hn(U ∩ V )

. . .

where the connecting maps Hn(U ∩ V ) → Hn+1(U ∪ V ) do the
following:

Take f ∈ Hn(U ∩ V ). We need to define cnf(σ) ∈ R for a singular
cycle σ ∈ Cn+1(U ∪ V ) such that if σ is a boundary, we get zero.

If σ = σU + σV + boundary, we know that ∂σU + ∂σV = O. This
means that [∂σU ] comes from a class in Hn(U ∩ V ) [∂σU = −∂σV →
all summands of ∂σU needs to have images contained in V and hence
U ∩ V ]. Define cnf(σ) = f ([∂σU ]).

Exercise. Check independence under choices.

Proposition 24. The diagram

· · · Hn
dR(U)⊕Hn

dR(V ) Hn
dR(U ∩ V ) Hn+1

dR (U ∪ V ) · · ·

· · · Hn(U)⊕Hn(V ) Hn(U ∩ V ) Hn+1(U ∪ V ) · · ·

H(
∫
) H(

∫
) H(

∫
)

commutes.
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Proof. We focus only on the rightmost square of the diagram. The rest
is easy.

cn[α] = [patch together dαU and dαV to a closed form on U ∪ V ] = [β]

α = ι∗αU − ι∗αV

⇒ dαU agrees with dαV on U ∩ V .
We also write σ = σU + σV + boundary.
Below the expression

∫
σ∗β means

∫
β applied to σ.∫

σ∗β =

∫
σ∗
Uβ +

∫
σ∗
V β =

∫
∂σ∗

UαU +

∫
∂σ∗

V αV(3)

=

∫
∂σ∗

UαU −
∫
∂σ∗

UαV =

∫
∂σ∗

Uα(4)

□

Now we finish the proof of finite good cover ⇒ good.
Let us consider M = U ∪ V first.

· · · Hn
dR(U)⊕Hn

dR(V ) Hn
dR(U ∩ V ) Hn+1

dR (U ∪ V ) · · ·

· · · Hn(U)⊕Hn(V ) Hn(U ∩ V ) Hn+1(U ∪ V ) · · ·

∼= ∼= ?

Exercise 70. Prove by ’diagram chasing’ that the remaining arrows
have to be isomorphism as well. □

Remark 31. This is called the 5 Lemma. □

The general case M =
⋃N

i=1 Ui is handled by induction on N .

Note
(⋃N−1

i=1 Ui

)
∩ UN =

⋃N−1
i=1 (Ui ∩ UN) is a good cover as well!

⇒

(
N−1⋃
i=1

Ui

)
∩ UN is good.

Exercise 71. Apply the same argument with the Mayer-Vietoris se-
quences for U =

⋃N−1
i=1 Ui and V = UN and finish the proof. □


