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1. Jan 11, 2021: Definition of a smooth manifold via atlases,
examples

In this course, we will study smooth manifolds using techniques you learned in
calculus and ODE courses. We will be able think about the following sets (to begin
with) as smooth manifolds soon:

• The Euclidean space Rn of dimension n for n = 0, 1, 2, . . ..
• The unit sphere Sn−1 inside Rn, for n = 1, 2, . . ..
• The possible (visual) states of a meteroid in otherwise empty three di-
mensional Euclidean space at an instant. Note that meteoroids can have
different symmetry groups (a real life meteoroid will have none). You can
assume that we have a real life meteoroid in the questions below.

• The solution set of the complex polynomial x2 − y3 − 1 inside C2.
• The set of all two dimensional linear subspaces of R4.

Question 1. What should be the dimensions of these? Explain what you mean by
dimension. □

Question 2. Explain precisely how to equip each of these sets with a natural topol-
ogy. □

Remark 1. Note that here even when we say X inside Y is a smooth manifold, we
are only using Y to describe what X is. When we want to study X or do something
in X we can forget about the rest of Y (only if we want to of course). □

Informally, a smooth manifoldX of dimension n satisfies the following conditions:
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(1) X is locally Euclidean: the points“sufficiently near” any x0 ∈ X are canon-
ically determined by n coordinate functions (we refer to this as a coordinate
system at x0, the abstraction of “generalized coordinates” from mechanics
if you are familiar with that).

(2) X might be globally complicated, in particular the coordinate systems from
(1) do not necessarily extend to “large enough” neighborhoods. Note that
this has the immediate consequence of non-uniqueness of coordinate sys-
tems at some points.

(3) For any function f : X → R and x0 ∈ X, there is a well-defined notion of
f being k times differentiable at x0 defined using the coordinate systems
from (1). The non-uniqueness from (2) causes the resistance here.

Question 3. Make sure you understand what it means for a function Rn → R to
be k times differentiable at a point. □

If X satisfies these conditions, we can imagine “doing calculus” in X. If we
work inside the domain U of a particular coordinate system, then we are basically
inside Rn. Since we are not actually in Rn and we will have to change to a different
coordinate system when we leave U (as in (2)), we need the consistency in (3) to
make sure that what we did in U is also valid in the other charts.

Let us now move on to the formal definition of a smooth manifold. First, we
recall the notion of smoothness. Let U be an open subset in an Euclidean space,
then a function

f = (f1, . . . , fm) : U → Rm

is called smooth if all iterated partial derivatives of fi exist, for all i = 1, . . .m . If
V is an open subset of Rm, then U → V is smooth if U → V ⊂ Rn is smooth.

The following definition guarantees conditions (1) and (2) above.

Definition 1. A topological manifold of dimension n is a second countable, Haus-
dorff topological space such that every point admits a neighborhood homeomorphic
to an open subset of Rn. □

Question 4. Recall the meanings of Hausdorff and second countable. These condi-
tions are there to avoid certain pathologies and one could imagine removing them
from the definition, though we will always assume them in this course. □

Question 5. Prove that the topological spaces from the beginning of the class are
all topological manifolds. □

If X is a topological space, let us call an open subset U ⊂ X and a homeo-
morphism ϕ : U → Ũ , where Ũ ⊂ Rn is an open set, a coordinate chart (or just
chart). We can denote this chart by (U, ϕ). U is the domain of the chart, and the
components of ϕ : U → Rn are the coordinates or coordinate functions. The final
condition in the definition of a topological manifold says that every point in X is
contained in the domain of a chart.

Let (U1, ϕ1) and (U2, ϕ2) be two charts in a topological space X. We automati-
cally obtain a map

ϕ12 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)
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called the transition map from the chart (U1, ϕ1) to (U2, ϕ2). Note that the transi-
tion map goes from an open subset of an Euclidean space to an open subset of an
Euclidean space. Hence we know what it means for ϕ12 to be smooth.

Here is the key definition, which will take care of (3).

Definition 2. Let X be a topological manifold. A smooth atlas on X is a collection
of charts

{(Uα, ϕα)}α∈I

such that

•
⋃
α∈I Uα = X.

• The transition map between any two charts in the collection is smooth.

□

Remark 2. We declare that a map between two empty sets is smooth. This is true
by definition but if it makes you confused do not spend time with it. □

Question 6. Equip the topological manifolds from the beginning with smooth at-
lases. □

Let us now spell out how exactly we deal with (3).

Definition 3. Let X be a topological manifold with a smooth atlas {(Uα, ϕα)}α∈I .
A function f : X → R is k-times differentiable at x0 ∈ X if for some chart (U, ϕ)
at x0 in the smooth atlas, the map

f ◦ ϕ−1 : Ũ → R

is k-times differentiable. □

Question 7. Prove that this definition makes sense. □

Question 8. Look up the definition of a maximal smooth atlas from Lee. □

Here is our final definition.

Definition 4. A topological manifold equipped with a maximal smooth atlas is
called a smooth manifold. □

2. Jan 13, 2021: Smooth maps, smooth manifolds by gluing, tangent
bundle

We extend the notion of smoothness of maps between open sets of the Euclidean
space to smooth manifolds.

Definition 5. Let X and Y be smooth manifolds, and f : X → Y be a continuous
map. We say that f is a smooth map if for every chart (U, ϕ) in X and (V, ψ) in Y

such that f(U) ⊂ V , the map ψ ◦ f ◦ ϕ−1 : Ũ → Ṽ is smooth. □

Question 9. What should be the definition of a differentiable map between smooth
manifolds? □

Question 10. Consider the unit circle S1 as a topological space. Equip it with two
smooth atlases (i) with two charts whose domains are connected, and (ii) with three
charts whose domains are connected and such that no two cover S1. To define the
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Figure 1. An example of stereographic projection, which sends
P to P ′. The only condition to be able to define it is that E should
not contain Q.

coordinate maps use stereographic projections1 to straight lines in the plane (see
Figure 1).

Prove that if we did not require the smooth atlases to be maximal in the defi-
nition of smooth manifolds, a map S1 → S1 that is not even continuous could be a
smooth map using the previous definition. Here the source is equipped with smooth
structure (i) and the target with (ii). This would be problematic.

Finally, prove that the maximal smooth atlas of (i) and (ii) are the same, and
therefore that a non-continuous map cannot be smooth. □

Remark 3. Throughout this course, we will rarely work with maps between smooth
manifolds that are not smooth. The situation is similar to continuous maps and
topological spaces, but less strictly so. For most of our purposes it would be enough
to require a certain finite number of iterated derivatives to exist, but we would need
to say how many for every statement. We are just being super generous with our
differentiability condition to focus on the issues that are more central to differential
topology. The important point here is that there is a sufficient supply of smooth
maps, which we will more explicitly discuss next week. One consequence of this
generosity is that we will rarely have any function or map that is given by an
explicit formula, instead we will use that smooth functions/maps that satisfy some
conditions exist. □

We will soon introduce a number of important types of smooth maps but here
is a definition that is conceptually very important.

Definition 6. Let X and Y be smooth manifolds, and f : X → Y be a bijective
smooth map. If the inverse map f is also smooth, then we call f a diffeomorphism.
We also say that X and Y are diffeomorphic. □

To the eyes of differential topology diffeomorphic smooth manifolds are the same,
they are just obtained by giving different names to the elements of the set so to

1I mean this in the sense explained in the first paragraph of ”Generalizations” in Wikipedia
page for Stereographic projection
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speak. Yet, the choice of a diffeomorphism is still a choice, it is good practice
to mention the diffeomorphism that is witnessing the “sameness” of diffeomorphic
smooth manifolds.

Question 11. Let X be a topological manifold. Let S1 and S2 are two maximal
smooth atlases2 on X. Prove that the identity map X → X is a diffeomorphism if
and only if S1 = S2. □

Question 12. Consider the real line R as a topological space. Equip it with (i) its
“standard” smooth structure (ii) the smooth structure that admits a chart (U, ϕ)
with U = R and ϕ(x) = x3. Prove that (i) and (ii) are not the same smooth
structure, but they are diffeomorphic. □

We have been talking about the differentiability of maps between smooth man-
ifolds but not taking any actual derivatives. Note that the partial derivatives of a
function as we learned it in calculus courses depend on the coordinates that we were
given and we do not have such preferred coordinates in a general smooth manifold.
We have to develop the notion of the tangent bundle to get a head start. Then, we
will define the differential of a smooth map.

First, we need to deal with the case of open subsets of Euclidean spaces (ex-
tending to general smooth manifolds is not going to be difficult). If you remember
your multivariable calculus well, this is at best a reformulation of what you already
know.

Let U ⊂ Rn and V ⊂ Rm be open subsets, and f : U → V a smooth map. Then
the Jacobian matrix at a point p is the following matrix

Jacp(f) =


∂f1
∂x1

(p) · · · ∂f1
∂xn

(p)
...

. . .
...

∂fm
∂x1

(p) · · · ∂fm
∂xn

(p)

 .
We define the tangent bundle of an open set U ⊂ Rn as

TU := U × Rn,

which is an open subset of R2n. It is very important to be able to visualize points
of TU as a point p in U and a vector at p effectively.

We define the differential

df : TU → TV

of f : U → V (as above) by the formula

df(p, v) = (f(p), Jacp(f)v).

Question 13. Prove that if we have open subsets U ⊂ Rn, V ⊂ Rm, W ⊂ Rk and
smooth maps f : U → V and g : V →W , we have the following reinterpretation of
the chain rule

d(g ◦ f) = dg ◦ df.
You can use the multivariable calculus chain rule without proof. □

2we will also call this a smooth structure sometimes for brevity
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Question 14. Let v0 = (0, 1) ∈ T (−1, 1). Let γ : (−1, 1) → Rn be a smooth
map: a smooth trajectory of a point moving in the Euclidean space. Prove that
dγ(v0) is the velocity vector at time 0 of γ as defined in multivariable calculus.
Let f : Rn → Rm be a smooth map. Prove that the velocity vector at 0 of the
trajectory f ◦ γ is the image of the velocity vector at 0 of γ under the differential
df . Visualize all of this. □

Before moving to the general case, let us precisely explain where the name “tan-
gent bundle” is coming from. Even though we do not strictly know what this means
yet, imagine a smooth manifold embedded in some Euclidean space X ⊂ Rn, e.g.
Sn−1 ⊂ Rn works. One can think of the tangent bundle of the open subset U ⊂ Rn
as the set of all possible velocity vectors of trajectories in U . This is what the tan-
gent bundle of any smooth manifold is supposed to be. In particular, if we look at
trajectories constrained to lie in X ⊂ Rn, then we notice that the possible velocity
vectors are precisely the vectors at points of X which are tangent to X. In other
words, the tangent bundle is the union of all tangent (linear) spaces to X inside
Rn, e.g. tangent planes for S2 ⊂ R3. We will also use the phrase tangent space at
a point of our smooth manifold in what follows.

Question 15. Taking this as a definition momentarily, concretely describe TS1 as a
familiar shape. □

Question 16. Explain in words how you would define the differential of a smooth
map between two embedded smooth manifolds using velocity vectors. □

This describes the tangent bundle perfectly for smooth manifolds embedded in
an Euclidean space, but we do not have this data for a smooth manifold (it exists
by itself). What we need is a “gluing description”. We know what the tangent
bundle of the domain of a chart should be. We will just take all of these tangent
bundles and identify them with each other using the transition maps.

Gluing is in general a useful way of constructing smooth manifolds, so let discuss
it in general.

Proposition 1. Let Xα is a collection of smooth manifolds indexed by a countable3

set α ∈ I. We are also given open subsets Xαβ ⊂ Xα for any α ̸= β ∈ I, and
diffeomorphisms (gluing maps)

φαβ : Xαβ → Xβα.

These satisfy the following axioms:

(1) For every α ̸= β ∈ I, φαβ ◦ φβα = id.
(2) For every pairwise distinct α, β, γ ∈ I,

φαβ(Xαβ ∩Xαγ) ⊂ Xβα ∩Xβγ .

(3) For every pairwise distinct α, β, γ ∈ I, the cocycle condition holds: on
Xαβ ∩Xαγ , we have

φβγ ◦ φαβ = φαγ .

Under these assumptions, we can define the set

X :=
∐
α∈I

Xα/ ∼,

3this can be weakened
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where for α ̸= β ∈ I, a ∈ Xα and b ∈ Xβ, a ∼ b if ϕαβ(a) = b. Taking the disjoint
union topology on

∐
α∈I Xα, we can equip X with the quotient topology. Note that

we have open topological embeddings Xα → X.
Finally, if X is in addition Hausdorff, then X has a canonical smooth structure

such that the induced smooth structure on Xα is the given one.

Proof. The conditions (1)-(3) ensure that ∼ is an equivalence relation. Disjoint
union and quotient topologies are discussed in standard topology textbooks. Fi-
nally, clearly each chart in Xα produces a chart in X. The fact that the gluing
maps are diffeomorphisms imply that charts coming from different Xα’s in X are
compatible. □

Remark 4. Note that under condition (1), condition (2) is equivalent to: for every
every pairwise distinct α, β, γ ∈ I,

φαβ(Xαβ ∩Xαγ) = Xβα ∩Xβγ .

□

Question 17. Read the “Smooth manifold construction lemma” from Lee. Compare
the two statements. □

Question 18. Given an example of a gluing of two real lines where the resulting
topological space is not Hausdorff. □

We can use a compatible smooth atlas (not necessarily maximal) on a smooth
manifold to reconstruct it by gluing. Namely, the images of the domains of the
charts under the coordinate maps are the Xα’s and the transition maps are used
as the gluing maps. Note what we are gluing here are open subsets of Euclidean
space, which are in particular smooth manifolds.

Question 19. Make sure you understand this. □

Definition 7. LetX be a smooth manifold, which is obtained by gluing open subsets
Uα ⊂ Rn by the gluing maps ϕαβ : Uαβ → Uβα.

We define the tangent bundle TX as a smooth manifold by gluing the open
subsets TUα ⊂ R2n by the gluing maps dϕαβ : TUαβ → TUβα. □

Question 20. Check that the construction satisfies the conditions of gluing. □

Question 21. Construct the natural surjective smooth map TM → M . The fibers
of this map are the tangent spaces. Show that the tangent spaces have a canonical
real vector space structure. □

Remark 5. We will call TM →M a vector bundle within a couple of weeks. □

3. Jan 15, 2021: Brief answers to selected questions

Answer to Question 2:

• Rn is a metric space with

d(x, y) =
√
(x1 − y1)2 + . . .+ (xn − yn)2.

• We use the subspace topology.
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• Let us call this set S. Recall that a map R3 → R3 is called an isometry if
it preserves distances. Isometries act transitively on S. Hence, as a set we
have

S ≃ Iso(R3)/Stab(s),

where s ∈ S is an arbitrary state and Stab(s) is the subgroup of isometries
that preserve s. Stab(s) is the same as the symmetry group of the meteroid.
It therefore suffices to topologize Iso(R3).

This can be done in many different ways. Perhaps the most abstract way
is to note that Iso(R3) is a subset of the set of continuous maps from R3 to
itself, which has the compact open topology. Let us outline a much more
useful method which is based on actually understanding the isometries.

It is elementary to show that isometries send straight lines to straight
lines, and with a little bit more work that they are affine transformations
(composition of a linear map and a translation). Hence, as sets

Iso(R3) ≃ O(3)× R3,

where O(3) is the set of linear isometries. Of course, O(3) ⊂ R9 by rep-
resenting linear maps as matrices. This results in the same topology as
before.

It is possible to further analyze O(3). First, note that O(3) is the triv-
ial double cover of SO(3), the linear isometries that preserve orientation.
Euler’s remarkable theorem tells us that each such isometry is given by ro-
tation along an axis. Note that the set of axes is by definition the projective
plane RP2, and if we consider oriented axes we obtain S2. Therefore, we
have a surjective map

S2 × (0, 2π) → SO(3)− {id}.

All points have exactly two points in their preimage. Notice that by taking
a two point compactification of S2 × (0, 2π), we obtain S3 - think about
scanning the unit sphere S3 using parallel hyperplanes in R4, start with
lower dimensions. It is easy to see that this map can be extended to a
continuous map

S3 → SO(3),

where the two new points are both sent to the identity. Similar level of
difficulty is there to show that the map is a double covering map, which
identifies the anti-podal points. This shows that SO(3) is homeomorphic
to RP3!

There are more involved proofs of this fact using quaternions H. Namely,
one constructs a group homomorphism S3 → SO(Hp), where S3 is the
subgroup of unit quaternions, and Hp is the pure quaternions. You can
read this in Lemma 8.2.1 (click).

If you are still following, this is also a good time to understand the belt
trick. This answer (click) is pretty clear.

• We use the subspace topology.
• One way is to construct a transitive action of a matrix group as in the
third bullet point. Another way is to construct what is called the Plucker
embedding. We call the set Gr(2, 4). We will construct an injective map

Gr(2, 4) → RP5.

https://www.cis.upenn.edu/~cis610/geombchap8.pdf
https://physics.stackexchange.com/questions/516513/what-exactly-does-the-belt-plate-trick-demonstrate
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Take any pair of vectors that form a basis of the plane in question. Write
the vectors as the columns of a 4 × 2 matrix using the standard basis of
R4. For any pair i < j of elements in {1, 2, 3, 4}, define a number by taking
the determinant of the minor with i and jth rows. This way we obtain 6
numbers, which we use to define the map. It is a good exercise to check
that this map is well-defined and that it is an injection.

Here is a challenge question. Write down a quadratic polynomial in
the homogeneous coordinates of RP5 whose vanishing locus is the image of
Gr(2, 4).

This becomes more clear if you think of RP5 as the projectivization of
Λ2(R4), and the Plucker embedding as sending a basis v1, v2 to [v1 ∧ v2].
We will cover the linear algebra of these anti-symmetric tensors when we
start talking about differential forms.

Answer to Question 5:

• Trivial.
• Example 1.2 from Lee.
• This follows because S3 is a topological manifold.
• Let us call this set E ⊂ C2. Consider the projection to the x-coordinate

E → Cx.

Clearly, away from x = ±1, this is a 3 : 1 covering map. Therefore, we found
a chart at all points of E other than (±1, 0). If we use the y-projection we
cover those points as well.
E is a Riemann surface, more particularly an elliptic curve. It is homeo-

morphic to a punctured torus. Consider the projection to the y-coordinate
as above. This is what is called a branched cover. It has three critical val-
ues at the cube roots of −1. Now above any line segment connecting two of
these three points (and not intersecting any critical value in the interior),
there is loop of E. Use this to try to convince yourself that E is indeed a
punctured torus. You can also do this Riemann style, by taking two copies
of the plane, making branch cuts and regluing.

• Let P ⊂ R4 be a plane. Consider T (P ) ⊂ Gr(2, 4), which is the set of all
planes that are transverse to P . I claim that T (P ) is the domain of a chart,
in fact we will prove that it is homeomorphic to R4 in a very explicit way.

It suffices to show this for P = {x3 = x4 = 0} as the action of GL(4,R)
on Gr(2, 4) is clearly by homeomorphisms (potentially by definition) and
because this action preserves the transversality between planes.

It is elementary to show that any plane in T (P ) is canonically given by
two equations of the form x1 = f1(x3, x4) and x2 = f2(x3, x4), where fi are
linear functions. This finishes the proof as such equations are equivalent to
the choice of 4 real numbers as coefficients. To make this precise define the
map R4 → Gr(2, 4), which is clearly injective and continuous with image
T (P ), and check that the inverse map T (P ) → R4 is also continuous.

Answer to Question 6:

• Trivial.
• Example 1.20 from Lee.
• Use the smooth structure of S3.
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• We prove that the charts we constructed in the previous answer give a
smooth atlas. This boils down to showing the following. For any (x0, y0) ∈
E with x20 ̸= 1 and y30 ̸= 1, we can find a small enough neighborhood U
such that both x and y projections are coordinate maps for a chart. Then,
we obtain a map between the two projections Ux and Uy, and it suffices to
check that this map is a diffeomorphism. In one direction the map is given
by x 7→ y(x), where y(x) is a continuous solution of the equation

y(x)3 = 1− x2,

near x0 with y(x0) = y0. Inverse function theorem (or explicit computation)
shows the desired result. The other direction is similar.

• Probably the shortest way to solve this is to find the quadratic equation
from the answer to Question 2, and apply a similar strategy to the previous
item. One can also show that the charts we constructed in Question 5 give
a smooth atlas using some linear algebra. I will not write this down. See
Lee Example 1.24 for details (in the general case of k-planes in Rn).

Answer to Question 10: You could actually get away without doing any compu-
tation except Lee’s Example 1.20, but it’s also good if you got some practice with
stereographic projections.

Answer to Question 15: It is diffeomorphic to S1×R. Construct an explicit map
that better be a diffeomorphism.

Answer to Question 18: Take two copies of R and glue the two along the open
sets R − {0} in both copies using the identity map. In the resulting topological
space we have the images of the two origins. Show that these two points do not
have disjoint open neighborhoods.

Answer to Question 21: Here do not forget to prove that the vector space struc-
ture is independent of the chosen chart, which follows from the obvious linearity of
Jacobians.

4. Jan 18, 2021: Differential of a smooth map, submanifolds,
immersions, Lie groups and closed subgroup theorem

With the definition of tangent bundle under our belts, we can now define the
differential of a smooth map. First we give a definition that will help us talk about
coordinate charts.

Definition 8. Let X be a smooth manifold. A smooth map φ : U → X is called
a parametrization if U is an open subset of an Euclidean space, φ has open image
and is a diffeomorphism onto its image. □

Question 22. Show that a smooth map φ : U → X is a parametrization if and only
if it is injective and (φ(U), φ−1) is a coordinate chart. □

Proposition 2. Let f : X → Y be a smooth map between smooth manifolds. Then,
there is a canonical smooth map

df : TX → TY

with the following properties:
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(1) Let ϕ : U → Ũ be any chart of X and ψ : V → Ṽ be any one of Y such
that f(U) ⊂ V . Note that by construction of the tangent bundle we have

parametrizations TŨ → TX and T Ṽ → TY . Finally, let f̃ = ψ ◦ f ◦ ϕ−1 :
Ũ → Ṽ and df̃ be its differential as defined in the previous lecture. Then
the following diagram commutes:

T Ũ
df̃ //

��

T Ṽ

��
TX

df
// TY

This property uniquely determines df .
(2) The following diagram is commutative:

TX
df //

��

TY

��
X

f
// Y

Moreover, the induced map TxX → Tf(x)Y between tangent spaces is linear
for all x ∈ X.

(3) If Z another smooth manifold and g : Y → Z another smooth map, then
we have the generalized chain rule

d(g ◦ f) = dg ◦ df.

Proof. Let us prove (1). First of all, since the images of all parametrizations of

the form T Ũ → TX cover TX by the construction of TX4, there can be at most
one map TX → TY that satisfies this property. The given commutative diagram
determines what df should do on TU = im(T Ũ → TX).

What we need to show is that the maps defined in the subsets of the form TU
by this requirement are compatible to each other. To formulate this take a second
set of data: Φ : W → W̃ a chart of X and Ψ : P → P̃ be one of Y such that
f(W ) ⊂ P. Then, df is defined in two different ways on TU ∩ TW = T (U ∩W ),
and we want to prove that in fact these definitions agree with each other. First of
all the diagrams

Tϕ−1(U ∩W ) //

&&

TΦ−1(U ∩W )

xx
TX

Tψ−1(V ∩ P ) //

&&

TΨ−1(V ∩ P )

xx
TY

4Here we are also using the fact that domains of charts in X whose image under f is contained
in the domain of a chart in Y cover X. Hopefully, you are familiar with this by now.
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commute by construction of the tangent bundle. Of course, here the vertical maps
are the differentials of transition maps. Finally, note that

Tϕ−1(U ∩W )
df̃ //

��

Tψ−1(V ∩ P )

��
TΦ−1(U ∩W ) // TΨ−1(V ∩ P ),

also commutes, where the bottom horizontal map is the differential of the analogue
of f̃ and the vertical maps are the horizontal maps of the preceding two diagrams.
This last commutativity is because of the chain rule and the commutativity of the
diagram:

ϕ−1(U ∩W )
f̃ //

��

ψ−1(V ∩ P )

��
Φ−1(U ∩W ) // Ψ−1(V ∩ P ),

which is essentially by definition. □

Question 23. Prove parts (2) and (3) of the proposition. □

All we did here is to glue the differentials of the induced maps on the domains
of charts. You should not be put-off by the abstractness of the proof.

Question 24. Use the inverse function theorem to prove the following. Let X be
a smooth manifold, U an open subset of an Euclidean space, and φ : U → X is a
smooth map such that dϕu : TuU → Tφ(u)X is a linear isomorphism for some u ∈ U .
Then u has a neighborhood W ⊂ U such that φ |W :W → X is a parametrization.

□

In differential topology we will also want to study certain well-behaved subsets
of a smooth manifold, called smooth submanifolds. Just like the local model for a
smooth manifold was an Euclidean space, the local model for a submanifold inside
a manifold is a linear subspace of an Euclidean space.

Remark 6. If Z ⊂ X is a submanifold, then Z is naturally inherits the structure
of a smooth manifold, and it is sometimes helpful to call X the ambient space or
ambient manifold (especially we are going to be working inside X for a while). □

Definition 9. Let Xn be a smooth manifold, and Z ⊂ X be a subset. We call Z a
k-dimensional submanifold if for every z ∈ Z, there is a coordinate chart (U, ϕ) at

z inside X such that ϕ(U ∩ Z) is the intersection of Ũ with a k-dimensional linear
subspace of Rn. □

Question 25. Prove that Z is a topological manifold with the subspace topology.
Equip it with a smooth structure such that Z ⊂ X is a smooth map. □

Here is an important definition:

Definition 10. Let Z and X be smooth manifolds, and f : Z → X be a smooth
map. We call f an immersion if its differential is injective at every point of Z, i.e.
dfz : TzZ → Tf(z)X is injective for every z ∈ Z.

Let us also call charts of X as in this definition charts that are adapted to Z. □
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Question 26. Prove that the inclusion map of a smooth submanifold Z ⊂ X is an
immersion. □

On the other hand, it is not true that the image of an immersion is always a
submanifold. We can bridge the gap as follows.

Proposition 3. Let Z and X be smooth manifolds, and f : Z → X be an in-
jective immersion. Then, f(Z) is a submanifold if and only if Z → f(Z) is a
homeomorphism, where we use the subspace topology on f(Z).

The hard part of this result is to obtain adapted charts in X from the charts of
Z. This is a standard consequence of the inverse function theorem. We will come
back to it later.

Definition 11. Let Z and X be smooth manifolds, and f : Z → X be an injective
immersion, which is also a topological embedding (as in the previous proposition),
then we call f a smooth embedding. Note that f(Z) is a smooth submanifold under
this assumption. □

Remark 7. It might help to recall that by definition an injective continuous map
that is also closed or open is a topological embedding. Confusingly, the converse is
not true, just take any subset of a topological space that is neither open nor closed.

□

Question 27. Give an example of a non-injective immersion. Then, give an example
of an injective immersion whose image is not a submanifold. □

Recall that a continuous map between topological spaces is called proper if preim-
ages of compact subsets are compact. Any continuous map with compact source is
proper. Here is a less trivial lemma from topology.

Lemma 1. Let X and Y be topological spaces. Assume that Y is Hausdorff and
locally compact. Then, a proper continuous map X → Y is closed.

A slick proof of this lemma can be found in the chosen answer here. Note that
topological manifolds are locally compact (and Hausdorff of course).

We use this notion to give a more useful criterion.

Proposition 4. Let Z and X be smooth manifolds, and f : Z → X be an injective
immersion. Then, f(Z) is a submanifold which is also closed as a subset of X if
and only if f is proper.

Question 28. Prove this proposition using Proposition 3 and Lemma 1. You will
also use the basic fact (with cute proof) that if K is compact and Z is closed in
topological space X, then K ∩ Z is compact inside Z with subspace topology. □

Question 29. Give an example of submanifold that is not closed as a subset. □

Let us also squeeze in an important definition.

Definition 12. LetG be a smooth manifold which is equipped with a group structure
such that the multiplication

G×G→ G

and the inverse G→ G are smooth maps. We call such G a Lie group. □

https://math.stackexchange.com/questions/1604210/when-is-the-image-of-a-proper-map-closed
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Question 30. Define what it should mean for a Lie group to smoothly act on a
smooth manifold. Prove that GL(4,R) is a Lie group and its the action on Gr(2, 4)
is a smooth action. □

Here is an interesting result called the closed-subgroup theorem. We need to
know about the exponential map to prove it. I am pointing it out because it is of
a similar nature to our discussion today.

Proposition 5. Let G be a Lie group and H ⊂ G be a subgroup, which is also a
closed subset. Then, H is a submanifold, and with the induced smooth structure it
becomes a Lie group itself.

Question 31. Give an example of a subgroup of the torus R/Z × R/Z which is
not closed. Prove that it is not a submanifold, but is the injective image of an
immersion. Note that above you had found an example of this already (hopefully
not this one). What are the closed subgroups of the torus? □

Question 32. Give an alternative description of the smooth structure on SO(3)
using the closed-subgroup theorem. Deduce that SO(3) is a Lie group. □

Next time, we will prove the following theorem of Whitney.

Theorem 1. Any smooth manifold can be smoothly embedded inside RN for suffi-
ciently large N .

5. Jan 20, 2021: Consequences of second countability, cut-off
functions, partitions of unity, existence of Riemannian metrics,

weak Whitney embedding theorem

In this lecture, we introduce the notion of a partitions of unity that is important
in the theory of smooth manifolds. We then use related ideas to prove the existence
of a Riemannian metric on any smooth manifold, and also a weak version of the
Whitney embedding theorem.

A collection of subsets of a topological space X is called locally finite if for every
x ∈ X, there is an open neighbhorhood of x which intersects only finitely many
members of the collection.

Proposition 6. Let X be a smooth manifold, and assume that the collection of
open subsets {Uα}α∈I cover X. Then we can find another collection of open subsets
{Vα}α∈J with the following properties:

(1) J is countable.
(2) For every α ∈ J , there exists a β ∈ I such that Vα ⊂ Uβ.
(3) For every α ∈ J , Vα is the domain of a coordinate chart (Vα, ϕα) with the

image Ṽα being the open ball of radius 3 centered at the origin B3(0).
(4) For every α ∈ J , define Wα := ϕ−1

α (B1(0)). Then, the collection of open
sets {Wα}α∈J cover X.

(5) {Vα}α∈J , which automatically covers X, is locally finite.

Proof. I will omit the proof. Please see Lee’s Proposition 2.24 if you are interested.
□

Definition 13. Let us call a cover {Vα}α∈J with the properties (1), (3), (4), (5) a
regular cover. □
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Question 33. In case you have not done so already, prove that any open subset
of an Euclidean space is second countable. Find a more convenient necessary and
sufficient condition for a Hausdorff, locally Euclidean topological space to be second
countable. □

Question 34. Find a Hausdorff, locally Euclidean topological space for which Propo-
sition 6 does not hold. Prove that a Hausdorff, locally Euclidean topological space
which also has the property of satisfying Proposition 6 is second countable. □

Here is the second important input for partitions of unity. Recall that the support
supp(f) of a function f is the closure of the subset of points at which f does not
vanish.

Lemma 2. There exists a smooth function f : Rn → R with the following properties

(1) supp(f) ⊂ B2(0).
(2) f |B1(0) = 1.
(3) 0 ≤ f(x) ≤ 1 for all x ∈ Rn.

It is customary to call such functions bump functions.

Proof. The key is that we can construct a smooth function g : R → R, which
vanishes on R≤0, but is positive and increasing on R>0. Here is an example

g(x) =
0, for x ≤ 0
e−1/x, for x > 0

The smoothness is an easy consequence of the smoothness and decay of the expo-
nential function e−x. □

Question 35. Construct a bump function. For n > 1, you might find it convenient
to construct one that only depends on the distance from the origin. □

Remark 8. A special case of the Whitney extension theorem says that for any closed
subset C ⊂ Rn, there exists a smooth function Rn → R that vanishes precisely on
C. This becomes useful sometimes. Note that C can be wild, like the Cantor set.
□

Now, we are in a position to construct partitions of unity.

Definition 14. Let X be a smooth manifold, and assume that the collection of open
subsets {Uα}α∈I cover X. We call a collection of smooth functions

{fα : X → R}α∈I

a partition of unity subordinate to {Uα}α∈I if the following properties are satisfied.

(1) For every α ∈ I, supp(fα) ⊂ Uα.
(2) {supp(fα)}α∈I is locally finite.
(3) For every α ∈ I and x ∈ X, fα(x) ≥ 0.
(4)

∑
α∈I fα = 1.

□

Note that the sum in (4) makes sense because of (2). The name comes from (4),
where one should think of the RHS as the unit of the ring of functions on X. If you
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have a partition of unity, you can write any function q on X as a sum of functions
that are all supported on domains of coordinate charts:∑

α∈I
fαq = 1 · q.

More often though, you use partitions of unity to patch together locally defined
“things” to a global one. We will see an example soon.

Proposition 7. Let X be a smooth manifold, and assume that the collection of
open subsets {Uα}α∈I cover X. Then, there exists a partition of unity subordinate
to {Uα}α∈I .

Proof. First assume that {Uα}α∈I is regular. Let ρ be a bump function, satisfying
the properties in Lemma 2. Then define ρα via extending ρ ◦ψα : Uα → R by zero.
{ρα : X → R}α∈I satisfies all the properties but the last one. The last stroke is to
define

fα :=
ρα∑
α∈I ρα

.

In the general case, first use Proposition 6 to obtain {Vβ}β∈J . Using the previous
paragraph we find a partition of unity subordinate to {Vβ}β∈J , called {gβ : X →
R}β∈J . The only thing to fix is that this collection is not indexed by I.

We can choose a map a : J → I which satisfies the property that Vβ ⊂ Ua(β)
for every β ∈ J . We are using axiom of choice here. Finally, define

fα =
∑

β∈J ,a(β)=α

gβ .

□

We now give a typical application of partitions of unity.

Definition 15. Let X be a smooth manifold. A Riemannian metric on X is a
smoothly varying positive definite symmetric bilinear form on TxX for every x ∈ X.

□

Question 36. Give a rigorous definition of smoothly varying. □

We all know about the standard Riemannian metric on Rn defined using the
inner product of vectors. Let us call this the flat metric.

We will also need the following simple fact from linear algebra. Let V be a
real vector space, and g1(·, ·), . . . , gk(·, ·) positive definite symmetric bilinear forms.
Choose any k-tuple of non-negative real numbers a1, . . . , ak at least one of which
is positive. Then

a1g1(·, ·) + . . .+ akgk(·, ·)
is also a positive definite symmetric bilinear form on V .

Proposition 8. Every smooth manifold admits a Riemannian metric.

Proof. Let X be our manifold. Let {Uα}α∈I be a regular cover with partition of
unity {ρα : X → R}α∈I .

Note that using the flat metric on Euclidean space we obtain a Riemannian
metric gα on Vα. We define

gx(·, ·) :=
∑
α∈I

ρα(x)gα,x(·, ·),

for every x ∈ X. □
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We move on to the Whitney embedding theorem for compact smooth manifolds.
The non-compact case is not that much harder. If you are curious, it is in Lee.

Theorem 2. Let Xn be a compact smooth manifold. Then, X can be smoothly
embedded inside RN for sufficiently large N .

Proof. Using Proposition 6 and compactness, we find a regular cover {Ui}i∈I with
I = {1, . . . , k} for some positive integer k. Let us call the coordinate maps ϕi :
Ui → Rn.

Let us take a collection of functions {ρi : X → R}i∈I satisfying conditions (1),

(2) and (3) of Definition 14 and define ϕ̃i : X → Rn via extending ρiϕi
5 by zero.

We define a map X → Rkn+k via

x 7→ (ρ1(x), . . . , ρk(x), ϕ̃1(x), . . . , ϕ̃k(x)).

□

Question 37. Check that the final map is a smooth embedding. □

Remark 9. Notice that a smooth submanifold of an Euclidean space can be equipped
with a Riemannian metric by restricting the flat metric to the tangent spaces. It
turns out that any Riemannian metric on a smooth manifold X can be obtained
by embedding it into an Euclidean space and this restriction procedure. This is a
much more difficult theorem called Nash embedding theorem. □

Here is another nice property that an open cover of a smooth manifold can have,
which will be useful in studying the topology of smooth manifolds.

Definition 16. Let X be a smooth manifold, and assume that the collection of open
subsets {Uα}α∈I cover X. We call {Uα}α∈I good if it is locally finite and for any
finite subset J ∈ I, ⋂

i∈J
Ui

is either empty or diffeomorphic to an open ball. □

Question 38. Prove that the open unit ball in Rn is diffeomorphic to Rn. □

The proof of the following theorem is discussed here. See the accepted answer
which I think you might be able to follow (though it is not a problem if you cannot).

Theorem 3. Every smooth manifold admits a good open cover.

Finally, let us mention another result that can be proved with similar techniques.
Proof is in Lee Proposition 2.28.

Theorem 4. Every smooth manifold admits a proper smooth map to the real line.

Such a function is called exhausting. By looking at the preimages of intervals
[−m,m] withm→ ∞, we obtain a what is called an exhaustion by compact subsets.
You can also take the square of any exhausting function to obtain one which only
takes non-negative values. This usually makes things a bit more clear conceptually
as a non-compact smooth manifold can have any number of “ends” and the two
sides of the real line creates an artificial division between them.

5Here we are using the scalar multiplication action on Rn

https://mathoverflow.net/questions/102161/proving-the-existence-of-good-covers
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6. Jan 22, 2021: Brief answers to selected questions

Answer to Question 24: This follows immediately from the most standard ver-
sion of inverse function theorem once you pass to a smaller open neighborhood of u
whose image is contained in the domain of a chart in X. You will have to go to an
even smaller open neighborhood after using the inverse function theorem of course.

Answer to Question 25: Construct the charts of a smooth atlas by restricting the
domains of adapted coordinates charts to their intersection with Z and the targets
to the corresponding linear subspaces. It is trivial to see that the transition maps
are smooth (do spell it out fully though).

Answer to Question 31: If you take an irrational slope line passing through
the origin in R × R and project it to the torus, then you get a subset that by
construction is the image of an immersion γ : R → R/Z × R/Z, which is also
a group homomorphism. The image is clearly a subgroup. The irrational slope
assumption directly implies that γ is injective (look upstairs in the plane to what
non-injectivity would mean).

In order to show density, consider all the circles Ca := {a} × R/Z. It suffices to
prove that the intersection of the image of γ with Ca is dense in Ca for all a ∈ R/Z.
Irrational slope implies that these intersections are all of the form

{b+ qn mod 1 | n ∈ Z} ⊂ R/Z,
where b, q ∈ R and with q irrational. It suffices to prove the density for b = 0. In
that case, what we have is a subgroup of the circle and we are reduced to proving
that 0 is an accumulation point, which is equivalent to proving the existence of two
elements of {n ∈ Z | qn mod 1} ⊂ R/Z that are arbitrarily close to each other. I
will leave this final elementary step to you.

The closed subgroups are given by projections of the following subgroups in the
plane

• 0-dim: {nv1 +mv2 | n,m ∈ Z}, where v1, v2 are rational vectors.
• 1-dim: {nv1 +mv2 | n ∈ Z, a ∈ R}, where v1, v2 are rational vectors.
• 2-dim: The whole torus.

Visualize how these can look like.

Answer to Question 36: It is easy to see that in a chart a Riemannian metric is

given by n(n+1)
2 functions which are the entries of an n×n symmetric matrix. The

requirement is that in all charts these functions are smooth functions. You should
verify that it suffices to check this smoothness in a cover by charts.

Answer to Question 37: If you are not able to do this let me know. Our extra
requirement that ρi is equal to 1 on ϕ−1

i (B1(0)) (and that ϕ−1
i (B1(0)) cover X)

leads to a proof that does not require any computation.
Below are some additional questions.

Question 39. Prove that

{(x, y) | |x| = |y|, y ≥ 0} ⊂ R2

is not a smooth submanifold. Prove that there does exist a smooth proper injective
map R → R2 with image equal to this set. □
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Question 40. Prove that we can take N = 2n + 1 in the Whitney embedding
theorem for compact smooth manifolds. Do this by starting with the embedding
constructed above and projecting to carefully chosen hypersurfaces (until this is not
possible anymore). More precisely, if you are given a smooth embedding M → RN ,
and a hyperplane H ⊂ RN that is perpendicular to vector v, then what are the
conditions on v so that the the composition

M → RN → H,

where the last map is the projection map, is also a smooth embedding? Do some
dimension counting and argue that there should be an H satisfying these properties
as long as N > 2n+ 1. □

Remark 10. One can actually get the number to N = 2n by using the Whitney
trick (look up!). It is also possible to prove that the real projective plane does not
embed into R3, so this is the optimal general result. On the other hand RP2 does
immerse in to R3. The image of this embedding is called the Boy surface (look
up!). □

Question 41. Revisit the proof of the inverse function theorem. The most important
point is to figure out how the contraction mapping principle is used in the proof.
You might want to start by understanding how Newton’s method (iteration) works
for finding square roots (e.g. see the recursion here). □

Next week, we start with the constant rank theorem.

7. Jan 25, 2021: Constant rank theorem, submersions, fiber bundles,
fundamental results on ODE’s

We start with the ultimate application of inverse functions theorem to smooth
manifolds.

Theorem 5 (Constant rank theorem). Let U ⊂ Rn be open, and f : U → Rm be a
smooth map such that the rank of dfx : TxU → Tf(x)Rn is constant over all x ∈ U .
Then, for any x0 ∈ U , there exists coordinate charts (V, ϕ) at x0 and (W,ψ) at

y0 := f(x0) such that f(V ) ⊂W and the induced map Ṽ → W̃ is the restriction of
the map Rn → Rm:

(x1, . . . , xn) 7→ (x1, . . . , xr, 0 . . . , 0).

Proof. Let us denote the rank by r. By pre- and post-composing f with affine linear
isomorphisms we can assume (without loss of generality - why?) that Jacx0

(f) is
the matrix with r × r identity matrix as its principal minor of order r and all the
other entries zero.

Let us define a map ϕ : U → Rn by

x = (x1, . . . , xn) 7→ (f1(x), . . . , fr(x), xr+1, . . . xn).

It follows that Jacx0(ϕ) is the identity. Hence, we can find a ball neighborhood
U1 ⊂ Rn of (y0,1, . . . , y0,r, x0,r+1, . . . , x0,n) with an inverse map ϕ−1 : U1 → U,
which is a parametrization.

https://mathworld.wolfram.com/NewtonsIteration.html
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Consider the map g := f ◦ ϕ−1 : U1 → R:

U
f // Rm

U1

ϕ−1

``

g

==

By construction, for every x ∈ ϕ−1(U1), we have

g((f1(x), . . . , fr(x), xr+1, . . . xn)) = (f1(x), . . . , fr(x), fr+1(x), . . . fm(x)).

This implies that g is a map of the form

g((z1, . . . zn)) = (z1, . . . , zr, gr+1(z), . . . , gm(z)).

In particular,

Jacz(g) =

[
Idr 0
A(z) B(z)

]
,

for some family of matrices A(z) and B(z). Since ϕ−1 is a diffeomorphism onto its
image, the rank of Jacz(g) is also constant at r. This implies that

B(z) = 0, for all z ∈ U1.

This means that the functions gr+1, . . . , gn : U1 → R in reality are independent of
the last n− r coordinates, i.e. g is of the form

g((z1, . . . zn)) = (z1, . . . , zr, gr+1(z1, . . . , zr), . . . , gm(z1, . . . , zr)).

As a final step, define ψ : Rm → Rm by

(y1, . . . , yn) 7→ (y1, . . . , yr, yr+1 − gr+1(y1, . . . , yr), . . . ym − gm(y1, . . . , yr)).

Using the inverse function theorem once again, ψ is a diffeomorphism. Hence, we
have

U
f // Rm

ψ

��
U1

ϕ−1

OO

g

==

// Rm

The lower horizontal map by construction is of the form desired in the statement.
□

Most important special cases of this theorem are when the differential has full
rank:

• n = m = r (local diffeomorphism)
• r = n < m (immersion)
• n > m = r (submersion)

Remark 11. Note that the it is an open and dense condition on n×m matrices to
be of full rank. □

Question 42. Write down the constant rank theorem for smooth maps between
smooth manifolds and prove it using the local version above. □

Question 43. Give the proof of Proposition 3. □
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Definition 17. Let f : X → Y be a smooth map between smooth manifolds. For
x ∈ X, if dfx is surjective, x is called a regular point, if not it is called a critical
point. If y ∈ Y is the image of a critical point, it is called a critical value, otherwise
y is called a regular value.

If all x ∈ X are regular points, we call f a submersion. □

Question 44. Prove the regular value theorem using the constant rank theorem: if
f : X → Y is a smooth map between smooth manifolds and y0 is a regular value,
then f−1(y0) ⊂ X is a smooth submanifold. □

A special class of submersions are fiber bundles. Here is the definition:

Definition 18. Let p : E → B be a smooth map between smooth manifolds, and F a
smooth manifold. Then, p is called a fiber bundle with fiber F if every point b ∈ B
has a neighborhood U ⊂ B such that there exists a fiber preserving diffeomorphism
p−1(U) ≃ U × F . Here fiber preserving means that the diagram

p−1(U) //

p
##

U × F

proj.
||

U

commutes. □

Question 45. Prove that TM →M is a fiber bundle with fiber Rn. In fact, it is a
vector bundle, a bundle of vector spaces. You should be able to guess the definition
(if you don’t know already) and check this as well. □

Question 46. Prove that fiber bundles are submersions. □

It turns out that the difference between a submersion and a fiber bundle is not
that huge.

Theorem 6 (Ehresmann). Let p : E → B be a proper surjective submersion. Then
p is a fiber bundle.

The proof of this theorem is very nice and underlying it is a geometric concept
called an Ehresmann connection. This gadget allows you to lift tangent vectors
from the base to the total space. We will come back to this later in the course.

We finish by reviewing the fundamental results of ODE theory.
If U ⊂ Rn is open, a (smooth) vector field on U is a smooth map V : U → Rn,

equivalently a section of TU → U . Colloquially, a vector field is a choice of smoothly
varying collection of vectors at every point of U .

We are interested in the particle trajectories in U whose velocity at any time is
equal to the vector specified by V at the point it’s at. Finding such trajectories is
by definition solving the following ODE for γ : I → U , where I is a real interval:

γ′(t) = V (γ(t)),(1)

for all t ∈ I.

Remark 12. A special class of vector fields are linear ones, i.e. linear maps V :
Rn → Rn. You have studied such ODE’s in detail and it might be a good time to
remember what was going on there (you should have the full picture for n = 2). If
you had studied phase portraits of more complicated ODE’s by doing local analysis
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near the constant solution etc., you might want to connect what we will be doing
in this class with that as well. □

Theorem 7. • (existence) For every x0 ∈ U , there exists an ϵ > 0 such that
the ODE (1) has a solution γ : (−ϵ, ϵ) → U satisfying the initial condition
γ(0) = x0.

• (uniqueness) For any ϵ > 0, the initial value problem as in the previous
bullet point has at most one solution6.

• (smooth dependence on initial data) For every x0 ∈ U , there exists an ϵ > 0
and a neighborhood Ux0 ⊂ U of x0 such that the solution of the IVP with
initial condition γ(0) = x on the interval (−ϵ, ϵ) exists for all x ∈ Ux0 .
Moreover, the induced map

(−ϵ, ϵ)× Ux0
→ U

is a smooth map.

Question 47. Prove the following rectification theorem. Assuming that V (x0) ̸= 0,
one can find a coordinate system y1, . . . , yn at x0 such that V = ∂

∂y1
in the domain

of this coordinate system. □

Remark 13. We call the points where the vector field vanishes its singularities.
Finding a normal form near singularities is much more difficult. For example,
it is not true that every smooth vector field is equal to a linear one in a different
coordinate system if the coordinate change is required to be smooth. This is possible
using a continuous change of coordinates if the singularity is hyperbolic due to
Hartman-Grobman theorem, which is a non-trivial result. □

The main change of perspective in differential topology from a standard ODE
course will be to study the solutions of an ODE with all possible initial conditions
at the same time (rather than solving a single initial value problem). This leads to
the notion of the flow of a vector field. The well-definedness and good behaviour
of flows rely heavily on the smooth dependence on initial data property, which
may not have been at the forefront thus far in your thinking of the basic theory of
ODE’s.

8. Jan 27, 2021: Flow of a vector field, escape lemma, completeness
of a vector field

Let’s add the following to our vocabulary. If f : X → Y a smooth map and
v ∈ TxX for some x ∈ X, the vector

f∗v := dfxv ∈ Tf(x)Y

is called the push-forward of v.

Definition 19. Let X be a smooth manifold. A smooth section of TX → X is called
a (smooth) vector field. □

Question 48. Can you always push forward a vector field by a smooth map? Why?
How about a diffeomorphism? □

6note that for large ϵ it may have no solutions!
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Let us go through what it means to write a vector field on X in local coordinates.
This is mostly about notation. Note that if we take a chart (U, ϕ) on X, we obtain

a vector field on U by restriction, and one on Ũ = ϕ(U) ⊂ Rn by construction of
TX.

Let us call x1, . . . , xn the coordinate functions7 on the Euclidean space that Ũ
resides. Then, it is customary to denote the vector field on Ũ equal to (1, 0, 0 . . . , 0)
everywhere by ∂

∂x1
, (0, 1, 0, . . . , 0) everywhere by ∂

∂x2
and so on. We can think

about these constant vector fields also as living on U .
Notice that any vector field on Ũ can be written uniquely as

v1
∂

∂x1
+ . . .+ vn

∂

∂xn
,

for functions vi : Ũ → R, i = 1, . . . , n. In particular, any vector field on X can be
uniquely written in this form in the chart (U, ϕ).

Given a vector field V : X → TX, we can write down the following differential
equation for smooth maps γ : I → X:

(1) γ′(t) = V (γ(t)),

for every t ∈ I, where I is an interval inside the real line with coordinate t, where
γ′(t) := dγt

(
∂
∂t

)
. In coordinate charts this equation is the same as the one we

considered in the last class.
If we write V in a coordinate chart (U, ϕ) as above

V (x) = v1(x)
∂

∂x1
+ . . .+ vn(x)

∂

∂xn
, for all x ∈ Ũ ,

and denote the components of γ by γi in the same chart, the equation (1) is equiv-
alent to

γ′i(t) = vi(γ(t)), for i = 1, . . . n

which might be a more familiar form of an ODE (“a system of ODE’s”).
Solutions of the equation (1) are called integral curves. We know that for any

x0 ∈ X, there is an ϵ > 0 and an integral curve γ : (−ϵ, ϵ) → X satisfying γ(0) = x0.
Note that an interval can sometimes be extended to larger intervals in time. If it
cannot be extended we will call the integral curve maximal.

Question 49. Explain why the domain of a maximal integral curve should be an
open interval. Then using the same idea prove the following lemma. □

Lemma 3 (Escape lemma). Let X be a smooth manifold and V : X → TX be a
vector field. Assume that the domain of definition of a maximal integral curve γ
is not the entire real line. Then prove that the image of γ is not contained in a
compact subset of X.

We finally come to the fundamental theorem of flows.

7Great confusion is caused by denoting the coordinate functions and the coordinates of an

arbitrary point in Rn with the same symbols. This corresponds to the following: we usually

denote the value of the coordinate function xi at point x by xi. In the real line with coordinate
function x we sometimes make it even more confusing and denote the point which takes value x

under the coordinate function x by just x. All three objects would ideally get their own symbol.



LECTURE NOTES - MATH 215B (WINTER 2021) 25

Theorem 8. Let X be a smooth manifold and V : X → TX be a vector field. Then
there exists a unique subset U ⊂ R × X containing {0} × X and continuous map
Φ : U → X such that Φ(0, x) = x for all x ∈ X with the following properties:

(1) U ⊂ R×X is open.
(2) Φ : U → X is smooth.
(3) For any (t, x) ∈ U ,

dΦ(t,x)

(
∂

∂t

)
= V (Φ(t, x))).

(4) For any x ∈ M , Ix := U ∩ (R × {x}) ⊂ R is connected and the integral
curve of V given by

Φ(·, x) : Ix → X

cannot be extended to a larger interval (i.e. it is maximal).

Question 50. Make sure you really understand what is meant by the vector field
∂
∂t in R×X. □

I would suggest taking this as a black box for the time. This is not because the
proof is hard (see Theorem 17.9 in Lee.) As expected, the proof relies on the exis-
tence, uniqueness and the smooth dependence on initial data properties discussed
in the previous lecture. Your priority should be to understand the statement. Rig-
orous proof can wait, but its basic inputs should also be clear.

Definition 20. The map Φ : U → X from Theorem 8 is called the flow of the vector
field V . □

Question 51. Explicitly describe the flow (including its domain) of the vector fields
∂
∂x1

, x1
∂
∂x1

+ x2
∂
∂x2

and −x2 ∂
∂x1

+ x1
∂
∂x2

on the open unit disk in the plane with
coordinates x1 and x2. □

Remark 14. The picture in your mind should be clear: the points in the manifold
are all flowing (backwards and forwards in time) in the directions (and with speeds)
dictated by the vector field. The only tricky point is that the integral curves might
stop existing after some time. This last point is a common occurance, not just some
theoretical what if - just think about ∂

∂x on an open interval finite in either side in
the real line. If you want to come up with examples that look less clear, then use
that any connected open interval is diffeoemorphic to the real line. □

Question 52. Find a diffeomorphism [1,∞) → [0, 1) which sends the vector field
V (x) = x2 ∂

∂x to a constant one. Explain the “blowing-up” of the unique solution
of the IVP

x′ = x2 with x(0) = 1

in this light. □

Definition 21. Let X be a smooth manifold and V : X → TX be a vector field.
We call V complete, if the domain of definition of all maximal integral curves are
the entire real line. This is equivalent to saying that the flow of V is defined on the
entire R×X. □

Question 53. Prove that compactly supported vector fields are complete using the
Escape lemma. What does this say about vector fields on compact smooth mani-
folds? □
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The following actually is used in the proof of the fundamental theorem of flows,
so logically it is not entirely accurate to state it here, but conceptually it makes full
sense.

Proposition 9. Let X be a smooth manifold and V : X → TX be a complete
vector field. Then prove that the flow R×X → X of V defines a Lie group action
of R with its additive group structure on X.

This is a consequence of the uniqueness property of ODE’s and equation (1)
being autonomous, i.e. it does not matter at what time a particle starts out at a
point, its trajectory looks the same. More succintly, if γ(t) is an integral curve, so is
γ(t−∆) for any ∆, and it is the unique one with the initial condition γ̃(∆) = γ(0).

Remark 15. Of course, there is a statement for non-complete vector fields but it is
a bit confusing to state, so I omitted it. □

Question 54. Let X be a smooth manifold, V : X → TX be a complete vector field
with flow Φ : R×X → X, and define Φt := Φ(t, ·) : X → X. Prove that for every
time t, Φt is a diffeomorphism. Moreover, show that Φt preserves V . □

9. Jan 29, 2021: Brief answers to selected questions

Answer to Question 43: First of all, let me point out that the only if part of
this statement is utterly useless. Regardless, let us prove it. Assume that f(Z) is
a submanifold. It suffices to prove that Z → f(Z) is an open map. Let V ⊂ Z be

open. Let (U, ϕ) be any chart in X adapted to f(Z) such that Ũ is B1(0). Domains
of such charts cover f(Z), therefore, it suffices to show that U ∩ f(V ) is open in
f(Z). We will show that any x ∈ U ∩f(V ) has an open neighborhood W in X such
that W ∩ Z ⊂ U ∩ f(V ).

Take the z ∈ Z such that f(z) = x. Since f−1(U) is open, we can find a
neighborhood N of z such that f(N) ⊂ U . Consider the composition N → U →
B1(0) and note that by definition the image lies inside a linear subspace L in B1(0).
Moreover, this map is an immersion and therefore if we restrict the target to L,
i.e. consider the smooth map N → L ∩ B1(0), we see that the differential is an
isomorphism everywhere on N . Therefore the image of N → L ∩B1(0) is an open
subset of L∩B1(0) by the inverse function theorem. Take any open subset of B1(0)
whose intersection with L is the open subset of L ∩ B1(0) that we just produced,
and define its preimage under ϕ to be the desired W .

The main point of this proposition was of course the if direction. Here we need
the constant rank theorem. Let z ∈ Z and we need to produce an adapted to f(Z)
chart in X at f(z). The constant rank theorem gives us: (V, ϕ) at z and (W,ψ) at

f(z) such that f(V ) ⊂ W and the induced map Ṽ → W̃ is the restriction of the
map Rn → Rm:

(x1, . . . , xn) 7→ (x1, . . . , xn, 0 . . . , 0).

The chart (W,ψ) almost does job but what we don’t yet have is that W might be
intersecting Z at points that are not in the image of V . This is where we need
to use the topological embedding assumption. We will show that ψ(f(z)) has a

neighborhood N in W̃ such that N ∩ ϕ(f(Z) ∩W ) is contained in the image of Ṽ .
Assume otherwise, that there is a sequence of points in ϕ(f(Z)∩W ) converging

to ψ(f(z)) none of which are contained in the image of Ṽ . Move these points back
to X. They all lie in the image of f by choice. Now consider the continuous map



LECTURE NOTES - MATH 215B (WINTER 2021) 27

f (Z) → Z. These points on f(Z) converge to f(z) by construction, hence their
images need to converge to z by continuity. Therefore, some of them have to be
contained in V , which is a contradiction. Hence, there is indeed such an N .

To conclude, we easily check that the chart (ψ−1(N), ψ|ψ−1(N) is an adapted
chart by the choice of N .

Let’s also do Proposition 4 very quickly. If f(Z) is a closed submanifold, we
need to show that if K ⊂ X is compact, then f−1(K) is compact. This follows
because K ∩ f(Z) is compact in f(Z) by the closedness of f(Z) and Z → f(Z) is
a homeomorphism by the submanifoldness of f(Z) using Proposition 3.

Conversely, using the Lemma we immediately obtain that f : Z → X is a closed
map. We then use that a bijective continuous and closed map is a topological em-
bedding and Proposition 3 to conclude that f(Z) is a submanifold.

Answer to Question 44: For this one the constant rank theorem immediately
gives you an adapted to f−1(y0) chart in X at every point x of f−1(y0). We find

(V, ϕ) at x and (W,ψ) at y0 such that f(V ) ⊂W and the induced map Ṽ → W̃ is
the restriction of the map Rn → Rm:

(x1, . . . , xn) 7→ (x1, . . . , xm),

where n ≥ m. Also assume that W̃ is a ball. The image of V ∩ f−1(y0) under ϕ is
contained in the affine linear subspace of the form x1 = c1,. . .xm = cm, where ci
are constants.

Answer to Question 47: Choose a hyperplane H passing through x0 in the
Euclidean space that is transverse to V (x0). Let ϵ and Ux0 be as in the smooth
dependence on initial data property. Define the map

(−ϵ, ϵ)× (H ∩ Ux0
) → U,

by restricting the smooth map from again smooth dependence on initial data prop-
erty.

The Jacobian at x0 sends H to H by identiy and ∂
∂t to V (x0). Therefore, it is

a linear isomorphism. We now use Question 24 to get the coordinates y1, . . . , yn
with y1 being the t-coordinate. The conclusion is immediate as ∂

∂t is sent to V (x)
for all points in the domain of the parametrization by construction.

Answer to Question 49: Assume the contrary, that the image is contained in a
compact set K but also that the domain of definition cannot be extended say in the
positive direction past a ∈ R. Take a sequence of times t1, t2, . . . which monotoni-
cally converge to a from the left. By compactness γ(t1), γ(t2), . . . has a convergent
subsequence in K. We pass to that subsequence of times and keep the notation the
same. Let the accumulation point in K be p. We know that p has a neighborhood
U in X such that all integral curves starting inside U can be defined for some time
ϵ > 0. Let tN be so that a− tN < ϵ and γ(tN ) ∈ U . Since the integral curve passing
through γ(tN ) can be defined for at least ϵ time in the forward direction, we find a
contradiction using the uniqueness property of ODE’s.

Answer to Question 52: The map x 7→ x−1
x does the job.
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Answer to Question 54: We need to show that (dΦt)pV (p) = V (Φt(p)) for all
p ∈ X. Take an integral curve γ passing through p at time 0. Then, the group
property of the flow shows that Φt ◦ γ is the integral curve passing through Φt(p)
at time 0. The velocity at time 0 of Φt ◦ γ can be computed by being an integral
curve but also using the chain rule. This proves the desired equality.

10. Feb 1, 2021: Gradient vector field, directional derivative,
height normalized gradient vector field, fundamental theorem

of Morse theory

Today we will start talking about Morse theory but we first have to understand
the gradient of a real valued function (or just function) on a smooth manifold. The
first thing to stress is that it depends on a Riemannian metric as well. The usual
gradient of a function f : Rn → R is going to be a special case where we use the
flat metric, so keep that in mind as we go.

Let g be a Riemannian metric on a smooth manifold X. In a coordinate chart
(U, ϕ) with coordinates x1, . . . , xn, we can define the smooth functions

gij(x) := g

(
∂

∂xi
(x),

∂

∂xj
(x)

)
.

In other words, in this chart, the bilinear form g at x is given by the matrix
(gij(x))i,j∈[n] with respect to basis ∂

∂x1
, . . . , ∂

∂xn
. Let us define the inverse matrix

of (gij(x))i,j∈[n] by (gij(x))i,j∈[n]. This means that

n∑
k=1

gik(x)g
kj(x) := δij ,

where the RHS is the Kronecker delta symbol.

Remark 16. These type of tensor computations in coordinates really get much more
tractable with the Einstein conventions. It will not help us in this course so I will
not introduce it but if I used Einstein convention I would not have made the mistake
that I did (at least I would like to think so). □

Let f : X → R be a smooth function. We define in the chart (U, ϕ):

(1) gradgf(x) :=

n∑
j=1

n∑
i=1

gij(x)
∂f

∂xi

∂

∂xj
.

We can do this for every chart and we need to prove that they are compatible with
each other in the sense that they are sent to each other by the transition maps.

Question 55. First make sure you understand that the vector fields
∑n
i=1

∂f
∂xi

∂
∂xi

have no reason to be compatible across the charts. Then, check by direct compu-
tation that Equation (1) gives a well-defined vector field on X. □

The direct computation you just made shows that the vector field that you
obtain on Ũ using Equation (1) is independent of coordinates. Namely, once the

Riemannian metric is fixed no matter what coordinates you use on Ũ , Equation
(1) results in the same vector field. There is of course a better reason why this
mysterious looking expression is coordinate independent. This better reason comes
in the form of a coordinate free description.
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Definition 22. Let X be a manifold and x ∈ X. A covector at x is a linear map
TxX → R, which is by definition an element of the linear dual T ∗

xX := (TxX)∨.
A smoothly varying collection of covectors at every point of X is called a covector
field. □

Remark 17. Soon we will define the cotangent bundle T ∗X → X which is a vector
bundle whose fiber over every x ∈ X is T ∗

xX. □

We will now also explain the concept of directional derivative of a function with
respect to a tangent vector on a smooth manifold. This takes in a tangent vector,
a function and returns a real number, which measures the change in the function
in the direction of the vector. It does not require any extra data. Note that despite
its name it depends on the “magnitude” of the vector as well.

Definition 23. Let f : X → R and v ∈ TxX. Let V be any vector field that is
defined in a neighborhood U of x, which satisfies V (x) = v. Let γ : (−ϵ, ϵ) → U be
an integral curve of V such that γ(0) = x. We define

v · f :=
d

dt
f(γ(t)) |t=0 .

Note that the RHS is just a fancy way of writing the derivative of the function
f ◦ γ : (−ϵ, ϵ) → R at 0. □

This way of defining the directional derivative is the most intuitive, but not the
most practical. In particular, we need to show that v · f is independent of how the
extension V is chosen. Note that we have the differential df : TX → TR, and we
can find the canonical real number a (momentary notation) such that

dfxv = a
∂

∂y
,

where we called y the coordinate on R.

Question 56. Using the chain rule, prove that v · f = a. □

This in particular shows the independence on the choice of V . It is also clear
that v · f only depends on the restriction of f to an arbitrary neighborhood of x.

Proposition 10. Using the notation as in the proposition,

(1) The directional derivative operation is linear in the vector variable

(cv + w) · f = c(v · f) + w · f,
for any c ∈ R and w ∈ TxX.

(2) The directional derivative operation satisfies the Leibniz rule:

v · (fg) = f(x)(v · g) + g(x)(v · f).

Proof. (1) follows from the linearity of df . For (2), if v = 0 we are done, otherwise
choose some coordinates x1, . . . , xn near x such that v = ∂

∂x1
. Note that it easy

to find such coordinates by choosing an arbitrary one and then applying a linear
isomorphism. We can use V = ∂

∂x1
in the definition to check the equation.

Notice that v · f is nothing but the partial derivative of f at x with respect to
the x1 coordinate. This explains our arbitrary looking notation for constant vector
fields. The Leibniz rule follows from the Leibniz rule for partial derivatives from
calculus. □
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Definition 24. Let f : X → R, then we define a covector field, which is called df by
a slight abuse of notation as follows: for any tangent vector v, let df(v) := v · f. □

Question 57. Check that df is indeed a covector field. □

Remark 18. The abuse is slight because df is nothing but df : TX → TR thought
of as a covector field in the only way that is possible. The way I presented the
material might have hidden this a little but I hope you will unravel notation and
see this. I wanted to keep the directional derivative viewpoint in focus. □

Now given a Riemannian metric g, the gradient is defined using the following
equation of covector fields

g(gradgf, ·) = df.

Remark 19. This definition works because (and only because) g is non-degenerate.
A good way to express the non-degeneracy of a bilinear form β on a finite dimen-
sional vector space V is to say that the map β# : V → V ∨ given by

w 7→ β(w, ·)
is an isomorphism. Note that

w 7→ β(·, w)
being an isomorphism is an equivalent condition, even if β is not symmetric, anti-
symmetric etc. □

Question 58. Use the notation in the remark above. Fix a basis e1, . . . en of V ,
and let e1, . . . en denote the dual basis of V ∨. Let βij := β(ei, ej). Prove that the
matrix of β# : V → V ∨ in the bases fixed is exactly (βij)i,j∈[n]. □

Question 59. Compute gradgf in charts and prove that it agrees with our previous
definition. For notation, it might be helpful to define the local covector fields dxi,

which satisfy dxi

(
∂
∂xj

)
= δij , where the RHS is the Kronecker delta symbol. □

Question 60. Suitably interpret the following statement and prove it: gradgf is
perpendicular to the level sets of f . □

We can also prove that f is non-decreasing in the direction of gradgf . We have

gradgf(x) · f = df(gradgf(x)) = g(gradgf(x), gradgf(x)) =: |gradgf(x)|2 ≥ 0.

Clearly the singular points of gradgf are precisely the critical points of f , and
if we are at a regular point, f is strictly increasing in the direction of the gradient
vector field. Note that the gradient is not necessarily the direction that f increases
the fastest anymore.

Let us also introduce the notion of a height normalized gradient vector field

Vgf :=
gradgf

|gradgf |2
,

which of course is only defined on M − crit(f). The geometric interpretation of
Vgf is much more clean: it sends level sets to level sets as long as it is defined. The
advantage of the actual gradient vector field is that it is defined everywhere.

Lemma 4. Let f contain no critical values in the interval [a, b] ⊂ R. Take a point
on f−1(a) and assume that its forward flow under Vgf exists for time b−a. It ends
up at a point of f−1(b).
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Proof. Let γ : [0, b − a] → X be the integral curve in question. We compute the
derivative of the function f ◦ γ. This is of course just the directional derivative of
f in the direction of Vgf . We already computed the directional derivative of f in
the direction of the actual gradient vector field and found |gradgf(x)|2. By the
linearity of directional derivative, we find that the derivative of γ ◦ f is equal to 1!
This proves the result. □

Proposition 11. Let f contain no critical values in the interval [a, b] ⊂ R and
assume that f−1([a, b]) is compact. Then, the flow of Vgf takes f−1(a) to f−1(b)
diffeomorphically. In fact, we can naturally construct a diffeomorphism f−1(a) ×
[a, b] → f−1([a, b]) by following the flow.

Question 61. Prove this proposition. □

11. Feb 3, 2021: Height functions as examples, stable/unstable sets,
linearization of a vector field at a zero, non-degeneracy of a
critical point, stable manifold theorem for gradient vector
fields of Morse functions, change of level sets as we pass

through critical points

We start by developing some intuition using actual height functions on Euclidean
space. Consider a submanifold Z ⊂ Rn and let h : Z → R be the projection map
to one of the coordinate axes, say the first one. It is customary to imagine this
coordinate as in the up-down direction, so h gives the heights of the points in
Z. The critical points of h are precisely the points where the tangent spaces are
horizontal.

Recall that for such Z, we automatically obtain a Riemannian metric by re-
stricting the flat metric. At the critical points of h, we know that the gradient
vanishes and the height normalized gradient is not defined. At regular points, we
can describe the height normalized gradient as the canonical tangent vector that
is perpendicular to the level set that it belongs to and whose first coordinate is 1.
The gradient is the vector in the same direction with its lenght the inverse of the
length of the height normalized gradient.

Question 62. Take a donut and put it on the table as you normally would (1).
Then, hold it in up-right position with only one point of the donut touching the
table (2). Finally, always having only one point touching the table, slant it a
little bit (3). Each of these three positions desribe a height function on the torus
that is the surface of the donut. Find the critical points of the height function
for all three positions. Using the flat metric explain as much as you can about
what happens under the gradient and height normalized gradient flows - what are
different behaviors of the points on the torus, of level sets, sublevel sets...? We will
do part of this analysis systematically below, so the goal is to just get a sense. □

Let us give some standard definitions for general vector fields. Let V be a vector
field on X, and assume that V (x) = 0 for some x. Such points can be called
singularities, equilibrium points or just zeros. If V is the gradient vector field of a
function (for some metric), they are also the critical points of the function.

We call the set of points that converge to x in the forward direction the stable
set of x and the ones converge to x in the backwards direction the unstable set.
Precisely,
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SSVx := {y ∈ X | the maximal integral curve γ which is at y at time 0 exists for all

future times and satisfies γ(t) → x as t→ ∞}

USVx := {y ∈ X | the maximal integral curve γ which is at y at time 0 exists for all

past times and satisfies γ(t) → x as t→ −∞}

Remark 20. Note that if you move slightly from x to a point in the stable set
you end up coming almost back to x with the flow after sufficient waiting. This
explains the name stable set. The name unstable is less clear to me but if you
remember which one is called stable, you will remember the other. Note that if all
the nearby points to x belong to the stable set, then we recover the notion of a
stable equilibrium from the ODE courses. □

Remark 21. We would like the stable set and unstable set to be submanifolds.
They are not in general and the situation is quite complicated. If x is a hyperbolic
equilibrium point, they are images of injective immersions but not necessarily sub-
manifolds. Hyperbolicity condition comes up in the Hartman-Grobman theorem as
well. It is a simple condition, it means that the linearization of the vector field at
x does not have any eigenvalues with vanishing real part (naming is unfortunate).
It turns out that for gradient vector fields of Morse functions stable/unstable sets
of equilibrium points indeed are submanifolds! □

Question 63. Find a linear vector field in 2d with a non-hyperbolic isolated equi-
librium point. □

Question 64. Name a dynamical phenomenon that you see in arbitrary flows but
never in gradient flows. Bonus points if you can name two. □

Recall that the linearization of a vector field V : U → Rn at a singular point
x ∈ U , where U is an open subset of Rn is given by the vector field

dVx : TxU → TV (x)Rn,

noting that both the domain and target of this map is equal to Rn.

Definition 25. We call a singular point/equilibrium point/zero of a vector field
non-degenerate if its linearization at any chart has only an isolated zero. □

We will soon see a coordinate invariant description of the linearization of a
vector field at a singularity. This of course means that, suitably interpreted, the
linearization on charts do not really depend on the coordinates, but we do not need
this fact for the definition. It is easier to see that the non-degeneracy is independent
of the choice of coordinates.

Definition 26. We call f :M → R a Morse function if all of the singularities of its
gradient vector field are non-degenerate. This is independent of the choice of the
Riemannian metric. □

Question 65. Go back to the height functions on the torus above and decide which
of the critical points are non-degenerate in all three cases. Conclude that only two
positions give Morse functions. □
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Definition 27. Consider a non-degenerate critical point x of f , the type of x is a
pair of integers (s, u) defined as follows. Consider the Hessian of f at x in any
coordinate chart. This is a symmetric matrix and non-degeneracy implies that it
has no 0 eigenvalues. Therefore it is diagonalizable and all of its n eigenvalues are
either positive or negative real numbers. We define s to be the number of negative
eigenvalues, and u is the number of positive ones (both counted with multiplicities).
Note that s+ u = dim(X). □

Again, we will give a better definition of this notion soon. It will then be clear
that in fact the tangent space at a critical point is split into one s dimensional and
one u dimensional transverse subspaces

TxX = T sxX ⊕ TuxX.

We will not prove the following difficult theorem. The proof can be found in
Banyaga-Hurtubise “Lectures on Morse homology”.

Theorem 9. Let X be a compact smooth manifold with a Riemannian metric g, f
a Morse function on X and x a critical point of f . Then, the stable set of gradgf
at x is the image of a smooth embedding T sxX → X sending 0 to x and tangent to
T sxX. The analogous statement for the unstable set is also true.

It also follows that the non-empty intersections of SSx − {x} with level sets are
s−1 dimensional spheres. One can also show that SSx−{x} intersects transversely
with all the level sets. We will talk about transversality next time. Here and in
what follows an omitted superscript in the notation of the stable/unstable sets
mean that we are talking about the gradient vector field that is being considered
at the time.

Question 66. Go back to the two Morse height functions on the torus and analyze
the stable/unstable manifolds of each critical point. □

Proposition 12. Let X be a compact smooth manifold with a Riemannian metric
g and f a Morse function on X. Assume that f contains a single critical value
in the interval [a, b] ⊂ R at c ∈ (a, b) with (for simplicity) a single critical point
x ∈ f−1(c). Then, the flow of Vgf defines a continuous map from f−1(a) to f−1(c)
as follows:

• We really just follow the flow in the complement of f−1(a)∩SSx. This part
of the map is a diffeomorphism onto f−1(c)− {x}.

• f−1(a) ∩ SSx, which is an embedded s− 1 dimensional sphere in f−1(a) if
s ≥ 1 and empty otherwise, is mapped to x entirely.

There is an analogous statement for going from b to c with the backwards flow.

So colloquially, as we go from a to c the only interesting thing that happens
is that a sphere contracts to the critical point, and as we go from c to b another
sphere grows from the critical point. To really analyze this in sufficient detail, we
would need to study handle attachments and consider what happens to the sublevel
sets f ≤ a as we pass through critical points. I will not do this as we have many
other things to cover. It can be done as in here http://math.uchicago.edu/~may/
REU2019/REUPapers/Bohm.pdf, which seemed like a quite clear exposition to me.

One statement that would not be difficult to make is that up to homotopy
equivalence, f−1(c) is obtained from attaching an s dimensional cell onto what is
called the attaching sphere f−1(a) ∩ SSx.

http://math.uchicago.edu/~may/REU2019/REUPapers/Bohm.pdf
http://math.uchicago.edu/~may/REU2019/REUPapers/Bohm.pdf
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Question 67. Go back to the up-right Morse height function on the torus and
analyze the changes in level sets. Start from −∞ and go to ∞. □

Remark 22. Two dimensional handle attachments are easy but I have to warn you
that they can be quite complicated in higher dimensions. Attaching spheres are
simple as manifolds, but they can be embedded in very complicated ways. □

Next week, we will discuss transversality of submanifolds and clean up some of
the mess from above. We will introduce the notion of pair (f, g) being Morse-Smale.
We will define a chain complex generated by the critical points of a Morse-Smale
pair which computes the singular homology of the manifold. To end our discussion,
we will prove the Morse inequalities.

12. Feb 5, 2021: Brief answers to selected questions

Answer to Question 55: Below I used half-baked Einstein summation conven-
tions. Ajk denotes the inverse matrix of Ajk and the sums are over the repeated
indices.

Let Φ(x) = y be a change of coordinates (i.e. a transition function). Let us
denote the Jacobian matrix by Jij . Then we have that the vector field

∑
ai

∂
∂xi

in

y coordinates (can think of it as the push-forward vector field) is∑
Jij(ϕ

−1(y))aj(ϕ
−1(y))

∂

∂yi
.

Also note that in y coordinates the components of the (inverse matrix of the)
Riemannian metric are

gij(y) =
∑

Jki(ϕ
−1(y))gkl(ϕ−1(y))Jjl(ϕ

−1(y))

and for the partial derivatives we have

∂f

∂xi
(ϕ−1(y)) =

∑
Jij(ϕ

−1(y))
∂(f ◦ Φ−1)

∂yj
(y),

or in the other direction∑
Jji(ϕ−1(y))

∂f

∂xi
(ϕ−1(y)) =

∂(f ◦ Φ−1)

∂yj
(y),

We need to therefore analyze∑
j

Jij(ϕ
−1(y))gjk(ϕ−1(y))

∂f

∂xk
(ϕ−1(y))

∂

∂yi
.

Inserting an identity (and omitting the arguments)∑
Jijg

mjJmlJ
ln ∂f

∂xn

∂

∂yi
.

A slight rearrangement and using the above equations about how the metric
tensor and partial derivative functions transform:∑

Jmlg
mjJijJ

ln ∂f

∂xn

∂

∂yi
=
∑

gli(y)
∂(f ◦ Φ−1)

∂yl
(y)

∂

∂yi
,

which is the desired expression.
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Answer to Question 59: By testing with the vectors ∂
∂xi

, one easily gets

df =
∑ ∂f

∂xi
dxi.

Using the previous question’s simple linear algebra we get the desired expression.
Note that we are using the inverse of β# in that question’s notation when going
from a covector to vector (from df to gradgf).

Answer to Question 61: Strictly speaking, we did not develop the notion of a
manifold with boundary so you cannot really answer this question. On the other
hand, you can define the map

f−1(a)× [a, b] → f−1([a, b])

using the flow and check that it is an embedding (injective immersion, which is a
topological embedding). Definitions should (and will) work out so that this is a
diffeomorphism onto its image.

Answer to Question 63: The vector field generating rotation of the plane is an
example.

Answer to Question 64: Periodic orbits, homoclinic orbits.

13. Feb 8, 2021: Transversality, Sard’s theorem, parametric
transversality theorem, vector bundles, transition functions,

constructions of vector bundles, cotangent bundle, cleaning up
the definitions of linearization and non-degeneracy from earlier

Today, we will start with two fundamental notions: transversality of submani-
folds and constructions of vector bundles from old ones, in particular of cotangent
bundle from the tangent bundle. Then we will clear up the definition of the lin-
earization of a vector field and non-degeneracy.

Let’s start with transversality. We call two linear subspaces W,W ′ of a vector
space V transversal if

W +W ′ = V.

Note that this can only happen if

dimW + dimW ′ ≥ dimV,

and in that case transversality is an open dense condition in the space of pairs of
subspaces of the given dimensions.

Two submanifolds Z and Z ′ of a smooth manifold X in turn will be called trans-
verse if at each intersection point they locally look like two transversely intersecting
linear subspaces as above. As a special case: if

dimZ + dimZ ′ < dimX,

then this means that Z and Z ′ should not intersect. Now without any assumptions
on dimensions, we expect Z and Z ′ to intersect transversely generically, but at this
point this is more a heuristic than a mathematical statement.

It becomes useful give a definition of transversality that is slightly more general.
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Definition 28. Let Z,Z ′ and X smooth manifolds; and f : Z → X and f ′ : Z ′ → X
be smooth maps. We say that f and f ′ are transversal to each other if for every
z ∈ Z and z′ ∈ Z ′ such that f(z) = f ′(z′) = x,

im(dfz) + im(df ′z′) = TxX.

If f and f ′ are transversal we write f ⋔ f ′. Finally if Z and Z ′ are submanifolds,
we call them transverse if their inclusion maps are transverse and if this is the case
write Z ⋔ Z ′. □

Question 68. Explain what it should mean for a smooth map f : Z → X to be
transverse to a submanifold Z ′ ⊂ X. This is denoted by f ⋔ Z ′. □

Proposition 13. If Z ⋔ Z ′ are submanifolds of X, then every x ∈ Z ∩ Z ′ admits
a chart (U, ϕ) such that ϕ(U ∩Z) and ϕ(U ∩Z ′) are intersections of two transverse

linear subpaces with Ũ .

Question 69. Prove this proposition. Start with a chart adapted to Z. Then,
working inside the corresponding open subset of the Euclidean space, consider the
projection of Z ′ to the linear subspace given by its tangent space at x. Use the
inverse function theorem to get an inverse map. Extend this to a parametrization
using transversality to finish (you will need to use inverse function theorem again).

□

Proposition 14. Let f : Z → X be transverse to a submanifold Z ′ ⊂ X. Then
f−1(Z ′) ⊂ Z is a submanifold.

Question 70. Prove this proposition. Start with an adapted chart and find a way
to use the submersion theorem. □

Remark 23. We have the following generalization. Let Z,Z ′ and X smooth mani-
folds; and f : Z → X and f ′ : Z ′ → X be smooth maps such that f ⋔ f ′. Define
the fiber product of Z ×X Z ′ ⊂ Z × Z ′ as

{(z, z′) | f(z) = f ′(z′)} ⊂ Z × Z ′.

It can be shown that Z ×X Z ′ is a smooth submanifold of Z ×Z ′. You will need a
“diagonal trick” to relate this to the proposition above.

Note that we obtain a diagram of smooth manifolds and smooth maps (how?):

Z ×X Z ′ //

��

Z ′

��
Z // X,

which is a pull-back diagram. □

A very important aspect of transversality of submanifolds is to learn how to make
sense of and take advantage of our accurate heuristic that it generically holds. The
main theorem here is Sard’s theorem.

Theorem 10. If f : X → Y is a smooth map, then critv(f) ⊂ Y is of measure
zero.

Question 71. Prove that f is transverse to the submanifold {y} ⊂ Y iff y is a
regular value. □
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Remark 24. This has a generalization to maps between Banach manifolds (replace
Euclidean spaces with Banach spaces) called the Sard-Smale theorem. □

The proof of Sard’s theorem is difficult but nice and elementary. I will take it
as a blackbox here. Here is how to make Sard’s theorem useful. It is called the
parametric transversality theorem.

Theorem 11. Let S,X, Y, Z be smooth manifolds, F : S ×X → Y and g : Z → Y
be smooth maps. Assume that F ⋔ g, then for s ∈ S, F (s, ·) : X → Y is transverse
to g if and only if the s is a regular value of the projection map

(S ×X)×Y Z → S.

Question 72. Explain how Question 71 is a special case of this theorem. □

Note that Sard’s theorem applies directly to the latter condition! Hence, we get
that the desired transversality holds for all but a measure zero set of parameters
s ∈ S. In most applications g is just the inclusion of a submanifold. The proof of
parametric transversality theorem is easy but I would not worry about it for now.
It is much more important to understand the statement.

Let us now shift gears and talk about vector bundles. First recall the definition.

Definition 29. Let p : E → B be a smooth map between smooth manifolds. Assume
that each fiber of p is equipped with the structure of a real vector space. Then, p
is called a vector bundle if there is a finite dimensional real vector space V such
that every point b ∈ B has a neighborhood U ⊂ B such that there exists a fiber
preserving fiberwise linear diffeomorphism p−1(U) ≃ U × V . Here fiber preserving
means that the diagram

p−1(U) //

p
##

U × V

proj.
||

U

commutes.
Such a map p−1(U) ≃ U ×F is called a local trivialization. The dimension of V

is called the rank of the vector bundle. □

Question 73. In case you were wondering: prove that if V is a smooth manifold with
a smooth finite dimensional real vector space structure, then V is diffeomorphic by
a linear map to an Euclidean space. When we say V is a real vector space in this
lecture, this is what we mean. □

We can think of vector bundles as obtained by gluing local trivializations using
transition functions. This means the following. Let {Uα}α∈I be an open cover of
B and V be a vector space. Assume that we are given smooth maps

tαβ : Uα ∩ Uβ → GL(V ),

for every α, β ∈ I satisfying .......

Question 74. Fill in the blank. This is similar to the smooth manifold construction
lemma above but it is simpler. Why is it simpler? □
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Then, we can construct a vector bundle over B via the formula⋃
α∈I

Uα × V/ ∼,

where (x, v) ∼ (y, w) if x = y in B and w = tαβ(x)v.

Question 75. Go back to our construction of the tangent bundle and observe that
it was actually constructed as a vector bundle. Show that every vector bundle has
such a gluing description. □

Now let E → B be a vector bundle defined with a cover {Uα}α∈I and transition
functions tαβ : Uα ∩ Uβ → GL(V ). Let W be any other vector space and assume
that we have a group homomorphism

Ψ : GL(V ) → GL(W ).

Then we obtain a new vector bundle using the transition functions

Ψ ◦ tαβ : Uα ∩ Uβ → GL(W ).

An example of such a Φ is obtained taking transpose and inverse

GL(V ) → GL(V ∨) → GL(V ∨).

Note that the composition is indeed a group homomorphism, as each map is an anti-
homomorphism. The resulting bundle is called the dual vector bundle E∨ → B.

Question 76. Prove that the fiber over b ∈ B in E∨ → B is canonically isomorphic
to the dual vector space of the fiber over b in E → B, i.e.

E∨
b = (Eb)

∨.

□

Finally we have our cotangent bundle

T ∗X := (TX)∨.

Covector fields are sections of the cotangent bundle.
Note that there are other similar ways to construct new vector bundles out of

old ones. Here is another example.

Question 77. If E → B and E′ → B are vector bundles, then construct the Whitney
sum vector bundle E⊕E′ → B whose fibers are canonically isomorphic to the direct
sum of the fibers:

(E ⊕ E′)b = Eb ⊕ E′
b.

□

The total space of every vector bundle p : E → B contains a canonical submani-
fold ZE called the zero section. This is the image of the map that sends every point
in B to the 0 element of the fiber above it. We can also talk about the zeros of an
arbitrary section s : B → E, which are b ∈ B such that s(b) lies in the zero section.

At an arbitrary point e ∈ E, we have the vertical subspace

ker(dpe) ⊂ TeE.

Question 78. If V is real vector space, then for every v ∈ V , we have a canonical
isomorphism TvV = V . Prove this and use it to show that if p(e) = b, then the
vertical subspaces is canonically isomorphic to the vector space Eb. □
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Figure 2. A local picture of how the tangent space splits at a
point on the zero section. Also note how at the zero of a section
we obtain a map TbB → Eb.

If e ∈ ZE , it is the image of the zero section map z : B → E for some point
b ∈ B, and therefore, in addition we have the horizontal subspace

im(dzb) ⊂ TeE.

Question 79. Prove that the horizontal and vertical subspaces at a point in the
zero section are of complementary dimension and they intersect at one point (zero).
Hence, they split the tangent space. In particular, we have a canonical projection
map to the vertical subspace. □

Definition 30. Let V be a vector field on X and assume V (x) = 0 for x ∈ X. Note
that the vertical subspace at (x, 0) is canonically isomorphic to TxX. Therefore,
we have a map

TxX → T(x,0)(TX) → TxX.

This composition is the linearization of V at x. □

Question 80. Check that this recovers the previous definition. □

Definition 31. Let us call a section of a vector bundle E → B non-degenerate if it
is transverse to the zero section as a map. □

Question 81. Prove that this recovers the previous notion of non-degeneracy for a
vector field. □

Definition 32. Let us call f : X → R Morse, if df is a non-degenerate section of
the cotangent bundle. □

Question 82. Prove that this also agrees with our previous definition. You might
want to start by proving that a Riemannian metric g on X defines a vector bundle
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isomorphism and in particular a diffeomorphism

g# : TX → T ∗X.

We had already used the # symbol for turning a bilinear form on a vector space
into a linear map from the vector space to its dual. That is what you should be
doing fiberwise. Note that we can compute the differential of this map on the zero
section easily. Use the splittings of the tangent space of the total space at the points
of the zero section to express the result. □

14. Feb 10, 2021: Existence of Morse functions, Morse-Smale
functions, moduli space of gradient flow lines and its

compactification, Morse cohomology, examples

We know that a function f : X → R is Morse if the image of the covector field
df : X → T ∗X is transverse to the zero section. We expect this to be generically
true and the way to actually realize our expectation is as follows.

We will construct a family of smooth functions on X:

F : S ×X → R,

where S is a smooth manifold so that the corresponding family of covector fields

S ×X → T ∗X

is transverse to the zero-section. Then, we will get using the parametric transver-
sality theorem and Sard’s theorem that for all but measure zero s ∈ S we have that
Fs is a Morse function.

Question 83. Construct this “large” family of functions for compact X. Take a
regular cover of X and use cut-offs of coordinate functions. □

Let X be a compact smooth manifold, f a Morse function and g a Riemannian
metric. Let x be a critical point of f . We have the linearization of the gradient
vector field at x: Lx : TxX → TxX. We know that Lx is an isomorphism. We can
also prove that Lx is self-adjoint with respect to gx:

g(Lx·, ·) = g(·, Lx·).

Question 84. Prove this by recalling the definitions. We have the map TxX → T ∗
xX

obtained from x being a zero of the section df : X → T ∗X. This map can be thought
of as a bilinear map

Hx : TxX × TxX → R.
If you compute this bilinear map in coordinates you will see that it is given by
the Hessian of f at x in those coordinates. Hence Hx is a symmetric bilinar form.
Finish by noticing that by definition g(Lx·, ·) = Hx(·, ·), and symmetricity of g. □

So now the spectral theorem tells us that Lx admits an eigenbasis with positive
and negative real eigenvalues. This leads to the promised decomposition:

TxX = T sxX ⊕ TuxX,

where T sxX is the span of negative eigenvectors and TuxX the positive ones. We can
also easily see that the type (sx, ux) of x gives the dimensions of T sxX and TuxX.
Let us recall the stable submanifold theorem in light of all this.
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Theorem 12. Let X be a compact smooth manifold with a Riemannian metric g,
f a Morse function on X and x a critical point of f . Then, the stable set of gradgf
at x is the image of a smooth embedding T sxX → X sending 0 to x and so that the
induced map T0(T

s
xX) = T sxX → TxX is the defining inclusion. The analogous

statement for the unstable set is also true.

Let us start calling such a pair (f, g) a Morse pair.

Definition 33. We call a Morse pair (f, g) on a smooth manifold X Morse-Smale,
if all unstable manifolds intersect transversely with all stable manifolds. □

Remark 25. There is a sense in which Morse-Smale pairs are generic as well but I
will not further explain this. In fact it turns out that given a Morse function, it is
generic for a Riemannian metric to give a Morse-Smale pair. □

Question 85. Show that the height function of the tilted torus gives an example of
a Morse-Smale pair, whereas the up-right one fails to satisfy this property. □

Proposition 15. For a Morse-Smale pair (f, g) on compact Xn, and two critical
points p ̸= q, we have that the intersection USp and SSq is empty if up + sq ≤ n.
If up + sq > n, then the intersection is a submanifold of dimension

(up + sq)− n = sq − sp ≥ 1,

which could be empty.
In the latter case, moreover, the flow defines an action of R on USp ∩ SSq. We

define
M(p, q) := USp ∩ SSq/R

and equip it with a smooth structure as in the next paragraph, assuming USp ∩SSq
is not empty.

Take a regular value c ∈ (f(p), f(q)). The intersection of USp∩SSq with f−1(c)
is canonically identified with M(p, q). On the other hand, this intersection is trans-
verse, and hence it is a submanifold of f−1(c) and has a canonical manifold struc-
ture. Finally, the smooth structure on M(p, q) does not depend on the choice of c
inside M(p, q).
M(p, q) is called the moduli space of gradient flow lines from p to q.

Question 86. Understand and prove this. □

Question 87. For the tilted torus compute the moduli space of flow lines for all
possible pairs of critical points. □

Proposition 16. For a Morse-Smale pair (f, g) on compact X, and two critical
points p ̸= q such that sq − sp = 1, M(p, q) is compact. This means that it is just
a finite number of points.

Proof. Recall that M(p, q) is diffeomorphic to the intersection of USp ∩ SSq with
f−1(c) for any regular value c ∈ (f(p), f(q)), which is a zero dimensional submani-
fold of f−1(c). This implies the claim because f−1(c) is compact. □

Remark 26. Note that a positive dimensional submanifold of a compact smooth
manifold is not necesarily compact (or equivalently closed). □

Definition 34. For a Morse-Smale pair (f, g) on compact X, we define the Morse
cochain complex over Z/2 as follows. We take a vector space CM∗(f, g) with a
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basis whose elements are in one to one correspondance with the critical points of
f . The grading is given by

p 7→ sp.

The differential is defined by the following formula

dp =
∑

sq−sp=1

#2M(p, q)q.

□

That d2 = 0 follows from the next proposition and classification of 1 dimensional
manifolds with boundary.

Proposition 17. For a Morse-Smale pair (f, g) on compact X, and two critical
points p ̸= q such that sq − sp = 2, M(p, q) can be compactified to a 1 dimensional
manifold with boundary. The added points correspond in a one-to-one fashion to
once broken gradient flow lines from p to q.

The proof is tricky and interesting, but hopefully you have some basic picture
of what is going on. We will not have time to cover it.

Question 88. Expand the terms in d2p and use this proposition to prove that it is
zero. □

Question 89. For the tilted torus compute the compactified moduli space of flow
lines from the minimum to maximum. There should be 8 boundary points corre-
sponding to the 8 broken flow lines. The interior should be a disjoint union of four
open intervals. Make sure you can see all of this on a clearly drawn picture. □

Theorem 13. The homology of CM∗(f, g) is isomorphic to singular cohomology
of X with Z/2 coefficients.

Remark 27. As you can imagine this is also a difficult theorem. It is most trans-
parent to relate Morse cohomology with cellular homology, but there are many
approaches. Historically, Morse theory was already around in the 50’s but the
Morse cohomology viewpoint emerged only in the beginning of 80’s with the work
of Witten. This was through the study of certain simple supersymmetric quantum
field theories, and was quite indirect. It was Floer who developed the theory in the
form I explained. He went on to use this framework to invent Floer theory. This
theory is extremely influential in symplectic geometry and gauge theory. □

Question 90. Check the theorem for the tilted torus. Try out higher genus surfaces
as well. □

Question 91. Construct two Morse-Smale pairs on S2, one where there are 2 critical
points and another where there are 4. Go through everything you analyzed for the
tilted torus in both cases. □

Corollary 1. A Morse function on a compact smooth manifold has at least the
dimension of H∗(M,Z/2) many critical points.

Question 92. Prove this using the theorem. □

Remark 28. If you are interested, you can try to define the Morse cohomology over
Z. You will need to count gradient flow lines with signs, i.e. you need to orient the
moduli spaces of gradient flow lines. Of course arbitrarily doing this will not work,
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you need to do it coherently. One way is to arbitrarily orient unstable manifolds
(which automatically orients stable manifolds) and use that data to orientM(p, q)’s.
The result ends up being isomorphic to singular cohomology with Z coefficients. □

15. Feb 12, 2021: Brief answers to selected questions

Answer to Question 73: Choose a basis v1, . . . , vn of V . We can then construct
canonically a smooth map, ψ : Rn → V , by

(a1, . . . , an) 7→ a1v1 . . . anvn.

Make sure you understand why this map is smooth. ψ is also clearly a linear iso-
morphism. This is not enough to conclude, we do not know if ψ is a diffeomorphism
yet! We will first show that the map dψ0 is injective. Note that this implies that
it is an isomorphism, because dimV ≤ n using the surjectivity of ψ and Sard’s
theorem.

Using the chain rule this is equivalent to the map V → T0V defined by

v 7→ γ′v(0),

where γv : R → V , γv(t) = t · v, being injective.
Assume that γ′v(0) = 0. Then, we claim that γ′v(t0) = 0 for all t0 ∈ R. Note that

(t0+ t)v = t0v+ tv. This means that the composition of γv with addt0v is γv(t0+ ·).
The velocity of the latter at 0 is γ′v(t0). Therefore, by the chain rule we have

γ′v(t) = (daddtv0)0(γ
′
v(0)),

which proves the claim. Hence, we get that γv(1) = 0, which implies that v = 0.
It is elementary to finish from here. We need to show that in fact dψa is injective

for all a ∈ Rn. This follows from the chain rule, linearity of ψ and that adding a
vector is a diffeomorphism for both Rn and V .

Answer to Question 76: For every Uα containing b, we obtain such an identifi-
cation automatically as for E we glue V ×Uα and for E∨ we glue V ∨ ×Uα. What
you have to do is to realize that relationship of the transition functions makes sure
that these identifications are compatible.

Answer to Question 83: First of all, I actually could not make my hint work in
the non-compact case without more machinery. Assuming compactness (you can
do too), we start with a regular cover and consider functions ϕi, i = 1, . . . , N ,
which are cutoffs of squares of all coordinate functions shifted by 10 in all charts.
Consider the family of functions

RN ×X → R,

which is given by (a, x) 7→
∑
aiϕi(x). We need to show that the induced family of

covector fields

Φ : RN ×X → T ∗X,

is transverse to the zero section. For this take a point (a, x) that maps to the zero
section. We know that x is contained in the inner (radius 1) part U of a chart.
There are n of the functions ϕi, which are equal to (x1 − 10)2, . . . (xn − 10)2 on U



44 UMUT VAROLGUNES

where x1, . . . , xn are the coordinate functions. Say these are the first n functions.
Now, we have that

(a+ (b, 0, . . . , 0), x) 7→ (x,

n∑
i=1

bi(2xi − 20)dxi).

Note that 2xi − 20 ̸= 0 and hence using our freedom to choose b we hit all the
covectors in T ∗

xX. It is also easy to see directly that one can choose a curve of b’s
at 0 for time 0 whose image under Φ has velocity vector any given vertical vector
in T ∗X. This shows that all the vertical vectors are in the image of dΦ(a,x), and
finishes the proof.

To get the non-compact case people use the Whitney embedding theorem and
consider their large family as the family of functions which are of the form d(y, ·)2,
where y is an arbitrary point in the Euclidean space. You can look at Theorem 6.6
of Milnor’s famous book for the proof.

16. Feb 17, 2021: Tangent vectors as derivations at a point, vector
fields as derivations on the algebra of smooth functions, Lie

bracket, Lie algebra of a Lie group

Recall that we defined the directional derivative operation above. This took in a
smooth function and a tangent vector and produced a real number which measures
the change of the function in the direction of the vector. If you write in coordinates,
this really is the directional derivative from calculus but we gave a coordinate free
definition:

v · f = df(v).

We also know that directional derivative satisfies the Leibniz rule and is R-linear
in both variables. There is a converse to this. Let us denote the R-algebra of
smooth functions on a smooth manifold X by

C∞(X,R).

Lemma 5. Let L : C∞(X,R) → R be an R-linear map, which satisfies the Leibniz
rule at x ∈ X: for any ϕ, ψ ∈ C∞(X,R),

L(ϕψ) = ϕ(x)L(ψ) + L(ϕ)ψ(x).

Then, there exists a unique v ∈ TxX such that for any ϕ ∈ C∞(X,R)

L(ϕ) = v · ϕ.

Question 93. Show that L vanishes on constant functions. □

Proof. First, note that if ϕ vanishes in a neighborhood U of x, then L(ϕ) = 0. To
see this take a smooth function ρ which is 1 on X − U and is zero in a smaller
neighborhood of x. We have ϕ = ρϕ, which proves the claim using the Leibniz rule.
By linearity, we get that if ϕ and ψ are the same in a neighborhood of x, then L
sends them to the same number.

Let us prove the lemma when X = Rn and x = 0. The key to this is the following
weak Taylor expansion property. For any ϕ ∈ C∞(Rn,R), there exists real numbers
a, b1, . . . , bn and f1, . . . , fn ∈ C∞(Rn,R) such that fi(0) = 0 for all i = 1, . . . , n and

f = a+
∑

bixi +
∑

xifi,
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where x1, . . . , xn are the coordinate functions. Using the Leibniz rule and R-
linearity, we get that L is canonically determined by what it does on linear functions∑
bixi. Clearly, there exists a vector v ∈ T0Rn such that v · ϕ = L(ϕ) on linear

functions, but we proved that then this has to be the case for all smooth func-
tions. □

Question 94. Finish the proof. □

Definition 35. Let A be an R-algebra. An R-linear map D : A → A is called a
derivation if it satisfies

D(ab) = aD(b) +D(a)b

for all a, b ∈ A. Let us denote their set by Der(A). Note that Der(A) is naturally
an A-module. □

Lemma 6. If f, g ∈ Der(A), then the commutator f ◦g−g ◦f is also a derivation.

Question 95. Do it! □

Let us now introduce the notation that if E → B is a vector bundle, we denote
its set of smooth sections by Γ(E). For example Γ(TX) is the set of vector fields
on X, whereas Γ(T ∗X) is the one of covector fields. Γ(E) is naturally a C∞(B,R)-
module.

Question 96. Let E → B and E′ → B two vector bundles. Assume that we are
given a C∞(B,R)-module map T : Γ(E) → Γ(E′). Prove that T is obtained from
a vector bundle map E → E′ (i.e. a smooth, fiber-preserving and fiberwise linear
map). Hopefully the converse is clear. This is Proposition 5.16 from Lee. □

Remark 29. It is customary among non-geometers to work only with the sections
of a vector bundle and never talk about the vector bundle itself. Here you think of
sections as a collection of local vector valued functions, which transform according
to some rules (i.e. the transition functions, which in case of vector bundles related
to the tangent bundle can be expressed in terms of changes of coordinates - this
expression transforms as xxx, Einstein conventions etc.). I think it is a shame
and the only reason to do this could be that the mental effort to conceptualize a
non-trivial bundle is non-trivial. This is similar to the insistence of some physicists
to never talk about the flow of a vector field but only about individual solutions
of the corresponding ODE. Neither of these geometric notions (flows and global
bundles) will help if all you want is to compute something, but they definitely help
in thinking about what you are doing when you are doing the computation. Laziness
turns into a defense mechanism that causes people to think mathematicians are just
being fancy. □

Here is the upshot of the discussion so far. There is an isomorphism of C∞(X,R)-
modules

Γ(TX) → Der(C∞(X,R)).

Question 97. Make sure you can parse this and prove it using the results above. □

Hence, smooth vector fields are precisely the derivations on the algebra of smooth
functions. You can think of such derivations as homogeneous first order differential
operators acting on real valued functions. This is of course an entirely different
viewpoint on vector fields (also very useful).
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Let us finish by noting that for free we obtain an R-bilinear operation

[·, ·] : Γ(TX)× Γ(TX) → Γ(TX)

called the Lie bracket of vector fields. We will explore this operation and its geo-
metric meaning next time.

Question 98. Let x, y be the coordinate functions on R2. Show that the Lie bracket
of ∂

∂x and ∂
∂y is the zero vector field. Find two vector fields on R2 with a non-

vanishing Lie bracket. □

Question 99. Read about the Lie algebra of a Lie group from Lee, pg. 93. Describe
the Lie algebra of SO(3). □

17. Feb 19, 2021: Brief answers to selected questions

Answer to Question 89: Here is a way to see this, which is in fact a general
method (for Morse-Smale pairs with one local minimum and one local maximum say,
but the latter assumption can be removed). Let us call the minimum p, maximum
q and the two saddle points a and b, where h(a) < h(b). Recall that we know
how to analyze the change in level sets as we go from −∞ to ∞. The main thing
that happens is that as we approach a critical value, the stable sphere (I mean
the intersection of the stable manifold with the level set, I will keep using this
terminology) contracts to the critical point and as we pass that critical value the
unstable sphere grows from the critical point.

We now want to modify this strategy to give a “scanning” description of the
compactified moduli space of flow lines. Let us first introduce the following set

M̄(c) : {(x, γ) | h(x) = c, γ is a broken flow line from p to x}.

Note that for c = h(p) + ϵ, we have that

M̄(c) = f−1(c)

and c = h(q)− ϵ, we have that

M̄(c) = M̄(p, q).

Our goal is to understand how M̄(c) changes as c goes between these values. Again,
nothing really happens unless we cross a critical value.

In fact, this analysis might be the best way to equip M̄(p, q) with the structure of
a manifold with corners in general. The framework that we would need here involves
the blow-up procedure that takes a manifold with corners and a well behaved type
of sub-manifold; and outputs a new manifold with corners, where the points on
the submanifold are replaced with the sphere of its normal directions - we don’t do
anything in the complement of the submanifold, and replace the submanifold with
its normal sphere bundle.

Assuming this made some sense (ok, if it didn’t, but keep going, the specific case
should make sense) what happens in general is that as you pass a critical value
you replace M̄(c) with its blow-up along the proper transform of the stable sphere
of the critical point. Note that after the first critical value, M̄(c) is not equal to
a level set anymore, therefore we cannot talk about “the stable sphere” in it, but
only a proper transform, which has to do with what happens to submanifolds after
a blow-up.
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Figure 3. The numbers are the indices (i.e. the dimension of the
stable manifold).

In our specific case all we need is to blow-up a 1 dimensional manifold with
boundary along an interior point. This just means that you cut the manifold, the
point is replaced with the two new boundary points. Because of the simplicity of
the situation we also do not need to consider proper transforms. So in this specific
case, we start with a circle as M̄(c). When, we pass h(a), the stable sphere (this
is just 2 points) of a in the circle is blown-up, each becoming two points, and
the circle is now two closed intervals. Then, as we pass h(b) the stable sphere
of b (which is a subset of the interior of the two intervals, which naturally inside
the corresponding level set) is also blown-up. This sphere is embedded so that
each component contains one point, and therefore we get our union of four closed
intervals.

One thing that is quite interesting to remark is that M̄(p.q) can be equipped
with a natural topology that is not too easy to explain (need to make sense of in
what sense unbroken gradient flow lines converge to broken ones). The procedure
above also gives a topology. I am actually unsure if whether they are the same
topology is analyzed anywhere. People generally try to equip M̄(p.q) with extra
structure by trying to realize them as submanifolds of products of level sets as we
touched upon in class. This turns out to be more complicated than one imagines
at first.

Answer to Question 90: I gave an example of a Morse-Smale pair in Figure 3
using the height function and the restriction of the flat metric. This is combination
of the 4 critical point Morse function on the sphere as explained below and the
tilted torus, so you should understand those that first.

In Figure 4, I compute the Morse cohomology for this example.

Answer to Question 91 Note that the 2 critical point example with just one
minimum and one maximum has the following property. The moduli space of
gradient flow lines from min to max is a circle. In Figure 5 there is a Morse-Smale
pair, as usual using height function and the restriction of the flat metric.

Answer to Question 96: This is an important result and the proof is in Lee. Please
make sure you understand it.
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Figure 4. I drew the orange and green gradient flow lines only
in the left-most torus out of laziness. Note that we need to make
sure that the purple, orange and green points are all distinct on
each of the three horizontal circles, which you should imagine all
lie in a level set - this can be arranged. You should be able to fill
in the rest of the relevant information with no problem.

 

Figure 5. The numbers are the indices (i.e. the dimension of the
stable manifold).
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18. Feb 22, 2021: Lie bracket in coordinates, Lie bracket as Lie
derivative, Lie bracket as an obstruction to commutativity of

flows

Let X be a manifold, V ∈ Γ(TX) and U be the domain of a coordinate chart
with coordinates x1, . . . , xn. We write V in these coordinates

V (x) = v1(x)
∂

∂x1
+ . . .+ vn(x)

∂

∂xn
.

If we have a function f : X → R. on U :

V · f(x) = v1(x)
∂f

∂x1
(x) + . . .+ vn(x)

∂f

∂xn
(x).

Now assume that we have another vector field W with coordinate expression

W (x) = w1(x)
∂

∂x1
+ . . .+ wn(x)

∂

∂xn
.

As we discussed above, we can then talk about the Lie bracket vector field [V,W ],
which corresponds to the commutator of V and W as operators. More precisely,
for every f ∈ C∞(X,R), we have:

[V,W ] · f = V · (W · f)−W · (V · f).
Note that it really seems like [V.W ] acts as a second order operator (i.e. involves

second partial derivatives), but from our discussion above we know that it is given
by a vector field and this is not the case. Let’s compute and see what happens:

[V,W ] · f =
∑

vj
∂

∂xj

(
wi

∂f

∂xi

)
−
∑

wj
∂

∂xj

(
vi
∂f

∂xi

)
.

Now use the Leibniz rule and notice the terms with second partial derivatives cancel
and we end up with ∑(

vj
∂wi
∂xj

− wj
∂vi
∂xj

)
∂f

∂xi
,

or in other terms

[V,W ] =
∑(

vj
∂wi
∂xj

− wj
∂vi
∂xj

)
∂

∂xi
.

Let us move on to the geometric meaning of the Lie bracket vector field. The
first thing to say is that [V,W ] measures the change of W under the flow of V .

Question 100. Assume that we are in a chart with coordinates x1, . . . , xn, and that
V = ∂

∂x1
. Write W (x) = w1(x)

∂
∂x1

+ . . .+ wn(x)
∂
∂xn

, and using our local formula,
note that

[V,W ] =
∂w1

∂x1

∂

∂x1
+ . . .+

∂wn
∂x1

∂

∂xn
,

Hopefully, you the relationship with the claim just made before the question. □

The way to formalize this is to define the Lie derivative of W along the flow of
V , which is also a vector field. Let ΦV : U → M denote the flow of V . We define
for every p ∈ X,

LVW (p) := lim
t→0

Φ(−t, ·)∗W (Φ(t, p))−W (p)

t
.

Proposition 18. The vector fields [V,W ] and LVW are the same.
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Figure 6. Used in the proof of Proposition 19

Proof. We have actually almost done this in Question 100. If at a point p ∈ X,
V (p) ̸= 0, then we use the rectification theorem and be done. If V (p) = 0, then
we have two cases. If V = 0 in a neighbhorhood of p, then the result is trivial.
Otherwise, we take a sequence of points converging to p which are not zeros of V
and use that both vector fields are continuous maps X → TX. □

Here is a more striking proposition, which says that if the Lie bracket of two
vector fields vanish, then their flows commute!

Proposition 19. If [V,W ] = 0, then

ΦW (t,ΦV (s, p)) = ΦV (s,ΦW (t, p)),

for t, s ∈ R and p ∈ X as long as both sides of the equation make sense.

Proof. Let us assume that s and t are positive without loss of generality. You can
follow along from Figure 6. Let us define Path 1 to be the integral curve [0, s] → X
from p to ΦV (s, p), and Path 2 to be the integral curve [0, t] → X from ΦV (s, p) to
ΦW (t,ΦV (s, p)). Note that we can first follow Path 1 and then Path 2 to obtain a
continuous map [0, t+ s] → X, call this Path 12. We can also define Path 3, Path
4 and Path 34 in the same fashion for the RHS of the equation. We need to prove
that the end points of Path 12 and Path 34 are the same.

Because of what we proved in the previous proposition

ΦV (t, ·)∗W (p) =W (ΦV (t, p))

as long as (t, p) ∈ U . It follows from the chain rule that if γ(τ), for τ ∈ [0, t], is
Path 3, then ΦV (s, γ(τ)) is the integral curve [0, t] → X of W starting at ΦV (s, p).
Therefore it has to be equal to Path 2. This proves that the endpoint of Path 12 is
ΦV (s, γ(t)) = ΦV (s,ΦW (t, p)) as desired. □

I want to warn of you the statement that you will hear a lot “Lie bracket measures
the non-commutativity of the flows of the vector fields”. This is true but you have
to know what you mean.

For p ∈ X and small enough ϵ > 0, we can construct a smooth path γ : (−ϵ, ϵ) →
X:

γ(τ) = ΦW (−τ,ΦV (−τ,ΦW (τ,ΦV (τ, p)))).

This requires a small bit of thinking for not complete vector fields. Of course, if we
have commuting vector fields, γ would be a constant path. We would like to say
that the vector γ′(0) at p is [V,W ](p). This turns out to be wrong.
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Let us introduce the smooth map β : (−ϵ, ϵ)2 → X for possibly smaller ϵ > 0,
where

β(τ1, τ2) = ΦW (−τ2,ΦV (−τ1,ΦW (τ2,Φ
V (τ1, p)))).

Note that γ(τ) = β(τ, τ).

Remark 30. It requires an argument to show that such an ϵ exists and also that
the map is smooth. □

Question 101. Prove that for all τ1, τ2 ∈ (−ϵ, ϵ),

β∗

(
∂

∂τ1
(τ1, 0)

)
= β∗

(
∂

∂τ2
(0, τ2)

)
= 0.

Then note that γ is the composition of β with the diagonal inclusion map τ 7→ (τ, τ)
and use the chain rule to show that γ′(0) = 0. □

It turns out that we need to take a second derivative to get to [V,W ](p). Here
is how to make sense of this. We can consider the pullback vector bundle

γ∗TX → (−ϵ, ϵ).
We have a section of this bundle given by

τ → γ′(τ)

with a zero at τ = 0. Hence, we can “linearize” and get a well defined map
T0(−ϵ, ϵ) → TpX.We define γ′′(0) to be the image of ∂

∂τ under this map. Note that
we can compute γ′′(0) using the Calculus way inside a coordinate chart.

Proposition 20. [V,W ](p) = γ′′(0)
2

Question 102. Show that we can make sense of second partial derivatives of β:

∂2β

∂τ21
(0, 0),

∂2β

∂τ22
(0, 0),

∂2β

∂τ1∂τ2
(0, 0),

∂2β

∂τ2∂τ1
(0, 0)

as tangent vectors at p. Note that if we do choose coordinates in X, they can be
computed as in Calculus. Prove that the first two are zero. Then, prove that the
last two are the same and finally relate them to γ′′(0) using the diagonal map. □

Question 103. Prove the proposition. □

Next time we will prove a simultaneous rectification theorem for vector fields
whose Lie brackets vanish pairwise. We will then discuss subbundles, distributions,
foliations and Frobenius theorem.

19. Feb 24, 2021: Simultaneously rectifying vector fields with
commuting flows, distributions, foliations, Frobenius theorem

Let us start with a generalization of the rectification theorem to multiple vector
fields.

Proposition 21. Let X be a manifold and V1, . . . Vk be vector fields such that

[Vi, Vj ] = 0, for every i, j = 1, . . . , k

and V1(p), . . . , Vk(p) linearly independent at some point p ∈ X. Then, we can find
coordinates x1, . . . , xn around p such that

Vi =
∂

∂xi
, for every i = 1, . . . , k
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in the domain of these coordinates.

Proof. First of all, we can find a smooth embedding ψ : B → X where B ⊂ Rn−k
is an open ball containing the origin such that ψ(0) = p and image of T0B under
dψ0 is transverse to the span of V1(p), . . . , Vk(p).

We would like to define a map

Ψ : B × (−ϵ, ϵ)k → X

with the formula

Ψ(b, t1, . . . , tk) = ΦVk(tk,Φ
Vk−1(tk−1, . . . (Φ

V2(t2,Φ
V1(t1, ψ(b))) . . .),

where Φ denotes the flow maps as usual. With some work one can prove that for
small enough radius B and small enough ϵ not just Ψ but also the similar potential
maps obtained going in all possible 2k different orders along the vector fields are
all defined. I will omit the proof of this.

Note that because of the Lie bracket condition, all of these 2k maps are the same
as the flows of any two vector fields commute. It suffices to prove the following two
statements by the inverse function theorem.

(1) dΨ0 is an isomorphism.
(2) dΨ(b,t)

∂
∂xi

= Vi(Ψ(b, t)), for every i = 1, . . . , k.

Here I denoted the coordinate functions on (−ϵ, ϵ)k by x1, . . . xk and the ones on
B by xk+1, . . . xn.

(1) follows from (2) by construction, so let us prove (2). Notice that for i =
k, (2) is actually automatic: if we keep b and t1, . . . , tk−1 constant but vary tk
in (−ϵ, ϵ), we simply move along the integral curve of Vk which is at the point
ΦVk−1(tk−1, . . . (Φ

V2(t2,Φ
V1(t1, ψ(b))) . . .) when tk = 0.

But actually, by reordering the flows, we can make the result for all the other i’s
equally easy. Just rewrite Ψ as

Ψ(b, t1, . . . , tk) = ΦVi(ti, . . . ψ(b) . . .).

□

We now discuss what is essentially a restatement of this result called Frobenius
theorem. I want to start with simple situation.

Assume that we are inside R3 and we are given smoothly varying planes (a two
dimensional linear subspace) inside TpR3 at every point p ∈ R3 (a plane field). The
question we are interested in is trying to find two dimensional submanifolds in R3

whose tangent spaces at every point is given by the plane field. Let us momentarily
call these tangent submanifolds.

I warn you that I called this a submanifold here for simplicity but globally things
can get complicated leading to injective immersions. Let’s gloss over this point until
we start being precise.

Remark 31. If instead we consider a line field, finding tangent submanifolds is
essentially the same as finding integral curves of a vector field. In particular, by
the uniqueness and existence theorems through each point there is a unique tangent
submanifold. If you consider all possible tangent submanifolds, then every point
lies in exactly one of them and moreover, locally, we can find coordinates near
every point such that the tangent submanifolds look like straight lines, by the
rectification theorem. The situation is more complicated for plane fields and their
higher dimensional generalizations. □
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Remark 32. We also keep saying things like integral curve, integrating a vector
field etc. We will also use the word integrable soon, which sounds like some kind
of integration is possible. There is nothing too deep here. None of these operations
are given by actual integrals unless we are in very special situations. For example,
for a time dependent vector field on R, which is spatially constant at all times, find-
ing integral curves of such a system is equivalent to computing an anti-derivative.
Sometimes one can also do separation of variables and so on. Otherwise, what is
meant is really just that what we are doing is vaguely resembling integration, which
is true.

In old texts, sometimes you see the phrase that some differential equation or
more generally a problem is solvable by quadratures. This means that the solutions
(numbers, functions...) can be expressed using actual integration operations. Note
that solving differential equations in general is much harder than integration, so
when this is possible it is good news. □

Back to plane fields in R3. Here is a picture of one:

x

y

z

Figure 7. A plane field. It is extended to the rest of space by be-
ing invariant under vertical translations. They are horizontal along
the x-axis, but they get rotated around the y direction positively
if we move to the right.

The striking fact is that you cannot even locally (but not just at one point of
course) find tangent submanifolds near any point for this plane field. It is strongly
not “integrable”. So how do we understand whether a plane field is “integrable” or
not? It helps to generalize the situation and give some precise definitions.

Definition 36. Let π : E → B be a vector bundle. S ⊂ E is called a subbundle if

(1) S ∩ Eb is a subspace of Eb for every b ∈ B.
(2) S ⊂ E is a submanifold
(3) π|S : S → B is a vector bundle.

□

Remark 33. In fact, I believe (1) and (2) implies (3). Also I think a more conceptual
definition is the one where we say that there exists a trivialization around every
point such that S becomes Rk ⊂ Rn at every fiber (analogous to the definition of
a submanifold). □

A subbundle of the tangent bundle TX → X gets a special name: a distribution.
This is the generalization of the line and plane fields that we discussed above.
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Remark 34. The name has nothing to do with distributions from analysis. It is
unfortunate. □

Now let us define what it means for a distribution to be integrable.

Definition 37. Let X be a manifold. We call a collection of pairwise disjoint subsets
of X indexed by F (called leaves):

{Lν}ν∈F

a foliation if

•
⋃
ν∈F Lν = X.

• At every p ∈ X there exists a coordinate chart (U, ϕ) such that the inter-

section of each leaf with U is sent by ϕ to Rk×{(a1, . . . an−k)}∩ Ũ for some
(n− k)-tuple of real numbers.

□

Figure 8. A foliation of S3 or R3 can be obtained by looking at
these pictures.

Note that a foliation induces a distribution by taking the tangent subspaces
to leaves. If a distribution is the tangent distribution to a foliation it is called
integrable. Finally, the Frobenious theorem.

Theorem 14. Let D ⊂ TX be a distribution. It is integrable if and only if for any
two vector fields V and W whose vectors belong to D at every point, the vectors of
[V,W ] also belong to D.

Question 104. Prove the easy direction of this theorem. □

Remark 35. One might imagine less idealized notions of integrability of distribu-
tions than being tangent to a foliation but we will leave it at this. □

Question 105. Let D be a distribution on a manifold M .

(1) Show that we can always extend a tangent vector v at p belonging to D to
a vector field V defined in an open neighborhood of p, all of whose members
belong to D.
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(2) Let W be a vector field defined near p, not necessarily in D. Take v and
extend it to V as in the previous part. Take the image of [V,W ](p) under
the natural projection to TpM/Dp. Prove that the result does not depend
on the extension of v to V . Therefore for every W ∈ Γ(TM), we obtain a
map D → TM/D, which is linear on fibers.

(3) Now use the previous part to obtain a map D ×M D → TM/D which is
bilinear on fibers. Prove that the condition in the Frobenius integrability
theorem is equivalent to the vanishing of this bilinear pairing. This is a
much better condition because it requires showing that a tensorial object
vanishes pointwise.

□

20. Feb 26, 2021: Brief answers to selected questions

Answer to Question 99: You have shown before the SO(3):

{S ∈ GL(n,R) | AtA = I}

was a sub Lie group of GL(n,R) using the closed subgroup theorem. Below I will
use e for identity elements.

It is a general fact that if you have a Lie subgroup H ⊂ G, then we have an
inclusion of Lie algebras h ⊂ g. Of course, as vector spaces this inclusion is nothing
but the inclusion of tangent spaces at the identity.

Let me briefly explain how you might see the fact that TeH ⊂ TeG as in the
previous paragraph is respects the Lie algebra structures. Any left invariant vector
fields V,W on H canonically extends to left invariant vector fields V #,W# on G
(compatibly with the inclusion of tangent spaces at identity). All we need show
here is that the Lie bracket [V #,W#] is tangent to H ⊂ G, and that the restriction
of [V #,W#] to H is the same as [V,W ]. Perhaps the easiest way is to consider the
foliation of G by the orbits of the left action of H on G. The leaves of this foliation
is indexed by the set G/H. Now, notice that in fact V #,W# are tangent to this
entire foliation and use the argument for the easy direction of Frobenius theorem.

Going back to SO(3), it will then suffice to describe the Lie algebra of GL(3,R)
and then understand how so(3) sits inside TeGL(3,R).

First of all, note that GL(n,R) is an open subset of the n2 dimentional vector
space of n× n real matrices Mat(n,R). Therefore,

TeGL(n,R) =Mat(n,R).

How do we figure out the induced Lie algebra structure on Mat(n,R)? Let
A,B ∈ Mat(n,R), we need to find out what is [A,B]. We know that this is a left
invariant vector field so it suffices to find its value at e. The corresponding left
invariant vector fields GL(n,R) →Mat(n,R) are given by T 7→ TA and T 7→ TB,
where we are are using matrix multiplication of course.

What are the flows of these vector fields? You can check that they are given by
matrix exponentials! More precisely, the flow of T 7→ TA is

(t, T ) 7→ T exp(tA),

where

exp(tA) = 1 + tA+
1

2
t2A2 + . . .



56 UMUT VAROLGUNES

Therefore, all we are left with computing

d2

dt2
|0 exp(tA) exp(tB) exp(−tA) exp(−tB).

Direct computation gives 2(AB−BA), dividing by 2 as in the formula we get that

[A,B] = AB −BA,

as could be expected. There are other ways to figure this out, we could use the Lie
derivative apprach, or directly use the definition involving derivations. I like this
one the best.

Now we need to compute the subspace TeSO(3) ⊂ Mat(3,R). Here is how you
do this. These are the matrices A such that I + δA is an element of SO(3) up to
an error of O(δ2). Writing this down

(I + δA)t(I + δA) ∼ 1 + δ(At +A) +O(δ2).

Therefore A satisfies At + A = 0, in other words the subspace we are looking for
is the subspace of skew-symmetric matrices. This computation can be phrased as
finding the best approximating linear subspace to SO(3) ⊂Mat(3,R) at e.

Hence the Lie algebra of SO(3) is 3×3 skew-symmetric matrices with Lie bracket
given by the commutator. A more concrete way to describe this is to say that it is
isomorphic to R3 with cross product (prove this).

Answer to Question 20: We are going to compute ∂2β
∂τ1∂τ2

(0, 0). Let us work
locally, meaning X = Rn. This means that we can think of this mixed partial as
just the value at (0, 0) of the τ1 partial derivative of the vector valued function

(−ϵ, ϵ)2 → Rn

given by (τ1, τ2) 7→ ∂β
∂τ2

(τ1, τ2). Of course similarly, we are thinking of the latter
map as the τ2 partial derivative of the vector valued function β.

We need to understand the map

τ1 7→ ∂β

∂τ2
(τ1, 0).

For fixed τ1, the value of this map is the velocity vector of the curve

ΦW (−t,ΦV (−τ1,ΦW (t,ΦV (τ1, p))))

at t = 0.
By the same diagonal argument, this velocity vector is the sum of the velocity

vectors at t = 0 of

ΦW (−0,ΦV (−τ1,ΦW (t,ΦV (τ1, p)))) = ΦV (−τ1,ΦW (t,ΦV (τ1, p)))

and

ΦW (−t,ΦV (−τ1,ΦW (0,ΦV (τ1, (0, 0))))) = ΦW (−t, (0, 0)).
To deal with the first one, we use a general lemma:

Lemma 7. X manifold, W vector field ϕ : X → X diffeomorphism, p ∈M . Then,
the velocity vector at t = 0 of

ϕ−1(ΦW (t, ϕ(p))

is equal to ϕ−1
∗ W (ϕ(p)).
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Proof. ΦW (t, ϕ(p)) is by definition the integral curve of W passing through ϕ(p) at
time 0. Then use the chain rule. □

Applying the lemma, we find that the first velocity vector we were trying to find
is

ΦV (−t, ·)∗W (ΦV (t, p)),

whereas the second one is obviously −W (p).
Now recall that we are trying to find out the t-derivative of the sum of these two

vector valued functions of t (using t in place of the original τ1). The second term
vanishes but the first term is exactly what we want. Looking back at the definition
of the Lie derivative LVW you will notice that the second term is exactly equal to
LVW (p), finishing the proof.

If you are getting confused about the coordinate independent definitions of par-
tials, mixed partials etc. at (0, 0), just define them using coordinates without
knowing that they do not depend on the coordinates. The relationship with the Lie
bracket that we just proved shows a posteriori that they are coordinate independent.

Answer to Question 105: I just want to restate the construction of the vector
bundle map D → TM/D obtained from W ∈ Γ(TM) slightly differently, which
should make everything clear.

First, note that we have a map Γ(D) → Γ(TM) given by

V 7→ [W,V ].

Let’s check whether this map comes from a map of vector bundles. We need to
check whether the map commutes with multiplication by a function f ∈ C∞(M,R),
i.e. we need to understand [W, fV ]. It turns out that there is another Leibniz rule
here. Thinking of vector fields as derivations for a moment:

[W, fV ] · g =W · (fV · g)− fV · (W · g).

Using the Leibniz rule for directional derivatives for the first term, we end up with

f [W,V ] · g + (W · f)V · g,

therefore

[W, fV ] = f [W,V ] + (W · f)V.
Of course the second term ruins the commutation we were looking for.

But... after we kill the parts of the vectors lying in D by post-composing

Γ(D) → Γ(TM) → Γ(TM/D),

we do not have that term anymore and therefore we get the C∞(M,R)-linearity we
need. This is a way to describe the vector bundle map D → TM/D. It is easy to
check that it gives the same result as what is explained in the question. I leave the
rest to you.

21. Mar 1, 2021: Exterior algebra of a vector space, wedge product,
exterior algebra of the dual of a finite dimensional vector

space as alternating multilinear maps

Today we start our discussion differential forms on smooth manifolds. Unfortu-
nately, we have to start with some abstract linear algebra.
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Let V be a vector space over a field F. Then, we define the underlying vector
space of its tensor algebra as follows

T (V ) :=

∞⊕
n=0

V ⊗n.

Here V ⊗0 := F. We equip T (V ) with a grading so that V ⊗n is the set of elements
in grade n, for every n ∈ Z≥0. There are no negatively graded elements.

Remark 36. If you don’t know how to take tensor product of two vector spaces,
you will still be able to understand today’s lecture but I will assume that you will
learn as soon as you can after this class. It is probably easiest to start by thinking
about how to construct a basis of the tensor product. □

Question 106. Explain the natural structure of T ∗(V ) as a graded associative F-
algebra. When is this algebra commutative? □

T ∗(V ) has a two-sided graded ideal I, which is generated as an ideal by all the
elements of the form v ⊗ v, v ∈ V . Note that I being graded means I =

⊕∞
n=0 I

n,
where In := I ∩ V ⊗n.

Question 107. Find an ideal of T ∗(F) that is not graded. □

Question 108. Prove that v1 ⊗ . . . ⊗ vn ∈ V ⊗n is in I if and only if v1, . . . , vn is
linearly dependent in V . □

Definition 38. We define the exterior algebra of V as

Λ∗(V ) := T ∗(V )/I.

The induced product is denoted by · ∧ · and called the wedge product. □

Question 109. Assume that V is finite dimensional. Compute the dimension of
Λn(V ), for every n ∈ Z. □

Question 110. Prove that for homogenous elements α, β of Λ∗(V ):

α ∧ β = (−1)|α||β|β ∧ α.
This is called super-commutativity for graded algebras. You might want to prove
the special case

[v1 ⊗ v2] = −[v2 ⊗ v1]

in Λ∗(V ) for v1, v2 ∈ V. □

All this is fairly abstract. Now let W be a finite dimensional vector space over
a field of characteristic zero , and let V := W∨ = HomF(W,F). We will give a
more concrete model for Λ∗(V ) in this case. Recall that we call a multilinear map
W × . . .×W → R alternating if exchanging two inputs negate the result.

Lemma 8. Λn(V ) is canonically isomorphic to the vector space of alternating
multilinear maps

W × . . .×W︸ ︷︷ ︸
n

→ R.

The isomorphism sends [v1 ⊗ . . .⊗ vn] to the map

(w1, . . . , wn) 7→
∑
σ∈Σn

sign(σ)v1(wσ(1)) . . . vn(wσ(n)),



LECTURE NOTES - MATH 215B (WINTER 2021) 59

where Σn is the set of permutations on (1, . . . , n), i.e. the set of all bijections
{1, . . . , n} → {1, . . . , n}.

Question 111. Prove this lemma. I added a sketch argument below. □

Remark 37. Read this about what goes wrong in infinite dimensions. It should be
clear when you work out the proof why we needed the assumption on characteristic.

□

Hence, we have that Alt∗(W ) :=
⊕∞

n=0Alt
n(W ) is isomorphic as a graded vector

space to Λ∗(V ). In particular, we see that there is an algebra structure on Alt∗(W ),
the product of which we again denote by the wedge sign and call wedge product.
It turns out that we can explicitly write this down.

Lemma 9. Let α ∈ Altk(W ) and β ∈ Altl(W ), then α ∧ β ∈ Altk+l(W ) is the
following alternating bilinear map

α ∧ β(w1, . . . , wk+l) =
∑

σ∈Sh(k,l)

sign(σ)α(wσ(1), . . . , wσ(k))β(wσ(k+1), . . . , wσ(k+l)),

where Sh(k, l) are the bijections σ : {1, . . . , k} ⊔ {1, . . . , l} → {1, . . . , k + l} such
that σ(1) < . . . < σ(k) and σ(1) < . . . < σ(l).

Question 112. First, fully expand the sum for k = l = 2. Then, prove the statement.
Finally, check super-commutativity of the wedge product directly from the formula.

□

Remark 38. Elements of Sh(k, l) are called shuffles, by analogy with playing card
shuffles. □

For our purposes, it would suffice to only talk about alternating multilinear maps.
The down side of that is that the wedge product would look very mysterious. It’s
good to have multiple viewpoints anyways.

Question 113. Let e1, . . . , en be basis of W and let e∨1 , . . . , e
∨
n be the dual basis of

V . Prove that

e∨j(1) ∧ . . . ∧ e
∨
j(k),

for all injective order preserving maps j : {1, . . . , k} → {1, . . . , n} give a basis of
Λk(W∨), for all k ≥ 0. □

Question 114. Let e1, . . . , en be basis of W and let e∨1 , . . . , e
∨
n be the dual basis of

V . Compute

e∨1 ∧ . . . ∧ e∨n(w1, . . . , wn),

for arbitrary elements w1, . . . , wn ∈ W by writing them as a linear combination of
the basis elements. Assuming that W = Rn and e1, . . . , en is the standard basis
interpret your result as a geometric quantity related to w1, . . . , wn as vectors in the
Euclidean space. □

Remark 39. The main point of differential forms is that you should be able to
integrate them over submanifolds (with no extra data except an orientation). This
computation gives you a hint of how that is going to work if you think about the
change of variables formula. We will come back to this point next time. □

https://math.stackexchange.com/questions/31206/why-is-the-inclusion-of-the-tensor-product-of-the-duals-into-the-dual-of-the-ten
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From now on we think of Λ∗(W∨) for a finite dimensional vector space W as
Alt∗(W ) unless otherwise specified. Now we define the interior product and pull-
back operations on alternating multilinear maps.

Let α ∈ Λk(W∨) and w ∈W , we define the interior product ιwα of α with w as
follows:

ιwα(·, . . . , ·) := α(w, ·, . . . , ·).

Question 115. Prove that interior product is an anti-derivation:

ιw(α ∧ β) = ιwα ∧ β + (−1)|α|α ∧ ιwβ.

□

Finally, if you have a linear map f :W → U , you can define

f∗ : Λ∗(U∨) → Λ∗(W∨),

by the formula

f∗α(w1, . . . , wn) = α(f(w1), . . . , f(wn)).

This is called the pull-back operation.

Question 116. Prove that f∗ is a homomorphism of graded algebras. □

Question 117. Given a vector bundle E → B, construct the vector bundle ΛnE∨ →
B with fiber over b canonically identified with ΛnE∨

b . You can do this in two different
ways now: (1) transition maps (2) Whitney embedding theorem. □

22. Mar 3, 2021: Differential forms, exterior product, pull-back of
differential forms, change of variables formula, integration of

differential forms

We define the following vector bundles, for k = 0, 1, . . . , dim(M):

ΛkT ∗X → X.

Also, let Λ∗T ∗X be the Whitney sum
⊕dim(X)

k=0 ΛkT ∗X. The fibers (ΛkT ∗X)p are

canonically identified with ΛkT ∗
pX, and the fibers (Λ∗T ∗X)p with Λ∗(T ∗

pX).

Sections of ΛkT ∗X → X are smoothly varying k-linear alternating maps

T ∗
pX × . . .× T ∗

pX︸ ︷︷ ︸
k

→ R,

for all p ∈ X. We call these differential k-forms.

Question 118. What are differential 0 and 1-forms? □

Sections of Λ∗T ∗X are finite sums of differential k-forms for k = 0, 1, . . . , dim(X).
They are called differential forms. Let us also introduce some notations.

The C∞(X,R)-module of differential k-forms are denoted by

Ωk(X) := Γ(ΛkT ∗X)

. Similarly, we define

Ω∗(X) := Γ(Λ∗T ∗X).

Question 119. Show that Ω∗(X) =
⊕dim(X)

k=0 Ωk(X). Therefore the elements of
Ω∗(M) are precisely differential forms. □
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Question 120. Prove that Ω∗(X) is a graded super-commutative algebra over C∞(X,R),
where we use the wedge product pointwise to define the product structure. □

The product structure on Ω∗(X) is also called wedge product, or sometimes
exterior product.

We can also define the pull-back of differential forms. Given α ∈ Ωk(Y ) and
smooth map f : X → Y , we can define

(f∗α)p(v1, . . . , vk) := αf(p)(f∗v1, . . . , f∗vk)

for all p ∈ X and v1, . . . , vk ∈ TpX.

Question 121. Check that f∗α is indeed a differential k-form. □

Question 122. With the pull-back operation, we can extend the assignment X →
Ω∗(X) into a contravariant functor from the category of smooth manifolds with
smooth maps to the category of graded super-commutative R-algebras with algebra
homomorphisms. If you don’t know what this means, learn it. Then prove the
statement. □

Question 123. Does f induce a smooth map T ∗Y → T ∗X? □

Let us now switch gears and talk about differential forms concretely (i.e. using
coordinates) on an open subset U ⊂ Rn.

Calling the coordinates x1, . . . , xn, we have the vector fields ∂
∂x1

, . . . , ∂
∂xn

and
the covector fields dx1, . . . , dxn. For every point p ∈ U , the former gives a basis
of TpU and the latter gives the dual basis of T ∗

pU . Note that in our new notation

dx1, . . . , dxn ∈ Ω1(U).

Question 124. Prove that

dxj(1) ∧ . . . ∧ dxj(k),

for all injective order preserving maps j : {1, . . . , k} → {1, . . . , n} give a C∞(U,R)-
basis of Ωk(U), for all k ≥ 0. □

More concretely, every differential k-form on U can be written uniquely as∑
j

fjdxj(1) ∧ . . . ∧ dxj(k),

where fj : U → R are smooth functions.

Question 125. Compute the exterior product of differential forms on U in coordi-
nates. □

Let’s now compute how the coordinate expressions change if we change coordi-
nates. Let y1, . . . , yn be a different set of coordinates in some open subset V ⊂ U .
We can think of what we are about to do in two different ways:

(1) Think of y1, . . . , yn as functions in the coordinates x1, . . . , xn. We can talk
about the covector fields dy1, . . . , dyn in x1, . . . , xn coordinates and note
that

dyj =
∑
i

∂yj
∂xi

dxi.



62 UMUT VAROLGUNES

That y1, . . . , yn are a set of coordinates mean that dy1, . . . , dyn are linearly
independent at all points of V . Therefore, any differential k-form on V can
also be written as ∑

j

gjdyj(1) ∧ . . . ∧ dyj(k).

We want to compute gj .
(2) Think of y1, . . . , yn as defining a map V → Rn. That y1, . . . , yn are a set of

coordinates mean that this map has open image and is a diffeomorphism
onto its image y : V → V ′. The standard coordinates on V ′ can be rightly
denoted by y1, . . . , yn (but this is not important, call them something else
if you wish). We can then pull-back our differential k-form on V to V ′ by
the inverse of y. We are then trying to compute the coefficient functions of
this pull-back differential form in standard basis of V ′. These coordinate
functions are the “same as” gj from (1).

These two are absolutely the same in content. The difference is that in (1) we
think of y1, . . . , yn as functions on some open subset of the same ambient space
where x1, . . . , xn are standard coordinates, whereas in (2) we think of them as the
standard coordinates in some other Euclidean space, which is explicitly identified
with the original Euclidean space along some open subsets.

I will go with (1) for this computation. It turns out to be cleaner to write {fj}
in terms of {gj} and the reason is visible from viewpoint (2). Differential forms
naturally pull-back, and writing {fj} in terms of {gj} is equivalent to pulling back
by the map defined with the map y : V → V ′.

Here we go,∑
j

gjdyj(1) ∧ . . . ∧ dyj(k) =
∑
j

gj

(∑
i

∂yj(1)

∂xi
dxi

)
∧ . . . ∧

(∑
i

∂yj(k)

∂xi
dxi

)
.

Well, then you expand and write it in the form
∑
j fjdxj(1) ∧ . . .∧ dxj(k). Make

sure to not forget what the sum over j is indexed by. There is no point of actually
doing it in this generality.

Note that each gj is a function on V and hence can be written in coordinates
x1, . . . , xn or y1, . . . , yn equally well. On the other hand, if you work with viewpoint
(2), when you write down the corresponding pull-back, strictly speaking you need
to define new functions on V ′ by pre-composing gj with the map y.

Question 126. Write down the form dx ∧ dy on R2 in polar coordinates on R2 −
{(x, 0) | x ≥ 0}. □

Question 127. Write down {gj} in terms of {fj} by introducing the inverse map of
y or equivalently by introducing the functions that express x1, . . . , xn in terms of
y1, . . . , yn. □

Let us now specialize to the case of differential n-forms in Rn. The formula above
reads:

gdy1 ∧ . . . ∧ dyn = g

(∑
i

∂y1
∂xi

dxi

)
∧ . . . ∧

(∑
i

∂yn
∂xi

dxi

)
.

You compute and realize that

gdy1 ∧ . . . ∧ dyn = g · det
(
∂yj
∂xi

)
dx1 ∧ . . . ∧ dxn.
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Question 128. Deduce this from Question 114. □

This formula is the key to the integration of differential forms along manifolds.
Recall the change of variables formula (assuming that integrals exist):∫

V

gdy1 . . . dyn =

∫
V

g · |det
(
∂yj
∂xi

)
|dx1 . . . dxn.

In calculus exercises, this also involves writing the function g and domain V in
terms of y1, . . . , yn on LHS and in terms of x1, . . . , xn on RHS.

In calculus dy1 . . . dyn does not mean much - it just reminds the person who is
taking the integral what coordinates we have been using. Now we will interpret

gdy1 . . . dyn as the differential n-form gdy1 ∧ . . .∧dyn and g · |det
(
∂yj
∂xi

)
|dx1 . . . dxn

as g · |det
(
∂yj
∂xi

)
|dx1 ∧ . . . ∧ dxn.

Assuming that det
(
∂yj
∂xi

)
> 0, these two differential n-forms are the same! The

integral of this differential form over V (defined using the symbolic trickery in the
previous paragraph) is independent of coordinates, as long as we restrict ourselves
to coordinates with the same orientation.

Question 129. Explain what it should mean for a diffeomorphism between open
subsets of Rn to be orientation preserving. □

Because of this orientation issue, we can only integrate an n-form on an oriented
n-dimensional manifold, which we define now.

Definition 39. A smooth manifold is called orientable if it admits a subatlas all
of whose transition maps are orientation preserving. Let us call such a subatlas
positive. An orientation on a smooth manifold is the choice of a maximal positive
subatlas. A smooth manifold with a specified orientation is called oriented. When
we talk about an oriented smooth manifold, the only allowed smooth charts are the
ones that belong to the maximal positive subatlas. □

Question 130. Show that a connected orientable smooth manifold has precisely two
orientations. □

Remark 40. There are plenty of non-orientable smooth manifolds. The simplest
example is RP2 := Gr(1, 3), the real projective plane. □

We are now almost ready to define integration of a differential n-form α on
an oriented smooth manifold X of dimension n. It turns out that it takes some
extra care if one wants to integrate non-compactly supported differential forms.
This is to be expected perhaps as we then get into issues about the convergence
of the integral (see here for some discussion.) We will be content with integrating
compactly supported forms.

Choose a regular cover {Ui} of X and a sub-ordinate partitions of unity ρi :
X → R. We first temporarily define∫

X

ρiα :=

∫
Ũi

(ϕ−1)∗ρiα,

where the RHS is defined using coordinates in Ũi as above. Note that we still have
not used the change of variables formula, we just made a definition by the rewriting
of the symbol gdx1 . . . dxn as gdx1 ∧ . . . ∧ dxn.

https://math.stackexchange.com/questions/1456718/integrals-of-non-compactly-supported-forms
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Now we make the big definition:∫
X

α :=
∑
i

∫
X

ρiα.

Question 131. For this definition to be “big” it better not depend on the choices of
the regular cover and the partitions of unity. This is where the change of variables
formula is used. Carefully prove this. We will talk about it on Friday. □

Remark 41. An alternative route to defining
∫
X
α would be to do the following.

• Assume that the support of α is contained in some coordinate chart. Then
prove that the integral can be defined unambiguously using the change of
variables formula.

• For general α, take any partitions of unity
∑
ρi = 1 such that the support

of each ρi is contained in some coordinate chart and define
∫
X
α as the sum

of
∫
X
ρiα as defined in the previous step.

• We only need to prove independence on the choice of the coordinate chart.
This is done by taking the ”product” partitions of unity.

□

Question 132. Assuming we have a k-dimensional submanifold Z ⊂ X and a com-
pactly supported differential k-form β on X, define the integral of β over Z.
□

Remark 42. An important fact about integration on manifolds is the degree formula.
Let ϕ :M → N be a proper smooth map of oriented smooth manifolds of dimension
n. Assume that N is connected. Then, there exists an integer deg(ϕ) such that for
every compactly supported η ∈ Ωn(N)∫

M

ϕ∗η = deg(ϕ)

∫
N

η.

For proof, and topological interpretation/consequences check out the book by Guillemin-
Haine. □

23. Mar 5, 2021: Brief answers to selected questions

Answer to Question 111: Let’s first understand the maps in this diagram

Altk(W )

1

��
T k(W∨)

4 //

2

��

T k(W )∨

5
mm

3 // Multk(W )

Λk(W∨)

• The map 1 is just the inclusion map of alternating k-linear maps into k-
linear maps.

• The map 2 is the quotient by Ik map.

https://math.mit.edu/classes/18.952/2018SP/files/18.952_book.pdf
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• The map 3 is an isomorphism that comes from the fact that giving a k-linear
map

W × . . .×W︸ ︷︷ ︸
k

→ R

is the same thing as giving a linear map

W ⊗ . . .⊗W︸ ︷︷ ︸
k

→ R.

• The map 4 is the map that sends a pure tensor v1 ⊗ . . .⊗ vk to the linear
map that is defined on pure tensors by

w1 ⊗ . . .⊗ wk → v1(w1) . . . vk(wk).

Map 4 can be shown to be an isomorphism for W finite dimensional by
showing that is injective and that the source and target have the same
dimension.

• The map 5 is the inverse of 4.

Unfortunately, this diagram does not define a map from Λk(W∨) to Altk(W )
as the map 4 does not factor through Λk(W∨) or the map 3◦4 does not lie inside
Altk(W ).

So we construct an alternative diagram that fixes these problems:

Altk(W )

1

��
T k(W∨)

4′ //

2

��

T k(W )∨

5′
mm

3 // Multk(W )

Λk(W∨)

6

99

• The map 4′ is the map that sends a pure tensor v1 ⊗ . . .⊗ vk to the linear
map that is defined on pure tensors by

w1 ⊗ . . .⊗ wk →
∑
σ∈Σk

sign(σ)v1(wσ(1)) . . . vk(wσ(k)).

It is also helpful to write 4′ as the post-composition of 4 with the map
T k(W∨) → T k(W∨):

w1 ⊗ . . .⊗ wk →
∑
σ∈Σk

sign(σ)wσ(1)⊗ . . .⊗ wσ(k).

• The map 5′ is the map defined by multiplying 5 with 1
k! .

• Now notice that Ik is sent to 0 under 4′. Therefore, the map 4′ factors
through the quotient and hence we get the map 6.

• 4′ and 5′ are not two-sided inverses anymore.

Also notice that 3 ◦ 4′ now lands in the image of 1. Hence, we obtain our map
Λk(W∨) → Altk(W ), which is the map described in the statement of the lemma.

We can also define a map in the other direction Altk(W ) → Λk(W∨) as the
composition 2 ◦ 5′ ◦ 3−1 ◦ 1.



66 UMUT VAROLGUNES

Showing that these two maps are inverses of each other boils down to showing
that on the image of 3−1 ◦ 1, 6 ◦ 2 ◦ 5′ is the identity map. The image of 3−1 ◦ 1
is easily seen to be the linear maps that kill elements of Ik ⊂ T k(W ). I leave it to
you check that such elements are closed under applying 4′ ◦ 5′ and in fact the map
is the identity map. By construction 4′ = 2 ◦ 6, which finishes the proof.

Answer to Question 112: We need to show that the diagram

Λk(W∨)× Λl(W∨) //

��

Altk(W )×Altl(W )

��
Λk+l(W∨) // Altk+l(W )

commutes.
We take ([α], [β]) ∈ Λk(W∨)×Λl(W∨) and consider the two ways of going to the

lower right corner. To see that the results are the same, we test on (w1, . . . , wk+l).
Going through the lower left corner, we get the result∑

σ∈Σk+l

sign(σ)4(α⊗ β)(wσ(1) ⊗ . . .⊗ wσ(k+l)).

Here 4 is the map defined above.
Going through the upper right corner, we get the result

sum(σ′
1,σ

′
2)∈Σk×Σl

∑
σ∈Shk,l

s(σ)s(σ′
1)4(α)(wσ(σ′

1(1))
⊗ . . .⊗ wσ(σ′

1(k))
)

s(σ′
2)4(β)(wσ(σ′

2(1))
⊗ . . .⊗ wσ2(σ′(l))).

These two sums are the same, which boils down to fact that any permutation
of a deck of cards can be obtained by first splitting the deck into two groups of
originally adjacent cards, then permuting each group separately and then finally
shuffling. The signs also work out essentially because if you compose two permu-
tations the signs multiply, and the implication that sign is a local invariant in the
sense that it is computed by the mod 2 number of transpositions needed to define
the permutation.

Answer to Question 130: I will only show that there can be at most two different
orientations. I am assuming you are familiar with orienting finite dimensional
vector spaces. Define an orientation of TX to be a continuously varying choice of
orientations on each tangent fiber. An orientation of a manifold in the sense that
we defined it canonically defines an orientation of TX. Hopefully, you see this.

Now, I claim that if two positive smooth atlases on X give rise to the same
orientation on TX then they have to be positively compatible. Take a chart from
each atlas. Then consider the transition map. The fact that these two charts
give rise to the same orientations of the tangent spaces in the intersection of their
domains is equivalent to the positivity of the determinants of the Jacobians.

Finally, note that if M is connected, then orienting one tangent space automati-
cally orients all tangent spaces by the continuity requirement. Hence, there can be
at most two orientations of TX, which finishes the proof.
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24. Mar 8. 2021: Exterior derivative, first pass at deRham theorem,
Lie derivative of differential forms, Cartan formula

Today, we will discuss some more operations on differential forms. We start with
exterior derivative of a differential form, which takes in a k-form and returns a k+1
form:

d : Ω∗(X) → Ω∗+1(X).

For k = 0, we have already defined this operation, which took f ∈ Ω0(X) =
C∞(X,R) and returned df ∈ Ω1(X) = Γ(T ∗X). We want d to satisfy the following
properties:

(1) It is R-linear.
(2) It agrees with our existing definition on smooth functions.
(3) d2 = 0, i.e. (Ω∗(X), d) is a chain complex.
(4) d satisfies the graded Leibniz rule,

d(α ∧ β) = dα ∧ β + (−1)|x|α ∧ dβ,
i.e. (Ω∗(X), d,∧) is a commutative differential graded algebra (cdga).

(5) If ϕ : X → Y is smooth, then ϕ∗ : Ω∗(Y ) → Ω∗(X) is a chain map:

d ◦ ϕ∗ = ϕ∗ ◦ d.

Definition 40. We call (Ω∗(X) d,∧) the deRham cdga of X, and denote the whole
structure by Ω∗

dR(X). Let us also define

H∗
dR(X) := H∗(Ω∗

dR(X)),

which is a super-commutative algebra. □

Remark 43. Hence, in fact we have a functor from smooth manifolds with smooth
maps to cdga’s with cdga homomorphisms (algebra homomorphism+chain map).
□

Let us take a moment to state our end goal.

Theorem 15. Let C∗(X,R) be the singular cochain complex of X with real coeffi-
cients. Then, there exists a quasi-isomorphism∫

: Ω∗
dR(X) → C∗(X,R)

obtained by integration of forms along smooth chains. The induced isomorphism

H∗
dR(X) → H∗(X,R)

respects the algebra structures. Moreover, if we have a smooth map X → Y , then
the following diagram commutes:

H∗
dR(Y ) //

��

H∗(Y,R)

��
H∗
dR(X) // H∗(X,R).

Remark 44. Note that
∫
is not an algebra map (only after passing to homologies).

This failure can be measured but I do not remember how to do this for example.
The cup product is in fact not super-commutative and the fact that the deRham
algebra is super-commutative at the chain level is an important plus for it.
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Recall that Morse cochain complex with integer coefficients (requires a discussion
of signed counting as we had briefly mentioned) is quasi-isomorphic to C∗(X,Z),
so it recovers integral cohomology, which deRham theory does not. On the other
hand the product structure on Morse cohomology (which we did not discuss) is
non-trivial to even define and at the chain level it leads to a complicated structure
called an A∞-algebra.

Witten’s work that lead to Morse cohomology does something extremely fasci-
nating. He shows that Morse cohomology arises as a certain limit of a deformed
(using a smooth function h : X → R) deRham complex:

dt := e−thdeth, as t→ ∞.

This way he actually discovers what Morse cohomology should be. Making this
precise is no small feat.

Along with cellular homology, now you know four major ways of accessing the
cohomology of a smooth manifold. There is also the sheaf theoretic viewpoint,
which is generally called Cech theory. We will briefly mention this next week. As
far as I know, this are all the major ways - there are many variants etc. of course.
It’s a fruitful exercise to try to relate these directly to each other. As an example,
the theorem above is the deRham to singular comparison theorem. □

We of course have a long way to go for this theorem and we will have to be brief
for most of the steps. First, we have to actually define the exterior derivative.

By looking at the properties that it is supposed to satisfy you can work out what
d should do in coordinates:

d(fdxI) = df ∧ dxI ,
for I ⊂ [n]. Here we introduce the notation

dxI := dxi(1) ∧ . . . ∧ dxi(k),
where i : [k] → [n] is the unique order preserving injective map with image I.

Question 133. Let U ⊂ Rn be an open subset and call the coordinates x1, . . . , xn.
Prove that there exists a unique d : Ω∗(U) → Ω∗+1(U) satisfying the properties
(1)-(4) above. □

Question 134. For a diffeomorphism U → V between open subsets of an Euclidean
space, prove that (5) follows from (1)-(4). Use this to define the exterior derivative
on an arbitrary manifold. □

Let us now also define the Lie derivative of a differential form α along a vector
field V . This is an R-bilinear operation. If α is a k-form the result is a differential
k-form. The idea for the definition is the same as the Lie derivative of a vector field
along a vector field.

Let ΦV : U →M denote the flow of V . We define for every p ∈ X,

LV α(p) := lim
t→0

(Φ(t, ·)∗α)(p)− α(p)

t
.

Question 135. What is the Lie derivative of a function along a vector field? □

Question 136. Prove that LV is a derivation on differential forms, i.e. if α ∈ Ωk(X)
and β ∈ Ωl(X), then

LV (α ∧ β) = LV (α) ∧ β + α ∧ LV (β).
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□

Question 137. Prove that the Lie derivative operation also satisfies the following
Leibniz rule. If V,W vector fields, and α a covector field, then

V · α(W ) = (LV α)(W ) + α(LVW ).

Generalize the result to differential k-forms. □

Finally, also note that given a vector field V and differential k-form α, we can
define the interior product ιV α pointwise:

ιV α(p) := ιV (p)α(p).

The following important result is generally called Cartan’s magic formula.

Theorem 16. If V is a vector field and α is a differential form:

LV α = ιV dα+ d(ιV α).

Proof. The formula holds at the interior points of the set of zeros of V . Both sides
are R-linear in α. Moreover, note that both LV · and ιV d·+d(ιV ·) are derivations on
Ω∗(X) - former was mentioned above and the latter is because the anti-commutator
of two anti-derivations is a derivation. Therefore, using also the continuity of both
sides, it suffices to check the formula for α being a smooth function or one of the
1-forms dx1, . . . , dxn in some coordinate neighborhood of every point where V does
not vanish. Choosing coordinates that rectify V this becomes trivial. □

Question 138. Please come back to this question after next class. I state it here
to make its connection with Cartan’s formula clear. It is an integral version of
Cartan’s formula.

Let X be a compact oriented k-manifold with boundary embedded inside a man-
ifold M . Take a vector field v on M , and a time dependent k-form ωt. Prove:

d

dt
|t=0

∫
X(t)

ωt =

∫
∂X

ιvω0 +

∫
X

ιvdω0 +

∫
X

d

dt
|t=0 ωt,

where X(t) is the image of X under the time-t flow of v.
Prove the special cases where ω is time independent, and (i) ω is closed or (ii)

∂X is empty or (iii) M = R2, X = {0} × [0, 1] without using Cartan’s formula. □

Question 139. Let α be a 1-form, V,W vector fields. Prove the curvature formula:

dα(V,W ) = V · β(W )−W · β(V )− α([V,W ]).

This formula generalizes to k-forms as well! If α be a k-form, V1, . . . , Vk+1 vector
fields, then

dα(V1, . . . , Vk+1) =

k+1∑
i=1

Vi · α(. . . , V̂i, . . .)+∑
1≤i<j≤k+1

(−1)i+jα([Vi, Vj ], . . . , V̂i, . . . , V̂j , . . .),

where the hat denotes the omitted vector fields from the ordered list V1, . . . , Vk+1.
□

Question 140. Refresh your memory about chain homotopies between two chain
maps. Next time, we will start by showing that smoothly homotopic smooth maps
induce chain homotopic maps on the deRham algebra. □
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25. Mar 10, 2021: Manifolds with boundary, Stokes theorem, closed
and exact differential forms, homotopy formula for

differential forms, Poincare lemma

We start by introducing manifolds with boundary. The local models for mani-
folds with boundary are open subsets of

Hn := {(x1, . . . , xn) | x1 ≥ 0} ⊂ Rn.
Recall that we call a function from a subset of an Euclidean space smooth if it

can be extended to a smooth map in an open neighborhood.

Lemma 10. Let U and V be open subsets of Hn, if ϕ : U → V is a smooth
bijection with a smooth inverse, then it sends U ∩ ({0} × Rn−1) diffeomorphically
to V ∩ ({0} × Rn−1).

Proof. It suffices to show ϕ(U ∩ ({0} × Rn−1)) ⊂ V ∩ ({0} × Rn−1). This follows
from the inverse function theorem. □

Remark 45. If ϕ in the statement is a homeomorphism, then it still sends U ∩
({0} ×Rn−1) to V ∩ ({0} ×Rn−1). This is a more difficult result, called invariance
of domain. □

For U ⊂ Hn open, let us define:

∂U := U ∩ ({0} × Rn−1).

Question 141. Define a smooth manifold with boundary using atlases. Define the
boundary of a smooth manifold with boundary and prove that it is canonically a
smooth manifold. □

Most of the theory we developed thus far can be extended to smooth mani-
folds with boundary without too much trouble. We can define tangent bundle,
cotangent bundle, differential forms, integration of differential forms... When talk-
ing about orientations, don’t forget the equivalent formulation as a continuously
varying choice of orientations on each tangent space.

Remark 46. Sometimes it becomes useful to define manifolds with corners as well.
You can probably guess the local models, but generally further assumptions are
made on the naive definition for various reasons. There is not a uniform definition
in the literature. □

Here is why it was worth discussing manifolds with boundary all of a sudden.

Theorem 17 (Stokes’ theorem). Let M be an oriented manifold with boundary of
dimension n and α a compactly supported differential (n− 1)-form. Then ∂M can
be oriented so that ∫

M

dα =

∫
∂M

ι∗∂Mα.

Question 142. Fully prove this for a cube M = [0, 1]n ⊂ Rn. Yes, this has corners
but it’s ok - you can make sense of it, you are grown ups. Then, explain very briefly
how you can get to the general Stokes’ theorem from this special case. □

Remark 47. Something that we will not have time to cover in this class are global
neighborhood theorems: tubular neighborhood theorem for submanifolds, collar
neighborhood theorem for the boundary of a manifold with boundary. Please read
about these. □



LECTURE NOTES - MATH 215B (WINTER 2021) 71

Stokes’ theorem tells us that integrals of certain differential forms over compact
boundariless submanifolds are independent of continuous movements of the sub-
manifold. These are the ones that satisfy dα = 0. We call these closed. To explain
what we mean let us recall an important definition, which is the rigorous and more
general way of saying “continuous movements”.

Remark 48. It is much more intuitive to think about integration over submanifolds
but in fact we can integrate over any smooth map from a manifold and this flexibility
is useful. □

Definition 41. Two smooth maps f0, f1 : X → Y are called (smoothly) homotopic
if there is a smooth map

F : [0, 1]×X → Y

such that F |{0}×X = f0 and F |{1}×X = f1 under the standard identification of X
with {0} ×X and {1} ×X. □

Proposition 22. Let X be a k-dimensional oriented closed (boundariless and com-
pact) manifold and let f0, f1 : X → Y be homotopic smooth maps. If α is a closed
k-form on Y , then ∫

X

f∗0α =

∫
X

f∗1α.

Question 143. Prove this! □

For example if the image of f : X → Y is contained in the domain of a coordinate
chart whose image in Rn is a ball, then the integral of any closed form over it
vanishes! There is a class of closed forms where this vanishing happens without
any condition. These are the exact forms, the ones that can be expressed as the
exterior derivative of another differential form:

α = dβ.

Make sure you understand why from the Stokes formula.
The point is that not every closed form has to be exact. Even though for “small”

local closed submanifolds closed forms integrate to zero, for the ones that are in
a certain sense complicated, that do not fit in the domain of a chart, they do
not necessarily do. But even so, these integrals are not sensitive to continuous
movements. deRham theory is the systematization of this idea.

Recall that last time we had defined the deRham complex (Ω∗(X), d). Note that
with terminology from today

Hi
dR(X) =

closed i-forms

exact i-forms
.

Let us now switch gears and explain the homotopy formula for pullback. We
know that homotopic continuous maps induce chain homotopic maps on the singular
cochain complex. We will show that the same is true in for the deRham complex.

Let f : M → N be a smooth map between smooth manifolds. Then we can
check the following in local coordinates easily.

Proposition 23. Pullback map f∗ : Ω∗(N) → Ω∗(M) intertwines the exterior
differentials:

df∗ = f∗d.
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Therefore, f∗ is a chain map and induces a map on deRham cohomologies

H∗
dR(N) → H∗

dR(M).

Let F : R×M → N be smooth, and define ιt :M → R×M as the inclusion to
t-level and ft : M → N as F ◦ ιt. Let us also define trt : R×M → R×M be the
map that increases R by t. Now let us compute:

d

dt
|t=t0f∗t ω =

d

dt
|t=t0ι∗0tr∗tF ∗ω

= ι∗0
d

dt
|t=0tr

∗
t0tr

∗
tF

∗ω

= ι∗0tr
∗
t0L ∂

∂t
F ∗ω

= ι∗t0(ι ∂
∂t
dF ∗ω + d(ι ∂

∂t
F ∗ω))

= (ι∗t0ι ∂
∂t
F ∗)dω + d(ι∗t0ι ∂

∂t
F ∗)ω

This is called the infinitesimal homotopy formula. We get the full homotopy
formula by integrating.

Proposition 24. Let F : [0, 1]×M → N be smooth, and define ιt :M → [0, 1]×M
as the inclusion to t-level and ft :M → N as F ◦ ιt. There exists an R-linear map

h : Ω∗(N) → Ω∗−1(M)

such that

f∗1ω − f∗0ω = hdω + dhω.

An explicit formula for h is given in the proof.

Proof. We can extend F to a smooth map F : R × M → N. Integrating the
infinitesimal homotopy formula (the extension does not appear at all):∫ 1

0

(
d

dt
|t=t0f∗t ω

)
dt0 =

∫ 1

0

(
(ι∗t0ι ∂

∂t
F ∗)dω

)
dt0 +

∫ 1

0

(
d(ι∗t0ι ∂

∂t
F ∗)ω

)
dt0

=

∫ 1

0

(
(ι∗t0ι ∂

∂t
F ∗)dω

)
dt0 + d

∫ 1

0

(
ι∗t0ι ∂

∂t
F ∗ω

)
dt0.

We therefore define

h(α) :=

∫ 1

0

(
ι∗t0ι ∂

∂t
F ∗α

)
dt0.

The desired relationship follows since by the fundamental theorem of calculus:

∫ 1

0

(
d

dt
|t=t0f∗t ω

)
dt0 = f∗1ω − f∗0ω.

□

Corollary 2. Homotopic smooth maps induce the same map on deRham cohomol-
ogy.

Corollary 3 (Poincare lemma). Let U ⊂ Rn be star-shaped, which means that for
some point p ∈ U , which we can assume without loss of generality to be the origin,
and for every c ≤ 1,

cU ⊂ U.
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Then H∗
dR(U) = R[0]. This means that the homology is trivial in all non-zero

degrees and is one dimensional in the zeroth degree.

Question 144. Deduce this from the homotopy formula. This is the last question
you are responsible for in the exam. □

On Monday, we finish the discussion of differential forms with a sketch proof of
the deRham theorem.

26. Mar 12, 2021: Brief answers to selected questions

Answer to Question 137: For any diffeomorphism ϕ : X → X, we have

α(W )(ϕ(p)) = ϕ∗α(ϕ−1
∗ V )(p).

If we denote the flow of V by ϕt, then we have:

V · α(W ) =
d

dt
|t=0ϕ

∗
t (α(W )) =

d

dt
|t=0ϕ

∗
tα((ϕ−t)∗V ).

Now, we apply the diagonal trick to the very right:

(
d

dt
|t=0ϕ

∗
tα)(V ) +

d

dt
|t=0α((ϕ−t)∗V ) = (

d

dt
|t=0ϕ

∗
tα)(V ) + α(

d

dt
|t=0(ϕ−t)∗V ).

Finally use the definitions of the Lie derivative of a vector field and of a differ-
ential form.

Answer to Question 138: The tricky step here is to write∫
X(t)

ωt =

∫
ϕt(X)

ωt =

∫
X

ϕ∗tωt.

The last step is the general change of variables formula. The proof of this is
easy, I leave it to you. Since we are just relabeling everything by a diffeomorphism
it is also quite expected.

Also see Remark 42, which is called the degree formula, and which generalizes
the change of variables formula. For a local diffeomorphism this is also not difficult,
but in general it is slightly involved.

To finish the question use the diagonal trick, Cartan formula and Stokes theorem.

Remark 49. If you write things in coordinates, the diagonal trick that I used in the
two answers above simply becomes the product rule for coefficient functions from
Calculus. This was not the case when we used the diagonal trick before for the Lie
bracket and non-commutativity of the flows stuff. □

Answer to Question 142: Actually it would suffice to do the local computation
for a compactly supported n-form on Hn. Cube is good exercise though, I will
assume that you did this part. As long as you are careful about orientations, you
should be able to do it.

So how to finish from this local computation? The intution is to divide your
manifold with boundary into little cubes, use Stokes for each of the cubes, and
finish using the cancellations for faces that are common to more than one cube.
Dividing into cubes step ends up being unnecessarily complicated.
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It is easier to do the following. Take a partitions of unity
∑
i ρi where the support

of each ρi is contained in the domain of a coordinate chart. Note that ρi|∂M is a
partitions of unity on ∂M with the same property! Also note that

0 = d(
∑
i

ρi) =
∑
i

dρi.

The following shows that it suffices to prove Stokes theorem for ρiα:∫
M

dα =
∑
i

∫
M

ρidα

=
∑
i

∫
M

ρidα+
∑
i

∫
M

dρi ∧ α

=
∑
i

∫
M

d(ρiα)

=
∑
i

∫
∂M

ι∗∂M (ρiα)

=
∑
i

∫
∂M

ρi |∂M ι∗∂M (α)

=

∫
∂M

ι∗∂M (α)

But of course
∫
M
ρiα can be computed inside Hn. Make sure you understand

how your local computation covers this.

27. Mar 15, 2021: Proof of deRham theorem, further directions in
deRham theory: Poincare duality, intersection theory

Let us briefly recall the construction of singular cohomology of a topological
space X. The integral singular chain complex in degree i ≥ 0

Ci(X,Z)
is the abelian group generated by all continuous maps from the ith simplex ∆i to
X.

The differential

δ : C∗(X,Z) → C∗−1(X,Z)
is defined as an alternating sum of all the face maps. The singular cochain complex
over a ring R

C∗(X,R)

is defined as the dual complex. Cup product turns C∗(X,R) into a differential
graded algebra over R.

In what follows, we will take X to be a smooth manifold, in which case only
considering smooth maps ∆i → X gives rise to chain homotopy equivalent results.
We do this without comment from now on and ignore some technicalities that arise.
Please see the corresponding section in Lee for details.

Given a smooth map f : ∆i → X and a smooth differential i-form α on X, we
obtain a real number by integration ∫

∆i

f∗α.
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Clearly this gives rise to an R-linear map∫
: Ω∗

dR(X) → C∗(X,R).

Remark 50. When the dimension of the manifold and the degree of the form no
not match, the integral is formally defined to be zero for convenience. □

Question 145. Use the Stokes’ theorem to prove that this map is a chain map! □

Hence, we made our first step in the pursuit of deRham theorem.

Theorem 18. Let C∗(X,R) be the singular cochain complex of X with real coeffi-
cients. Then, there exists a quasi-isomorphism∫

: Ω∗
dR(X) → C∗(X,R)

obtained by integration of forms along smooth chains. The induced isomorphism

H∗
dR(X) → H∗(X,R)

respects the algebra structures. Moreover, if we have a smooth map X → Y , then
the following diagram commutes:

H∗
dR(Y ) //

��

H∗(Y,R)

��
H∗
dR(X) // H∗(X,R).

Question 146. Use the general change of variables formula for integration of differ-
ential forms to obtain the last statement about naturality of the deRham isomor-
phism. □

We already know that if U is a smooth manifold diffeomorphic to Rn, then
H∗
dR(U) = R[0]. We also know that the same result is true for H∗(U,R). Consider

the map

H∗(

∫
) : H∗

dR(U) → H∗(U,R).

Question 147. Chech that this is an isomorphism. □

Now recall that very early on in the quarter, we had mentioned the existence of
good covers.

Definition 42. Let X be a smooth manifold, and assume that the collection of open
subsets {Uα}α∈I cover X. We call {Uα}α∈I good if it is locally finite and for any
finite subset J ∈ I, ⋂

i∈J
Ui

is either empty or diffeomorphic to Rn (or equivalently an open ball). □

We want derive the fact that H∗(
∫
) is an isomorphism for all smooth manifolds

from the local result for Rn and the existence of a good open cover. What we need
is a “local-to-global” result.

Recall the Mayer-Vietoris exact sequence for singular cohomology:
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. . . . . . . . .

Hn+1(U ∪ V,R) // Hn+1(U,R)⊕Hn+1(V,R) // Hn+1(U ∩ V,R)

mm

Hn(U ∪ V,R) // Hn(U,R)⊕Hn(V,R) // Hn(U ∩ V,R)

ll

. . . . . . . . .

mm

The naive way to construct this long exact sequence would be to show that the
following is a short exact sequence of cochain complexes:

0 → C∗(U ∪ V,R) → C∗(U,R)⊕ C∗(V,R) → C∗(U ∩ V,R) → 0.

Unfortunately, this is not true and C∗(U ∪V,R) needs to be replaced with a quasi-
isomorphic chain complex. This can be found in any algebraic topology textbook.
I will ignore this difficulty and assume that this replacement is done whenever it is
necessary below.

Proposition 25. Let U, V be open subsets of X. Then, the following is a short
exact sequence:

0 → Ω∗
dR(U ∪ V ) → Ω∗

dR(U)⊕ Ω∗
dR(V ) → Ω∗

dR(U ∩ V ) → 0.

Question 148. Prove this. It is actually quite easy. You will need a partitions of
unity argument in one of the slots. □

Hence, we obtain the Mayer-Vietoris exact sequence for deRham cohomology:

. . . . . . . . .

Hn+1
dR (U ∪ V ) // Hn+1

dR (U)⊕Hn+1
dR (V ) // Hn+1dR(U ∩ V )

ll

Hn
dR(U ∪ V ) // Hn

dR(U)⊕Hn
dR(V ) // Hn

dR(U ∩ V )

ll

. . . . . . . . .

ll

Question 149. Concretely describe the connecting homomorphisms in both Mayer-
Vietoris sequences for fun. □

The following proposition is immediate.

Proposition 26. Let U, V be open subsets of X. Then the following diagram
commutes, where the vertical maps are the integration map.

0 // Ω∗
dR(U ∪ V ) //

��

Ω∗
dR(U)⊕ Ω∗

dR(V ) //

��

Ω∗
dR(U ∩ V ) //

��

0

0 // C∗(U ∪ V,R) // C∗(U,R)⊕ C∗(V,R) // C∗(U ∩ V,R) // 0
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Corollary 4. If two out of the three vertical maps in this proposition are quasi-
isomorphisms, then so is the third.

Proof. Use the five lemma in the induced map of long exact sequences. □

Theorem 19. H∗(
∫
) is an isomorphism for any smooth manifold with a finite

good open cover.

Proof. Do induction on the number of elements in the cover. □

Question 150. Prove that if H∗(
∫
) is an isomorphism for Xi, i ∈ I, where I is

countable, then it is an isomorphism for⊔
i∈I

Xi

as well. □

Theorem 20. H∗(
∫
) is an isomorphism for any smooth manifold.

Proof. Use an exhaustion to write the manifold as the union of two open subsets
each of which is a disjoint union of open subsets with finite good covers. □

All that is left from the main theorem is the statement about product structures.
We do not have time to actually do this. The right way to go about this is through
understanding Poincare duality and Thom isomorphisms in deRham theory.

Remark 51. Developing the theory for non-compact smooth manifolds require the
introduction of compactly supported deRham complex. □

Probably the most striking idea here is the following. For simplicity assume
that X is a closed oriented manifold and Z is an oriented submanifold. Then, we
can construct a differential form ηZ that is supported near Z with the following
property: ∫

Z

ι∗Zα =

∫
M

ηZ ∧ α,

for every differential form α on M .
Doing some work one can prove for example that for any two oriented submani-

folds Z1 and Z2, the cup product

PD([Z1]) ∪ PD([Z2]) ∈ H∗(X,R)
is equal to the the class of ηZ1

∧ ηZ2
under the deRham isomorphism.

Remark 52. Note that PD([Z1])∪PD([Z2]) can be computed as the Poincare dual
of the class of the submanifold that is obtained by taking the transverse intersection
of a generically perturbed Z1 and Z2. □

Assume now that the oriented submanifolds Z1 and Z2 are transverse and of
complementary dimension. Then we can prove

Z1 · Z2 =

∫
Z1

ηZ2
,

where the LHS is the signed count of intersection. One roughly thinks of ηZ as a
Dirac delta “function” supported at Z.

Question 151. I had mentioned that one can also access the cohomology of a smooth
manifold using sheaf theoretic techniques. Read and understand the notes here.
Solve the exercise at the end. I think you will find this useful and fun. □

http://math.mit.edu/classes/18.952/2018SP/docs/cech-cohomology.pdf
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28. Mar 17, 2021: Diffeomorphism relatedness of vector fields,
Vector fields depending on extra parameters, time dependent
flows, Ehresmann connections, Proof of Ehresmann theorem

Today we will prove the following theorem. Assume that B is connected through-
out.

Theorem 21 (Ehresmann). Let π : E → B be a proper surjective submersion.
Then π is a fiber bundle.

Before doing that I want to introduce two more general concepts regarding vector
fields and flows.

Definition 43. Let φ : X → Y be a smooth map. Let V be a vector field on X and
W be one on Y . We call V and W φ-related if for every p ∈ X,

φ∗V (p) =W (φ(p)).

□

Lemma 11. In the notation of Definition 43, if γ : (a, b) → X is an integral curve
of V , then φ ◦ γ : (a, b) → Y is an integral curve of W .

Proof. Use the chain rule. □

Even though we really will not use it today, let us also note the following.

Lemma 12. In the notation of Definition 43, if f : Y → R is a smooth function,
then

V · (f ◦ φ) = (W · f) ◦ φ.
In fact, φ-relatedness is equivalent to this condition.

Proof. For every p ∈ X,

V · (f ◦ φ)(p) = dfφ(p)(dφpV (p)) = dfφ(p)(Wφ(p)) = (W · f)(φ(p)),

as desired. The converse follows from the assumed equality in the middle, and the
fact if two vectors define the same derivation at a point, then they are the same
vector. □

Question 152. Prove that if V1 and V2 are φ-related to W1 and W2 (resp.), then
[V1, V2] is φ-related to [W1,W2]. □

Remark 53. Note that in the same way, one can make sense of two differential
operators being φ-related. Hence you can in fact prove the stronger statement that
V1 ◦ V2 and W1 ◦W2 are φ-related. □

Let us now move on to the second point that I want to make. Sometimes, one
encounters vector fields on manifolds that depend on extra parameters. To be
rigorous these are smooth maps S ×X → TX, where S is a smooth manifold and
fixing the parameter to any s ∈ S, we obtain a section X → TX.

For simplicity assume that S is an open subset of RN with coordinates s1, . . . , sN .
On a coordinate chart in X with coordinates x1, . . . , xn, then this S-family of vector
fields look like ∑

i

fi(s1, . . . , sN , x1, . . . , xn)
∂

∂xi
.
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We want to of course talk about the flows of these vector fields, specifically
we want make a statement that the flows of vector fields depend smoothly on
parameters. This sort of thing can be a bit confusing but all you have to do is the
following.

Consider the S-family of vector fields as a single vector field on S × X in the
only possible way. Now for this vector field we have developed the theory of flows.
All we need to do is to use the results that we proved there.

Question 153. Assume that X is closed so that there is no issue of completeness
(just so that the result you get can be expressed easily). Construct the flow map

R× S ×X → X

so that if we fix s, what we obtain is the flow of the vector field of the parameter
s. Prove that this map is smooth using our results for the flow of a single vector
field. □

This is a useful technique in general: if you have something that depends on extra
parameters, you can just think of those parameters as extra degrees of freedom in
your space and consider one static something.

An important special case of vector fields depending on parameters is time-
dependent vector fields. This is the case where S is one-dimensional. Typically
S also has a specified coordinate given to us, which we think of as time. Let us
just take S = R for simplicity. Here, there is something more interesting we can
consider than just looking at the flows of the vector fields for each value of the
parameter. We can change the vector field as we are flowing in the sense that our
trajectories (integral curves) are now tangent at time t to the vector field at time
t (which we call Vt.)

Question 154. Assuming X is closed again, show that this defines a smooth map

R×X → X.

Do this by defining the vector field

∂

∂t
+ V (t)

on R×X, and relating the flow of this vector field on R×X to the time dependent
flow. Notice that the map R×X → X is not an action of R for a time dependent
flow. □

Remark 54. If you understand this method, you should be able to use it when
completeness is not given. □

Ok, let’s go back to Ehresmann theorem. Here is the key definition.

Definition 44. Let π : E → B be a submersion.

• The vertical subbundle V of π is the distribution on E given by the kernel
of dπ at every point.

• An Ehresmann connection (or a horizontal subbundle/distribution) on π is
a subbundle H of TE (i.e. a distribution) such that at every point p ∈ E,

Hp ⊕ Vp = TpE.

□



80 UMUT VAROLGUNES

Proposition 27. Let π : E → B be a submersion. We can always find an Ehres-
mann connection for π.

Proof. Choose a Riemannian metric on E (we know that they exist). Then, de-
fine the horizontal subspaces by taking orthogonal complements to the vertical
subspaces at every point. □

Lemma 13. Let π : E → B be a submersion and H be an Ehresmann connection.
Let v be a vector field on B. Then, there exists a unique vector field v#on E whose
vectors belong to H and so that v and v# are π-related.

Question 155. This is easy once you understand what is going on. After you
prove this you will have made a big step towards understanding how Ehresmann
connections work. □

In particular, we can try to “lift” the flow of a vector field on B to the flow of
this canonical vector field on E. The only reason I say try to is because of potential
incompleteness issues, leading us to the properness assumption for the Ehresmann
theorem.

Question 156. Find a surjective submersion π : E → B with B closed (so every
vector field on B is complete) and an Ehresmann connection on π such that the
canonical lift v# of some vector field v on B is incomplete.

Similarly, find a surjective submersion π : E → B that is not a fiber bundle. □

Question 157. A problem that I should have given you long ago is the following.
For any connected smooth manifold and two points A and B there exists a self
diffeomorphism sending A to B. The way to do this is to find a vector field whose
flow takes A to B.

Now using the same strategy prove the following weaker version of Ehresmann
theorem. Any two fibers of a proper surjective submersion π : E → B are diffeo-
morphic. □

Now we finish the proof fully.

Proof of Ehresmann’s theorem. First of all, it suffices to prove that for B = Rn, we
can find a fiber preserving diffeomorphism (a trivialization)

Rn × E0 → E.

We make the crucial step of choosing an Ehresmann connection H.
For every a = (a1, . . . , an) ∈ Rn, define the vector field

Va :=
∑
i

ai
∂

∂xi
.

The time 1 flow of Va takes the origin to a.
Using our discussion above we can canonically lift these vector fields to E using

the Ehresmann connection: V #
a . Now consider the smooth map

Φ : R× Rn × E → E,

which is the flows of all vector fields V #
a put together. The key point here is that

indeed all the flows are defined for all times because of the properness assumption
(and because we know that the flow of Va is complete).
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We claim that the restriction of Φ to {1}×Rn×E0 gives the desired trivialization:

ϕ := Φ|{1}×Rn×E0
: Rn × E0 → E.

By construction and π-relatedness, ϕ sends {a} × E0 diffeomorphically to Ea. It
follows that ϕ is a bijection. To finish we need to check that ϕ has invertible
differential at every point. This is another good exercise so I will leave it to you. □

Question 158. Finish the proof using the splittings of the tangent space to vertical
and horizontal subspaces. □

This is a nice theorem but Ehresmann connections are useful way beyond this
proof. The proof simply illustrates the principle. If you have a fiber bundle, the nice
way to relate/connect different fibers in a coherent way is to choose a horizontal
subbundle and use the canonical lifting of tangent vectors from the base. Note that
if you only have a fiber bundle, there is no way of canonically identifying nearby
fibers to each other - different trivializations give different identifications.

Even with an Ehresmann connection the identifications of fibers are not entirely
canonical, they depend on a path that is chosen between the two points in the base.
Diffeomorphisms obtained this way are called parallel transport maps. Next time
I will start by giving a careful definition of this.

The infinitesimal measure of how the parallel transport maps depend on the
choice of the path is called the curvature! Curvature is the tensorial quantity that
tests the integrability of the horizontal distribution, which we talked about when
we were discussing Frobenius integrability. I will also clarify all this.

Finally I will talk about linear Ehresmann connections on vector bundles, and
equivariant Ehresmann connections on principle G-bundles. These are the cases
that are used a lot. In these cases, it is possible to entirely hide the geometric
viewpoint via Ehresmann connections, so my goal is to make you aware that it
exists.

29. Mar 19, 2021: Parallel transport using an Ehresmann
connection, curvature of an Ehresmann connection, connections

on principal G-bundles and vector bundles

Let π : E → B be a fiber bundle and let H be a choice of a horizontal subbundle.
For safety we assume that B is connected and the fiber is a closed manifold, but
it should be clear that there are some other situations where we can make sense of
what is below. We start with the definition of parallel transport maps.

Definition 45. Let γ : [0, 1] → B be a smooth path. The corresponding parallel
transport diffeomorphism

Pγ : Eγ(0) → Eγ(1)

is defined as follows. Consider the pull-back (can be thought of as restriction if we
have an embedded path) fiber bundle

γ∗π : γ∗E → [0, 1]

with the induced horizontal subbundle. Take the canonical horizontal vector field
on γ∗E which is γ∗π-related to ∂

∂t . The parallel transport diffeomorphism is the
time-1 map of this vector field. □
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Question 159. Define the induced horizontal subbundle in this definition. Gener-
alize the construction to the pullback bundle along any smooth map X → B. This
is called the pull-back connection. □

Question 160. Show that Pγ only depends on the image of γ. □

Question 161. Assume that the parallel transport maps only depend on the end-
points of paths. Prove that π is a trivial bundle. □

Remark 55. Note that the converse is not true. Even if a fiber bundle is trivial,
the parallel transport maps might be highly dependent on the path. If you choose
a connection that is compatible with a trivialization (called the trivial connection
if a trivialization is specified) then it only depends on the endpoints, but most
connections are not compatible with any trivialization. □

There is a weaker notion of independence of paths: two smooth paths that are
homotopic through smooth paths with fixed endpoints induce the same parallel
transport diffeomorphisms.

Proposition 28. Any two smoothly homotopic rel. boundary paths (what we just
explained) induce the same parallel transport diffeomorphism if and only if H is an
integrable distribution.

Proof. Let’s first assume the independence in paths as in the statement and con-
struct a foliation tangent to H. We first construct local sections: for every b ∈ B,
e ∈ Eb, and simply connected neighborhood U of b, there is a unique section of π
over U sending b to e and so that the image is tangent to H.

For every u ∈ U , we take a smooth path connecting b to u that lies entirely inside
U and send u to the parallel transport of e over this path. This defines a section
U → E. It’s smoothness can be shown similarly to the way we showed smoothness
in the proof of Ehresmann’s theorem. It is clear from the way parallel transport is
defined (via lifting vectors to horizontal vectors) that the image is tangent to H.

To prove uniqueness, notice that if we have such a local section, then it is a
diffeomorphism onto its image and paths simply lift to their images under this
diffeomorphism. This shows that if u is sent to e′, then e′ has to be the parallel
transport of e for any path from b to u. Also note that the simply connectedness
of U is not necessary for this argument.

We define the leaves by patching together the images of these local sections in
the only possible way using both the uniqueness and existence part of our previous
claim. Finally, by the same argument in the proof of Ehresmann’s theorem, we can
see that we have trivialization diffeomorphisms

Eb × U → E|U ,
which certify that we do indeed have a foliation if we choose a coordinate chart in
Eb.

Converse is easier. IfH is integrable, one easily sees that the leaves of the tangent
foliation are covering spaces over B. We finish using the properties of path lifting
for covering spaces. □

Hence, dependence on paths in the same homotopy class is equivalent to the
non-integrability of H. Recall that we had constructed a skew-symmetric (check!)
bundle map

D ⊗D → TM/D
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for any distribution D on a smooth manifold M , whose vanishing was equivalent
to integrability of D. In the case at hand, this obstruction takes the form of a
skew-symmetric bundle map

H ⊗H → TE/H ≃ V

over E.
This map and its millions of reinterpretations are called the curvature of H. Let

us briefly indicate one of these reinterpretations.
The data of an Ehresmann connection is equivalent to a bundle map h : TE →

TE that is a projection (p2 = p) at every tangent space whose kernel is the vertical
subspace. It is also equivalent to a bundle map v : TE → V that is the identity on
V .

Definition 46. Let L→M be a vector bundle. An L-valued differential k-form on
M is a smoothly varying collection of alternating k-linear maps

Tp × . . .× Tp︸ ︷︷ ︸
k

→ Lp

at every p ∈M . □

Assuming that there is a skew-symmetric bilinear pairing

Γ(L)× Γ(L) → Γ(L),

we can define the wedge product of L-valued differential forms:

α ∧ β(V1, . . . , Vk+l) =
∑

σ∈Sh(k,l)

sign(σ)[α(Vσ(1), . . . , Vσ(k)), β(Vσ(k+1), . . . , Vσ(k+l))].

Assuming Γ(L) is a Lie algebra, this makes L−valued differential forms into a
Lie algebra. Note that Γ(TE) and Γ(V ) are Lie algebras via the Lie bracket of
vector fields and the integrability of V .

Thinking of h as a TE valued 1-form, we see immediately that curvature is the
same data as the TE-valued 2-form

1

2
[h, h].

We also use the projection TE → V to turn this into a V -valued 2-form without
loss of data (why?).

Finally one can also very easily define the covariant derivative of sections of
Γ(E):

∇ : TM × Γ(E) → V.

You take a section s and a tangent vector l, push-forward l via s and project to the
vertical subspace:

∇ls := v(s∗l).

You can develop the theory a little further in this generality and I think it is
useful to do so, but we are losing sight of B (and the clock is ticking!). As our final
point, let H and H ′ be two Ehresmann connections with V -valued one forms v and
v′. Then, v − v′ has a nice property, it vanishes on vertical vectors. Hence, it can
be considered as a very complicated kind of 1-form on B: every tangent vector at
b ∈ B is sent to a vector field on Eb linearly (lift the vector to every point above
arbitrarily and project using v − v′). This is a vector field valued 1-form on B.
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We now start assuming that π : E → B is a vector bundle. Of course we want
to then consider Ehresmann connections that respect this extra structure. Namely,
we want the parallel transport maps to be linear maps, not just diffeomorphisms.
One can express this condition directly on the horizontal subbundle:

• H is homogeneous under scalar multiplication maps E → E. More pre-
cisely, for every r ∈ R, letting µr : E → E be the multiplication by r map,
we require

dµreHe = Hr·e.

That this suffices for the linearity of parallel transport maps is still counter-
intuitive to me (see here for a discussion.) It is still a slightly awkward condition
to work with.

The vector fields on Eb that we discussed above for v − v′ become linear vector
fields! Note that a linear vector field on Eb is the same thing as a linear map Eb →
Eb. Therefore, we say that the space of connections is a torsor over Hom(E,E)
valued 1-forms on B!

The covariant derivative perspective becomes much more useful here, because
we can think of it as a map

∇ : TM × Γ(E) → E

using the fact that V = π∗E.

Lemma 14. ∇ satisfies the Leibniz rule in the Γ(E) variable and it is R-linear in
the TM -variable.

Proof. This is a good exercise. □

We could go on for a lot longer, for example relate the curvature as defined above
to the more familiar definitions. To do this one has to re-express our definition
entirely in terms of vertical projection, which can then be related to covariant
derivative and so on.

After pointing out the slight inconvenience of using linear Ehresmann connec-
tions, I should also mention that for principle G-bundles the relevant notion, an
equivariant Ehresmann connection, becomes again extremely convenient. In this
case something that really helps is that V → E is canonically isomorphic to a trivial
bundle with fibers g, so v is a vector (and not vector bundle) valued 1-form, so we
can talk about its exterior derivative in the standard way etc.

Question 162. Prove that the curvature in this case is given by

dv +
1

2
[v, v].

You will need to use the formula of Cartan that we called curvature formula. To
begin note that up to a little detail v + h = id. □

https://math.stackexchange.com/questions/2658814/about-the-definition-of-ehresmann-connection/2659492#2659492
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