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1. Origin of the manifold concept 

1.1. n-dimensional systems geometrized 

In the early 19th century we find diverse steps towards a generalization of geometric lan
guage to higher dimensions. But they were still of a tentative and often merely metaphori
cal character. The analytical description of dynamical systems in classical mechanics was a 
field in which, from hindsight, one would expect a drive towards and a growing awareness 
of the usefulness of higher dimensional geometrical language.^ But the sources do not, with 
some minor exceptions, imply such expectations. Although already Lagrange had used the 
possibility to consider time as a kind of fourth dimension in addition to the three spatial 
coordinates of a point in his Mecanique analitique (1788) and applied a contact argument 
to function systems in 5 variables by transfer from the 3-dimensional geometrical case in 
his Theorie des fonctions analytiques (1797, Section 3.5.25), these early indications were 
not immediately followed by others. 

Not before the 1830-s and 1840-s do we find broader attempts to generalize geometri
cal language and geometrical ideas to higher dimensions: Jacobi (1834), e.g., calculated 
the volume of n-dimensional spheres and used orthogonal substitutions to diagonalize 
quadratic forms in n variables, but preferred to avoid explicit geometrical language in his 
investigations. Cayley's Chapters in the analytical geometry ofn dimensions (1843) did use 
such explicit geometrical language - but still only in the title, not in the text of the article. 
It was the following decade about the middle of the century which brought the change. In 
a short time interval we find a group of authors using and exploring conceptual generaliza
tions of geometrical thought to higher dimensions, without in general knowing about each 
other. Among them was Grassmann with his Lineale Ausdehnungslehre (1844) containing 
an expUcit program for a new conceptual foundation for geometry on n-dimensional (lin-

Such is suggested in some older historical literature, e.g., in R Klein's Vorlesungen iiber die Entwicklung der 
Mathematik im 19. Jahrhundert. This is discussed with reference to more recent investigations in Section 2.3 
below. 
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ear) extensional quantities,^ Pliicker with his System der Geometrie des Raumes (1846) and 
4-dimensional Hne geometry in classical 3-space, and, in a certain respect most elaborated 
among these attempts, Schlafli with his Theorie der vielfachen Kontinuitdt (1851/1901), 
which was published only posthumously.^ 

Also leading mathematicians like Cauchy and Gauss started to use geometrizing lan
guage in M" in publications (Cauchy, 1847) or lecture courses (GauB, 1851/1917). Gauss, 
in his lecture courses, even used the vocabulary of {n — kydimensional manifolds (Man-
nigfaltigkeiten), but still restricted in his context to affine subspaces of the ^-dimensional 
real space (GauB, 1851/1917, pp. 477ff.). There is no reason to doubt that Riemann got at 
least some vague suggestion of how to generalize the basic conceptual frame for geometry 
along these lines from Gauss and developed it in a highly independent way. 

1.2. Riemann's n-dimensional manifolds 

When Riemann presented his ideas on a geometry in manifolds the first time to a scientific 
audience in his famous Habilitationsvortrag (Riemann, 1854), he was completely aware 
that he was working in a border region between mathematics, physics, and philosophy, not 
only in the sense of the pragmatic reason that his audience was mixed, but by the very 
nature of his exposition.^ There was no linguistic or symboUcal frame inside mathematics, 
which he could refer to, even only to formulate a general concept of manifold. So he 
openly drew on the resources of contemporary idealist, dialectical philosophy, in his case 
oriented at J.F. Herbart, to generalize the classical concept of extended magnitude/quantity 
for geometry and to "construct" the latter as only one specification from a more general 
concept.^ Basic to such a construction was, so Riemann explained to his audience, the 
presupposition of any "general concept" which allows in a logical sense precise individual 
determinations. From the extensional point of view such a concept would form a manifold 
and the individual modes of determination were to be considered, as Riemann explicitly 
stated, as the elements or the points of the manifold with either "discrete" or "continuous" 
transition from one to the other. Thus Riemann sketched the draft for a conceptual starting 
point for what later was to become general set theory (discrete manifolds)^ and topology 
(continuous manifolds). 

Such concepts would gain mathematical value only if a sufficiently rich structure of 
(real or complex valued) functions on the manifold is available. Then it should be possible 
to describe the specification of points by the values of n properly chosen functions in a 
locally unique way (local coordinate system). That a change of coordinates would lead to 
locally invertible differentiable real functions, was not made explicit by him, but was to be 
understood from the context by careful listeners or readers. The distinction between local 
simplicity of manifolds, because of the presupposition of local coordinate systems, and 
globally involved behaviour was indicated by Riemann, but not particularly emphasized 
during the talk, although in other pubhcations and manuscripts it was.^ 

^ Hamilton's quaternions used 4-dimensionality for purely algebraic reasons, keeping geometry restricted to the 
3-dimensional subspace of purely imaginary quaternions. 
^ See [Kolmogorov and Yushkevitch, 1996]. 
^ For a detailed and very readable exposition of the width of Riemann's interests see [Laugwitz, 1996]. 
^ See [Scholz, 1982a]. 
^ For the line from Riemann via Dedekind and Cantor to general set theory see [Ferreiros, 1993, 1996]. 
^ Compare the next two sections of this article. 
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Of the utmost importance was Riemann's discussion of different conceptual levels -
we would say structures - which can be considered on a given manifold. During his talk 
he exempHfied these by the distinction between analysis situs (combinatorial topology of 
differential manifolds) and differential geometry. In his works on complex function the
ory he moreover pursued concrete investigations of complex and birational structure in 
the complex one-dimensional case (Riemann, 1851, 1857).^ And there are points in the 
latter pubhcations, where Riemann indicated that it might be useful to work with even 
more "general concepts" of a continuous character, which would transcend the limits of 
the specific postulates for continuous manifolds introduced or at least presupposed in his 
Habihtations lecture. Thus in his dissertation Riemann (1851, p. 36) had abready talked 
about infinite dimensional (real) function spaces and continuously varying conditions for 
functions in them, given by equations, which indicated nonlinear subsets in the dual of 
functions spaces. Moreover, Riemann had even already used the language of "continuous 
manifold" in this context without further specification what should be understood by that 
term.^ That was a drastic generahzation of Gauss's finite dimensional hnear submanifolds 
of R'̂  and even far more general than the manifold concept as developed by Riemann 
in 1854. 

That was three years before his Habihtations lecture. Three years after the latter, in his 
work on abelian functions, Riemann indicated how the complex/birational structure on a 
closed orientable surface of given genus p can be characterized by 3p — 3 independent 
complex parameters describing a normahzed branching behaviour over the complex plane. 
He thus started to explore the moduli space of Riemann surfaces of genus p and was 
cautious enough, not to talk about them as manifolds, but left it with a local description at 
generic points (Riemann, 1857, p. 122). 

Thus Riemann presented an outline of a visionary program of a family of geometrical 
theories, bound together by the manifold concept, diversified by different conceptual and 
technical levels like topology, differential geometry, complex geometry, algebraic geome
try of manifolds, and overarching the whole range from questions deep inside conceptual 
("pure") mathematics to the cognition of physical space and the nature of the constitution 
and interaction of matter. Here is not the place to follow all these branches; we rather con
centrate on the tools for a topological characterization of manifolds with some digressions 
into the broader context. 

1.3. Riemann on the topology of surfaces . . . 

Riemann used different approaches in his studies of surfaces. Already in his dissertation 
he dealt with the connectivity of compact bounded surfaces. His goal was to introduce 
complex analytic functions on (Riemann) surfaces over a bounded region of the complex 
plane. For simply connected surfaces he used his famous argumentation by the Dirichlet 
principle to determine real and imaginary parts of a complex function by the potential 
equation and boundary value conditions.^^ Here he characterized simple connectedness of 

^ Some more details in [Dieudonne, 1974, pp. 42ff.; Gray, 1986; Scholz, 1980, pp. 51ff.]. 
^ "These conditions, the totality of which form a continuous manifold and which can be expressed by equations 
between arbitrary functions . . . still have to be limited or supplemented by single conditions for arbitrary constants 
..."(Riemann, 1851, p. 36). 
'^ See, e.g., [Bottazzini, 1986, pp. 229f.]. 



28 E. Scholz 

a surface F by the condition that F falls apart by any cross cut leading from one point of the 
boundary 9F to another. ̂ ^ For not simply connected surfaces he introduced a connectivity 
number by a cut and count procedure. 

If F can be dissected by m cuts along double-point free curves between the boundary of 
F or new boundary components arising from earlier cuts into n simply connected pieces, 
then, so Riemann argued, the difference n —m is independent of the cutting procedure and 
a topological invariant. In fact Riemann's counting procedure can be read as a character
ization of the Euler number x (^ ) of the surface with each cross-cut increasing the Euler 
number by 1 (adding 2 zero cells and 1 one-cell) and leaving n simply connected surfaces 
X(F) -\-m = n, thus x (^ ) = « — m. By a specific choice of the dissection it is possible 
to reach exactly one simply connected piece at the end of the process, n = 1, giving the 
lowest number of cross cuts necessary, mo = 1 — x(^)- In this case Riemann would call 
the surface (mo + l)-fold connected. 

In his later work on abehan integrals and functions (1857) Riemann considered surfaces 
over the whole (compactified) complex plane and thus closed orientable surfaces. In order 
to apply his early counting method for the connectivity number he showed that "recurrent 
cuts (Ruckkehrschnitte)" do not change the latter (adding 1 zero cell and 1 one-cell) thus 
allowing him to apply the old method also to this case. His interest was now directed to
wards a different type of question: the periods of abelian integrals of first (or higher) kind, 
i.e. the characterization of multivaluedness of integrals of a holomorphic (or meromor-
phic) differential form a; on a closed Riemann surface F -^ P\C Starting from a general 
2-dimensional version of the Gauss-Stokes theorem and the Cauchy-Riemann equations 
for the coefficients of the holomorphic form co, he realized that (in modernized notation) 
dct) = 0 and therefore for any set of closed (oriented) curves c/, 1 ^ / ^ /:, forming a 
complete boundary of a part F' of the surface, 

U Ci=dF\ 

the evaluation of the integral will give zero: 

Jc],...,Ck JF' C],...,Ck 

Therefore, so Riemann concluded, the multivaluedness of integrals of holomorphic 1-forms 
(abelian integrals of the first kind) depends only (and still to a high degree in the case of 
meromorphic 1-forms, the abelian integrals of second and third kind)^^ on the topology of 
the surface. So it was reasonable to characterize the topology of closed (orientable) surfaces 
in this context by a method of boundary relations between systems of curves, which from 
the later point of view reads as a first step towards a homology theory of 2-dimensional 
manifolds. 

^ ^ Riemann thus used a purely homological characterization of simple connectedness, in contrast to the modern 
post-Poincarean view. Compare the contribution by R. Vanden Eynde, this volume. 
^̂  (Riemann, 1857, pp. 91ff.), compare also the contribution of R. Vanden Eynde, this volume. 
^^ f CO is Sin abelian integral of second kind if a; is a meromorphic differential form only with poles of order 
m > 2 and abelian integral of third kind if a; is a meromorphic form with poles of order 1 but with sum of 
residues 0. 
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For the purely topological part of his investigation Riemann did not take into account 
the orientation of curves or surface parts, thus simplifying the calculations. He introduced 
an equivalence between systems of curves C and C' if both together form the complete 
boundary of part of the surface C ~\- C = dF\ as in this case C and C' "achieve the same 
with respect to forming complete boundaries" with other curves (Riemann, 1857, p. 124). 
In slightly modernized reading Riemann thus worked with a geometrical description of 
bordance homology of submanifolds in F modulo 2, or, in another translation, with sim-
plicial homology, if F is simplicially decomposed by cuts along the curves c/ such that the 
latter represent 2-cycles of the decomposition. Indeed Riemann showed that there is a well-
determined number n of homologically independent curves, independent of the choice of 
the specific realization of the curve system, and that in the case of his surfaces this number 
is even, n = 2p (Riemann's notation (Riemann, 1857, p. 136)). 

Of course, Riemann did not keep to the modulo 2 reduction of homology when working 
with integrals of differential forms. Once a complete set of generators of the homology 
c i , . . . , C2p and corresponding periods wi ~ J^ co {I < / < 2p) of a differential form were 
determined, he worked with integral linear combinations of the periods and thus (at least 
impUcitly) with unreduced integral combinations of cycles (Riemann, 1857, pp. 137ff.). So 
the modulo 2 reduction was for him nothing more than a method to simplify the calculation 
of the topological invariants and in fact a result of a context dependent abstraction from 
orientation. 

1.4. . . . and on the connectivity of higher dimensional manifolds 

In the edition from Riemann's Nachlass Weber edited three fragments about analysis si
tus (Riemann, 1876a) in which Riemann explored first thoughts on the topological char
acterization of higher dimensional manifolds. These fragments can be dated with great 
probability to the time of Riemann's work on his Habilitationsschrift, thus about the years 
1852/1853. '̂̂  Here Riemann described the introduction of higher connectivity numbers 
using a bordance homological approach similar to the one later published in his theory of 
abelian functions and discussed in the last section. He considered closed connected sub-
manifolds Ui, I ^ i ^ m, of dimension n in a manifold M of dimension k,^^ which "taken 
each once, neither individually nor jointly" form the complete boundary of an (n H- 1)-
dimensional submanifold, which means, expressed in more recent terminology, they form 
a set of homologically independent w-cycles.^^ 

Riemann explicitly defined homological equivalence of /i-cycles A and B, using the 
terminology of "transmutability" of A into B}^ Riemann then argued with an exchange 
argument which algebraically expressed would be the Steinitz lemma and the change of 
generators in the homology vector-space (take into consideration that Riemann worked 

"̂̂  For more details see [Scholz, 1982b]. 
^̂  Riemann used the terminology "innere zusammenhangende unbegrenzte n-Strecke" for the Ui, without further 
specification of the objects considered. From a recent mathematical perspective "n-Streck" should perhaps not 
be understood as submanifold, but as "subvariety" admitting certain controlled singularities like the topological 
varieties in (Kreck, 1998). 

°̂ As in the last section suppose there is a simplicial decomposition of M, in which the Ui represent n-cycles. 
^' "Ein /i-Streck A heisst in ein anderes B veranderlich, wenn durch A und durch Stticke von B ein inneres 
{n + 1)-Streck voUstandig begrenzt werden kann." (Riemann, 1876a, p. 479). 



30 E. Scholz 

mod 2): If V/ (1 ^ / < m) is another set of n-submanifolds which fulfill the same bound
ary conditions as the Ui, each of which forms jointly with some of the Ui the complete 
boundary of an (n + l)-submanifold, then with respect to the formation of bounding re
lations the Vi can be substituted step by step for the Ui and in the end the Vi and the 
Ui (1 ^ / ^ m) can be considered equivalent in the context of forming boundary relations 
inside the manifold M. 

Riemann thus introduced the maximal number m of (mod 2) homologically indepen
dent n-cycles, i.e. the nth Betti number mod 2, and called the manifold M {m -\- l)-fold 
connected in dimension n (ibid.). In particular, he called M simply connected if all connec
tivity numbers (Betti numbers) mod 2 of M are zero, thus deviating from the modern, post 
Poincarean, terminology (or better the other way round).^^ He started to investigate the 
decomposition of a A:-dimensional manifold by dissection along lower dimensional sub-
manifolds, and tried to generalize his decomposition method from 1851 for surfaces to 
higher dimension, although he did not fully elaborate a symbolism to characterize types of 
such decompositions or topological invariants. The fragments leave no doubt, however, that 
already at the time of his Habilitationsvortrag he had a rather clear conceptual construction 
of Betti numbers modulo 2 in mind, taking into account the level of elaboration of symbol
ical characterization of manifolds. Enrico Betti seems to have been the only mathematician 
to whom he talked about these concepts in sufficient detail to transmit the essentials of his 
ideas. At least Betti was the only one in Riemann's lifetime, who understood what the latter 
was heading for. ̂ ^ 

2. Dissemination of manifold ideas 

2.1. The problem of how to characterize manifolds 

The reception and assimilation of Riemann's concept of manifold to the mathematics of the 
19th century was slow and inhibited by severe conceptual problems. Of course it was diffi
cult to understand what a manifold in general should be. The easiest way was to translate it 
as a "number manifold" in the 1870-s and later. At that time the former real quantities had 
been arithmetically reconstructed by Meray, Cantor, Dedekind, and Weierstrass, and it ap
peared as perfectly clear to talk about concretely given submanifolds of R'̂  or of projective 
spaces Pfn^ or P^C. Such submanifolds were in the easiest approach defined by inequah-
ties as m-dimensional (usually connected) subsets in the works of Beltrami (1868a, 1868b) 
Helmholtz (1868), and even of the young Klein during his investigations on non-Euclidean 
geometry and the Erlangen program (1871). 

That was of course a reduction of Riemann's intention and suppressed the distinction 
between local simplicity and global complexity of manifolds. That global behaviour was 
an essential ingredient for Riemann's concept, was most clearly understood in the 1860-s 
and 1870-s in the special context of geometric function theory and the dissemination of 
knowledge about the topology of Riemann surfaces (Liiroth, Clebsch, Neumann, Clifford 
et al.) An additional aspect was the problem of compactification of geometrical objects "in 
the infinite", which in a discussion between Schlafli and Klein was realized, when they 

^̂  Compare the contribution of R. Vanden Eynde and footnote 11. 
^̂  For the relationship between Riemann and Betti see [Bottazzini, 1977]. 
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debated the difference between one-point compactification of the plane Uke C to PiC and 
Hne compactification of E^ to P2R and its topological consequences (Schlafli, 1872; Klein, 
1873, 1874-1876). 

Only after discussions with Clifford on space forms during the 1873 meeting of the 
British Association for the Advancement of Science, Klein modified his earlier restricted 
concept of "manifold" and introduced the distinction between relative properties of a 
"number manifold", which depended on the embedding, and absolute ones which did not, 
orientability given as an example for the latter, without going into technical details of how 
to identify the "absolute" properties (Klein, 1874-1876). 

A more general characterization of "number manifolds" was the consideration of zero 
sets by equations (and inequalities), which usually were supposed to be nonsingular with
out further specification. This approach was taken by Betti (1871) in his paper on the 
topology of higher dimensional manifolds and by Lipschitz in his investigations of higher 
dimensional state spaces of mechanical systems (Lipschitz, 1872).^^ In Betti's case global 
complexity was, of course, part of his object of study. The local simphcity, however, re
mained unanalyzed before the proof of the implicit function theorem, including an explicit 
statement of the condition under which it holds, became generally known. The theorem 
and its proof was developed by U. Dini during his lecture courses in the late 1870-s and 
spread in analysis courses and monographs during the late 1880-s and early 1890-s.^^ 

Finally, a first, still clumsy and vaguely described, combinatorial approach to a charac
terization of n-dimensional manifolds was used by Klein's student W. Dyck in addition 
to the characterization as a "number manifold". Although starting as Klein had done from 
a submanifold M of R", Dyck gave a vague description of how to build M from an n-
ball En by cutting and pasting along submanifolds of type Ek isomorphic to k-bai\s (von 
Dyck, 1888, 1890). This process was not uniquely described in Dyck's symbohsm and 
presupposed sufficient intuition to be applied to a manifold defined by other means. It still 
sufficed for Dyck's purpose, as his procedure served only as an aid for the topological 
characterization of manifolds, not for their definition or construction. 

2.2. The changing concept of geometry 

During the 19th century the perception, structure and role of geometry was fundamentally 
transformed. Classically there existed but one, Euchdean geometry, and its unique role in 
the framework of knowledge at the turn from early modernity to "high" modernity was 
paradigmatically exemplified in Kant's philosophy of space. The breakthrough in the stud
ies of the foundations of geometry has been described by I. Toth as the shift from the 
"anti-Euclidean" hypothesis to the non-Euclidean point of view;^^ it was realized inde
pendently, as is well known, by Gauss, Lobachevsky, and J. Bolyai. Until the 1860-s this 
change of view was shared only by a small minority of mathematicians, and was moreover 
conceptually still rather fragile, as long as only the theoretical structure of non-Euclidean 

For Lipschitz compare [Liitzen, 1995] and the Section 2.3 below. 20 

Two important publications for the dissemination of the implicit function theorem were (Peano and Genocchi, 
1884) and Jordan 2nd edition of the Cours d'analyse (Jordan, 1893, pp. 80ff.). For Dini's broader contribution to 
the foundation of real analysis see [Bottazzini, 1985]. 
22 [Toth, 1972, 1980]. 
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geometries had been outlined, with no mathematical (or physical) interpretation in terms 
of accepted objects and relations being given.^^ 

Gauss was apparently well aware that his differential geometry of surfaces might carry 
the potential to open a route towards such a missing interpretation, but he could not (or 
at least did not) solve the dilemma from a foundational point of view, that his surfaces 
were constructed inside the framework of Euclidean geometry. His reaction to Riemann's 
Habilitations lecture shows how well Gauss understood that Riemann had given a beautiful 
outline and far reaching program for another and much deeper conceptual step towards a 
trans-Euclidean geometry, which would reduce non-Euclidean theory in the sense of Bolyai 
and Lobachevsky to nothing but a special case. Riemann even sketched such a reduction 
in the last section of his talk, although he apparently had no knowledge of Bolyai's or 
Lobachevsky's studies in the foundations of geometry.'̂ '̂  

But the concept of manifold became essential for the understanding of non-Euclidean 
geometries in the late 1860-s and early 1870-s when the latter became finally absorbed 
into the general knowledge of mathematics. All three main contributors to non-Euclidean 
geometry in this phase, Beltrami, Helmholtz, and Klein, did refer to Riemann, whose Ha
bilitations lecture became accessible to a wider scientific pubUc outside Gottingen in 1867 
after the publication in the Gottinger Abhandlungen (vol. 13). Here is not the place to dis
cuss the role of Riemannian ideas in the development of knowledge and the discourse on 
non-Euclidean geometry in detail. It has to be said, however, that among the just mentioned 
authors, involved in the development of non-EucHdean geometry in the 1860-s, only Klein 
had been in contact with Riemannian ideas before he started to work on non-Euclidean 
geometry, through his close cooperation with A. Clebsch from 1866 onward. Beltrami and 
Helmholtz, in contrast, started to develop their ideas independently and progressed con
siderably before they learned to know of Riemann's lecture and adapted their presentation 
according to the latter's outlook. The shift in Beltrami's argument due to the influence 
of Riemann's view was particularly clear and seems to be characteristic for the broader 
turn geometry went through in the 1860-s and 1870-s and in particular to the role of the 
manifold concept in it. 

E. Beltrami had started on his own in 1866 and 1867 to explore the possibilities inherent 
in the Gaussian theory of surfaces for an interpretation and understanding of non-Euclidean 
geometry. In early 1867 he realized that the geometry of the non-Euclidean plane can be 
gained in terms of a generalized Gaussian surface, i.e. the region 

A=: {jc I \x\^ <a^] CM^ 

with metric not induced by an embedding in Euclidean 3-space, but "formally" given by 

ds^ = — 5 T^{{^^ - xl)dx\-\-2xiX2dx\dx2 + ia^ - x f ) d x f ) . 
{a^ - xf - X2Y 

^^ The problematics of this type was addressed in Riemann's 1854 lecture by his opening remark, that earlier 
investigations on the foundations of geometry worked with purely "nominal" definitions. Although this remark 
was addressed at classical Euclidean definitions, Riemann hit a point which was even of higher importance for 
the contemporary status of non-Euclidean geometry, the discourse of which was apparently not known to him. 
'^^ Compare [Scholz, 1982a, pp. 220f.] and [Laugwitz, 1996]. 
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He derived all properties essential for what would later be called the "Beltrami model" of 
the non-Euclidean plane, but insisted on the necessity to find a real substrate {substrata 
reale) of this "purely formally given" system in order to understand its geometric mean
ing. He was glad to find such a "real substrate", by local isometric embeddings in classi
cal Gaussian surfaces of constant negative curvature K = —r~ ,̂ embedded in EucHdean 
3-space. So he sent a manuscript under the title Saggio di interpretazione della Geometria 
non Euclidea (published as (Beltrami, 1868a)) to Cremona as editor of the Giornale di 
Mathematiche. Cremona disagreed with Beltrami's narrow conception of "real substrate" 
of geometry, but nevertheless voted for pubUcation after some period of hesitation and ex
change with Beltrami about his views. Probably he doubted among others the mathematical 
value (not the correctness) of Beltrami's observation that, although a "real substrate" could 
be given for the non-Euclidean/?/a/i^ by local isometric embeddings in classical Euclidean 
space, nothing similar could be hoped for in the case of three-dimensional non-Euclidean 
geometry (Beltrami, 1868a, p. 284). 

After delivering the manuscript of his Saggio Beltrami got to know Riemann's Habil-
itations lecture (maybe through a hint by Cremona) and changed his mind with respect 
to the epistemological (or even "ontological") role of a classical interpretation for non-
Euclidean concepts. He immediately prepared a second publication in which the two-
dimensional case was generalized and an n-dimensional differential geometrical model for 
non-Euclidean geometry, using a simple Riemannian manifold representation, was given: 
M c W'^^ defined as a hemisphere, |xp = a^, X^M > 0, with metric induced by 

i = l 

on R""^^ Parametrization of M by the open ball \x\^ < a^ with x G M'̂  leads back to the 
case presented in the Saggio for the two-dimensional case. 

Both articles appeared in the same year, although in different journals; Beltrami only 
made small adaptations in the text of the first one with general references to the possibility 
of a more conceptual understanding of non-Euchdean geometry than looking for a "real 
substrate". The second article appeared as Teoria fondamentale degli spazii di curvatura 
costante (Beltrami, 1868b). The shift in interest and in outlook on the basic concepts of 
geometry between these two publications of Beltrami may serve as a concentrated expres
sion for what was at stake in the change from classical geometry to modern geometry of 
manifolds. Beltrami lived through such a change in a couple of months, because his own 
line of thought already had brought him to the point of a formal generahzation of Gauss's 
theory of surfaces, and the inherent movement was so well dynamized by Riemann's pre
sentation. 

Once Riemann's construction of manifolds was accepted, even if only in the concrete 
version of "number manifolds", the question of a "real substrate" for non-Euclidean ge
ometry changed its meaning completely. To use later terminology, a differential geometric 
model of the metrically well explored (although from the axiomatic point of view still not 
completely elaborated) theoretical structure of non-Euclidean geometry could be given in 
a drastically extended framework. For the modern reader this extended conceptual frame
work has become so common that she may tend to overlook the hard work necessary to 
achieve the state of discipHnary practice and knowledge she is used to. 
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2.3. First appearance of manifolds in mathematical physics 

Of course there are several semantical links of the manifold concept to physics, which 
could be pursued even in the 19th century. Riemann had already started to discuss such 
links on at least two levels. The final part and culmination of his Habilitations talk gave 
a sketch how in a subtle interplay between mathematical arguments and the evaluation 
of physical/empirical insights he proposed to come to a refined understanding of physical 
space. The essential bridge was an improved understanding of the miscrostructure of mat
ter and its binding forces that should be, according to Riemann, as directly translated into 
differential geometric structures on manifolds as possible. But he also left the possibility 
open for further consideration that perhaps some time even a discrete structure of matter 
has to be taken into account, as it might very well be that the concepts of rigid body and 
light ray use their meaning in the small. Still, so Riemann argued by reference to astro
nomical measurements, the acceptance of a Euclidean space structure was well adapted to 
the physical knowledge of the time. 

A second fink was indicated in his famous Paris prize essay (Riemann, 1861/1876). 
Riemann there had modelled a three-dimensional heat flow problem in an ex ante in-
homogeneous matter region and translated it into a differential geometric structure of a 
3-dimensional Riemannian metric. In the result the question of a homogeneity criterion 
for the underlying matter could be analyzed as a question of local flatness of the metric. 
As is well known, that was the context in which Riemann published his most advanced 
results characterizing the curvature of a Riemannian manifold.'̂ ^ There should be no seri
ous doubt, however, that Riemann was completely aware about the importance of such a 
connection between differential geometry and other parts of analysis or physics, although 
he did not, in the prize essay, elaborate explicitly on such a semantical connection, but 
motivated the interested reader to think along such lines by a highly interpretable reference 
to a Newton citation: "Et his principiis via sternitur ad majora." (Riemann, 1861/1876, 
p. 391)^^ 

Recent historical investigations have shown how deeply connected large parts of the ge
ometric discourse of the 19th century were to the semantics of physical space, even in parts 
of the discussion where, after the epistemological shift of mathematics brought about by 
the rise of set theory and the axiomatization movement at the turn of the century, a modern 
reader would not look for a direct semantical context in physical terms and would perhaps 
even tend to consider some parts of the debate at the end of the 19th century stricken by 
a surprisingly naive realism. This aspect has been discussed in detail by M. Epple in his 
[1997] and shall not be reproduced in this article.^^ Of long-ranging interest for the de
velopment of higher dimensional manifolds in physics were, on the other hand, the first 
moves for a geometrization of state spaces in mechanics. This aspect has recently studied 
by J. Liitzen, and my short report relies completely on his results.^^ 

25 Compare among others [Reich, 1994; Laugwitz, 1996; Farwell and Knee, 1990; Scholz, 1980]. 
2^ Superficial and textpositivistic reading might give another picture of Riemann's intention. There are contribu
tions to the historical literature like [Farwell and Knee, 1990] which deny the differential geometric content of 
Riemann's (1861/1876). 
2^ Compare also M. Epple's contribution in this volume for less "naive" attempts at physical semantics of topo
logical concepts. 
28 Cf. [Lutzen, 1988, 1995]. 
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Most important among the geometrization arguments in this problem field were the fol
lowing: 

(1) The subsumption of the least action principle for conservative systems under the 
form of a geodetical line. The state space was endowed with a physical metric of the 
form d^^ == 2(H — V) YlSij ^^i ^Qj^ ^^^ ^i coordinates in the state space, gij the 
metric induced on state space by the metric of the geometric coordinate space, H 
total energy, and V potential energy. That had been done analytically by Jacobi in 
the 1830-s and geometrized in low dimension (n = 2) by Minding, Liouville, and 
Serret about the middle of the century. Geometrization for higher dimensions was 
apparently discussed in the 1870-s and pubUshed, e.g., by Darboux in a particularly 
clear way in the year 1888. 

(2) Already a decade earlier Lipschitz developed a generalization of classical mechan
ics starting from a metric in the underlying geometrical space, which he allowed 
not only to be Riemannian but even Finsler (in modern terms) (Lipschitz, 1872). On 
that basis he developed a generalization of the term for the kinetic energy and the 
Hamilton-Jacobi form of mechanics. Moreover, in his discussion of conservative 
systems, he described the trajectories in the state space as (generaUzed) orthogo
nal to 1-codimensional submanifolds of the state space [Liitzen, 1995, Section 49]. 
Other authors, not all of them aware of Lipschitz' research, like Thomson/Tait and 
Darboux, pursued similar intentions.'^^ 

(3) The "Liouville theorem" on the volume preservation of the time flow in the phase 
space of Hamiltonian mechanics with canonically conjugate coordinates qi, pi, 1 < 
/ ^ n, and dynamical equations 

dqi _ dH dpi _ dH 

dt dpi ' dt dqi' 

which was presented by Liouville only in analytical formulation in a more gen
eral context (for the first time in 1838). Jacobi transferred it to mechanics by Jacobi 
about the middle of the century. Geometrization appeared in works on statistical me
chanics only in the late 1860-s early 1870-s by Maxwell and Boltzmann (apparently 
without knowing about Liouville's result).-^^ 

(4) Finally, Boltzmann's discussion of different types of dynamical systems to charac
terize his idea of entropy contains a broad range of high-dimensional arguments in 
configuration or phase space, although in a highly intuitive manner. These are inter
esting questions for a broader history of the use of advanced mathematical concepts 
inside late 19th century physics, which are impossible to report here. 

With respect to the claim made by Felix Klein in his famous historical lectures, that 
Gauss's and Riemann's differential geometry has supposedly "grown from up from the 
soil of the Lagrangian equations" [Klein, 1926/1927, p. 146], J. Liitzen has shown in his 
detailed historical studies of the sources that this remark distorts history highly. Klein ap
parently did not allow for sufficient distinction between the original historical development 
(as documented and accessible from the sources) and his own perception of Riemannian 

^^ Ltitzen considers Lipschitz' generalized orthogonal trajectory discussion as the most important geometrization 
approach in mechanics during the 19th century [Liitzen, 1995, Section 51]. 
^^ For more details see [Liitzen, 1990, pp. 657ff.]. 
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geometry that had formed in the late 1860-s early 1870-s, when he was a young mathe
matician and participated in the production of the events which he later told the history 
of. Explicit geometrization of configuration (state) and/or phase spaces of mechanical sys
tems was in fact undertaken only in that relatively later period in which Klein was actively 
involved, and only then the language of higher dimensional manifolds became part of the 
discourse of theoretical physics and vice versa. 

3. Steps towards a topological theory of manifolds 

3.1. The 2-dimensional case as an elementary paradigm . . . 

It was also in the 1860-s and early 1870-s that several fines of thought intertwined produc
tively and led to the first relatively well-explored segment of a theory with links to different 
fields of study in the mathematics of the 19th century, the combinatorial theory of poly-
hedra,^^ complex function theory, real projective algebraic geometry and the newly rising 
topological theory of manifolds. The main contributors to this subfield were A.F. Mobius 
(1863, 1865), C. Jordan with a series of publications through 1866, and Schlafli and Klein 
in their discussion on the orientability of real 2-dimensional subspaces of the projective 
space.^^ In geometric function theory divers authors contributed to a refined understand
ing of the role of topological concepts, in particular C. Neumann with his calculation of 
the connectivity of a Riemann surface from the winding orders of branch points,̂ -^ Liiroth, 
Clebsch and Clifford with their normalized representation during the 1870-s for branched 
coverings of PiC, which represent a Riemann surface with given number of leaves, given 
loci and winding numbers of branch points. 

Mobius and Jordan both discussed independently from each other, which "morphisms" 
they wanted to consider for their topological theory of surfaces. Mobius called them "el
ementary relationships (Elementarverwandtschaften)" and Jordan just talked about "map
pings", and both circumscribed a transformation of "infinitely small elements" of one into 
the other, respecting neighbouring relations. They indicated that this idea could in prin
ciple be made precise by infinite series of subdivisions of the surfaces into finite surface 
"elements" which are one-to-one correlated, respecting the neighbouring relations.̂ "^ 

Mobius gave in his article (1865) a detailed analysis of orientation procedures in sur
faces, which he decomposed in polygonal nets (a generalized representation of a trian-
gulation). He defined orientations of the boundaries of each polygon and coherence of 
neighbouring polygons, if the induced orientations in the common part of the boundaries 
are inverse to each other. As an application he gave the famous example of a non-orientable 
surface: a "Mobius band" complemented by a disc to form a closed non-orientable surface 
homeomorphic to ^ 2 ^ (which Mobius did not expHcitly remark) (Mobius, 1865, p. 483). 

His earlier pubfication on "elementary relationships" contained a topological classifica
tion of closed orientable surfaces embedded in R^ (without self-intersection). He classi
fied singular points of a "height" function geometrically into "elliptical" and "hyperboUc" 

^̂  See [Lakatos, 1976]. 
^^ For Schlafli-Klein compare Section 2.1. 

•̂̂  Genus p of the surface given by 2p — Yjiz=\ ("̂ / — 1) — 2« — 2 for a Riemann surface with n leaves over P\ C 
and k branch points of orders wi/ — 1 (Neumann, 1865). 
3"̂  More details in [Pont, 1974] or [Scholz, 1980, pp. 148ff.]. 
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points and developed what from a 20th century point of view reads as a geometric presen
tation of the Morse theory of differentiable closed orientable surfaces. He showed that each 
such surface F can be constructed from two homeomorphic ("elementary equivalent") sur
faces F\ and F2, each with exactly n boundary components, which are pasted together at 
the boundary components. Mobius called n the "class" of the surface and showed that it 
was a classifying invariant. He did not remark, however, that his "class" and Riemann's 
"genus"^^ p were essentially the same, with p = n — I. 

While there is no indication that Mobius knew the function theoretic work of Riemann 
and its topological aspects, he did connect his studies to the famous debate on Euler's 
polyhedral formula and proved it in the general case using his invariant, x (F) = 2(2 — n). 
In our eyes it reads of course more naturally if rewritten with Riemann's invariant, x (F) = 
2 - 2 / 7 . 

Jordan classified orientable surfaces, including those with boundary, independently from 
Mobius. He counted the maximal number k of recurrent cuts (cuts along double-point-free 
pairwise disjoint closed curves c/, 1 ^ / ^ k), which do not dissect the surface into 
disconnected pieces, and the number m of boundary components. He showed that the pair 
(m, k) classifies the orientable (compact) surfaces uniquely (Jordan, 1866, p. 85). For the 
proof he used dissection of the surfaces along the recurrent cuts and additional cross cuts 
and topological maps of the resulting simply connected pieces. 

Jordan, in contrast to Mobius, was aware of the connections between the topological 
theory of surfaces and complex function theory. Another aspect of his work on surfaces, 
the study of homotopy classes of closed paths, very likely was motivated by this context, 
although he did not remark so expHcidy and left it to the reader to realize it. Riemann had 
been inspired in his topological investigations of surfaces by the behaviour of the integrals 
of holomorphic differential forms and thus considered a homological equivalence concept 
between closed paths (cycles); but of course in complex function theory the question of 
analytic continuation and the resulting questions of multi-valuedness played an important 
role (including Riemann's work, as is well known). For analytic continuation the contin
uous deformation of paths, or in later terminology a homotopic concept of equivalence 
between cycles was the proper one to study. Jordan did not explain this, but he gave a com
plete description of the homotopy theory of his bounded orientable surfaces, including def
inition of the equivalence concept, generators and relations of the fundamental group. This 
beautiful and surprising aspect of Jordan's work is discussed in detail in Vanden Eynde's 
contribution in this volume and therefore not documented in more detail here. 

Here I only what to repeat that Jordan did not use explicit group terminology, as the 
group concept was in the middle of the 1860-s still essentially confined to substitutions. 
He nevertheless must have been aware of a conceptual relationship between what he did 
with the deformation classes of closed paths and groups, as he had been actively involved 
in Galois theory in the time immediately before. 

Taken Riemann's, Mobius', and Jordan's work together, and perhaps adding Schlafli 
and Klein, it becomes clear that at the transition from the 1860-s to the 1870-s a complete 
topological theory, including classification, homology and homotopy aspects for compact 
orientable surfaces was at hand and widely accessible, and a first elaboration of questions 
of non-orientability had been started. Betti, moreover, had indicated how a generalization 

^̂  The terminology "genus" is due to Clebsch (1864). 
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of the homological part of the theory to higher dimensions might work; although the route 
he had indicated was still unexplored. 

3.2. . . . and first attempts to understand higher dimensions 

In 1871 Betti pubHshed his presentation of higher numbers of connectivity. The objects 
of his study were «-dimensional submanifolds Sn of an K"\ spazi, as he called them, in 
general supposed to be closed and connected.^^ The method of characterizing connectivity 
numbers ("Betti numbers") pk {I ^ k ^ n) was to consider maximal systems of closed 
/:-dimensional submanifolds, f// (1 ^ / ^ /?), which "cannot form the border of a path wise 
connected (sic!) {m + 1)-dimensional part of the space" (Betti, 1871, p. 278). 

Like Riemann in his (not yet pubUshed) fragment Betti argued that the maximal number 
p is independent of the choice of the system of submanifolds, using step-by-step substi
tution of the cycles. His verbal description of the boundary relation was, however, not 
precise enough to exclude counterarguments, which were given by Tonelli (1875) show
ing that a more refined symbolism for the representation of the cycles and their homology 
relations was needed. Moreover, Tonelli corrected the unnecessary and for the argument 
detrimental specification of pathwise connectedness for the bounding part of the surface. 
These necessary criticisms did not lessen Betti's achievement of a pubhc presentation of 
the first step towards a homological theory of manifolds, which until then had lain latent 
in the thought and manuscripts of Riemann and some (provably at least one) of the latter's 
closest correspondents. 

There remained the lacuna, however, that although the method was presented for 
«-dimensional (closed) manifolds in general, no new insights were immediately accessible 
by this method for higher dimensions with the exception of the simplest three-dimensional 
examples. Betti, e.g., discussed the connectivity of the "thickened" two-sphere and the 
massive and the "thickened" torus in B? in letters to R Tardy written in 1863, although 
published only in 1915 (Betti, 1915). It nearly remained so until Poincare's great series on 
analysis situs at the turn of the century. There was, however, at least one other intermediate 
step of long standing significance, E. Picard's investigation of the topology of complex 
algebraic surfaces at the end of the 1880-s and in the early 1890-s. 

Picard combined with great imagination ideas from algebraic geometry, complex analy
sis, early homology and homotopy to analyze the topological structure of algebraic curves. 
He noticed in the early 1880-s, as M. Noether had done already a decade earlier-̂ ^ that in al
gebraic surfaces integrals /^ co of meromorphic differential forms without first order poles 
(forms of first or second kind) over 1-dimensional cycles c are 0 "in general" (i.e. for most 
algebraic surfaces). Picard gave a detailed explanation of this phenomenon by an analysis 
of the first Betti number of a generic algebraic surface F. Starting from a singularity-free 
birational model of F in P5C he derived a representation in projective three-space such 
that the resulting equation for F, f{x, j , z) = 0 (in inhomogeneous coordinates), leads 
to a 1-parameter family Fy of algebraic curves, which, with the exception of a finite set 
of values Y — {y i , . . . , }̂ jt}, are of the same genus p. From the topological point of view 
Picard thus studied a fibration F -^ P\C with a closed oriented surface of genus p as 

^^ Compare Section 2.1. 
'̂7 (Noether, 1870, 1875) and (Picard, 1885, p. 282; 1886, p. 330). 
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generic fibre and a finite set of exceptional fibres with genus < /?. By a beautiful blend of 
complex analytic and topological arguments, combining homotopy classes of closed paths 
in PiC \ Y, homology classes of 1-cycles in a generic fibre Fy, abelian integrals and the 
monodromy of the "Picard-Fuchs" differential equation describing the change of values 
of abelian integrals under change of y, he showed that in the generic case (for "most" 
F) all 1-cycles reduce homologically to only one already by monodromy constructions 
of boundary relations. Then by the observation that in each singular fibre Fy. at least one 
cycle degenerates to a point, he argued convincingly that such a "vanishing cycle" is ho
mologically trivial in F, and thus all 1-cycles are homologically zero. Picard started to use 
the same arsenal of methods to calculate the second Betti number of F, but did not get far 
in this attempt. Apparently the symbolical methods were not sufficiently elaborate to deal 
with this more involved situation before Poincare entered the arena. 

4. Passage to the theoretical stage 

4.1. Poincare entering the field 

During the 1880-s Poincare came across "manifolds" in several analytical or geometrical 
contexts, although he personally understood them at that time still in a rather vague way. 
One of these contexts arose from his work in the theory of automorphic functions that made 
him famous (and Klein nervous) at the beginning of the decade. The culminating problem 
of Poincare's and Klein's research was the uniformization "theorem". Poincare's points of 
departure were complex differential equations over algebraic curves 

— = v(x)0(x, j ) , 

(f) being a meromorphic function on an algebraic curve C given by f(x,y) = 0, which 
leads only to (finitely many) regular singularities.^^ If it could be solved by means of 
a pair of Fuchsian functions^^ x(^), y(^) taking as fundamental system the functions 
vi = ^/dxjd^ and V2 = ^^/dxjd^ (pushed down to C), Poincare called the equation 
a Fuchsian differential equation.^^ The quotient V2/v\ = ^ was then the inverse of a 
universal covering map of the algebraic curve C, branched in the (regular) singularities of 
0 on C Poincare called two Fuchsian equations of the same type if there is a birational 
transformation between the underlying algebraic curves C and C' which transforms the 
singularities one into another such that the monodromy characteristics remain identical.^^ 

For the sketch of a proof Poincare (1884) collected all types of differential equations 
on an algebraic curve of given genus p and with given number k of branch points and 

p is regular singular point of the differential equation if a fundamental system of solutions can be chosen such 
that the quotient is a multivalued function branching over p of order ^ (A; e N) or oo. 
^̂  That is, ^ varies in the Poincare half plane Im(^) > 0 and jc, 3̂  are invariant under a properly discontinuous 
subgroup G cPSLiiR). 
^^ For Fuchs's studies of the monodromy of regular singular differential equations compare [Gray, 1984; 1986, 
pp. 60ff.]. 
^̂  That means, the difference of the characteristic exponents of two fundamental solutions of the equation is 
identical and of the form 1//: or 0 with k e Z \ {0}. In that case the quotient ^ is the inverse of a branched 
covering of branching order |/:| or 00. 
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branching orders // (1 ^ / ^ k) in a "multiplicite" M which in generic points could be 
characterized by 6/? — 6 + 2/: (real) parameters. Analogously he parametrized the Fuchsian 
groups which lead to the proper genus p and given branching behaviour in another "mul-
tiplicite" M' (of the same dimension). Poincare's version of the uniformization theorem 
then claimed that each type contains at least one Fuchsian differential equation."^^ To argue 
for the correctness of this claim he considered the map g:M' ^^ M and showed that it 
is continuous and injective. The main point of the famous "continuity" proof was then to 
conclude the surjectivity of g from this information. 

Poincare gave a discussion which in fact spoke in favour of the surjectivity and was 
already sharper than Klein's, but still used highly intuitive ideas about continuous vari
ation of images in higher dimensional spaces in a symbohcally uncontrollable manner. 
Even the spaces themselves were not shown to be manifolds but taken as such, without 
further ado. For any critical reader (perhaps even including Poincare himself) the "conti
nuity proof" could thus be taken at least as much as an indicator for the necessity of an 
improved understanding of higher dimensional geometry as it was an indicator for the truth 
of the uniformization theorem. And in fact a clarification of the topological proof strategy 
was given only later by Brouwer (191 la, 191 lb) who used enlarged (necessarily no longer 
uniquely) parametrizing spaces which indeed were manifolds and to which he could apply 
his domain invariance theorem for continuous injective mappings.'*^ 

Another context in which Poincare gathered early experiences with higher dimensional 
manifolds arose from his investigation into the qualitative theory of differential equations. 
One of his questions was the topological classification of the singular points of a vector-
field (node, saddle point, focus, centre) and the introduction of the index as a numerical 
invariant. After having done so in the plane, he modelled nonlinear ordinary differential 
equations by the flow of a vectorfield v on (real) algebraic surfaces F and realized that 
the global index of the vectorfield ind(i;) (i.e. the sum of the local or pointwise defined in
dexes) is equal to the Euler characteristic of the surface: ind(i;) = 2 — 2/7 (Poincare index 
theorem) (Poincare, 1885)."̂ ^ 

In an attempt to generalize the result to nonlinear differential equations of higher order 
he transformed that problem to a high dimensional system of first order equations. Then he 
started with a geometrization of the n-dimensional situation, although at the outset he con
sidered geometrization as nothing more than a "useful language" (Poincare, 1886, p. 168). 

Fortunately he could build upon results of Kronecker (1869) about an analytically de
fined concept of index of functions systems on hypersurfaces of R", which about the same 
time was being given a topological content by W. Dyck.^^ Dyck had shown that the Kro
necker characteristic could be expressed in terms of his own purely topologically defined 
characteristic, which in fact was equivalent to the Euler characteristic and even equal up 
to sign."̂ ^ Working with the Kronecker characteristic as a symbolical tool,^^ Poincare was 

^^ In Poincare's terminology: Each type is a "Fuchsian" type. 
^^ On the other hand, Brouwer made it clear that the moduli spaces used by Klein and Poincare had singular 
points in curves with a nontrivial birational automorphism group, so that the argument of Poincare and Klein 
turned out in fact to be unreliable in its original form. 
^ Cf. [Gilain, 1991; Gray, 1992; Dahan, 1997]. 

Dyck published his first results on topological characteristics in the years 1885-1887 in the Mitteilungen 
Sdchsische Gesellschaft der Wissenschaften. 
"^^ [Scholz, 1980, pp. 249ff.]. 
^'^ Poincare did not cite Dyck, whose publication he apparently did not know. 
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able to sketch the idea of a high dimensional version of the index theorem for vector fields, 
the later Poincare-Hopf index theorem,"^^ for the case of open submanifolds or hypersur-
faces in R'̂ . In this context Poincare explicitly expressed the need for further elaboration of 
the methods to determine the higher orders of connectivity of Riemann and Betti (Poincare, 
1886,p.448).'^9 

Of course, there were other contexts in which Poincare found an opportunity to come 
back to manifold ideas, for example in his studies of complex integration in two variables 
/ /(?»^7) d^ dr] with (^, /?) e C^. Poincare showed that (in modern notation) dco = 0 for 
0) = f d^ A dr] and therefore the Cauchy theorem holds for two-dimensional integrals. 
Interestingly enough he still used the traditional language of "deformation" of one surface 
S into another S' through a region A C C"̂ , in which the 2-form is analytic, although 
from the context it must have been clear to him that a homological concept of boundary 
relations was closer to the situation (Poincare, 1887, p. 456). In his earlier experiences with 
high dimensional geometry Poincare had been skeptical with regard to its usefulness, as 
he argued that spatial intuition would no longer be directly applicable. By the late 1880-s 
however, he had gathered sufficient material in different fields of his studies for him to 
accept that such "hypergeometrical" language of "multiplicites" are useful and perhaps 
even necessary for proceeding further with some of his analytical investigations. 

4.2. A constructive approach to manifolds 

The exclusion of a direct application of spatial intuitions would not exclude indirect appli
cation, mediated by a proper symbolical framework, which had been only roughly sketched 
by Riemann and Betti. That is what Poincare started to pursue in the early 1890-s and con
tinued to work on for the rest of his life, best expressed in his ground breaking series of 
articles on "analysis situs" (Poincare, 1895,1899,1900,1902a, 1902b, 1904). In this series 
Poincare set the stage for a theoretical exploration and characterization of manifolds of any 
(finite) dimension which expanded so fruitfully and vastly in our century. Moreover, in the 
elaboration of the tools of analysis situs to make the "hypergeometry" of manifolds sym
bolically accessible, he brought combinatorial topology to the point where it could easily 
transcend the limits of manifolds and become a field of study of its own. Some traits of the 
theoretical and methodological achievements are outlined in the next section. 

Poincare, in accordance with his general philosophy of mathematics, did not use a for
mal, perhaps even axiomatic, definition of manifolds (which would moreover have been 
rather difficult to formulate in the 1890-s), but preferred to outline constructive procedures 
for the generation of manifolds. He used two main procedures to define a manifold M. 

(1) In his first definition he described M as zero set / " ^ O ) of a differentiable function 
/ : A -^ M ,̂ with A open subset in R'̂ +^, defined by inequalities, and the Jacobian 
df(x) of maximal rank for all x e A. He admitted that M might have a boundary. 
More clearly than his predecessors Poincare explicitly used the rank condition to 
derive local parametrizations of M. In addition he explained the morphisms under 
which two such representations M and M' should be considered as equivalent, as 

^° (Hopf, 1926). An intermediate step was taken by Brouwer in his work on the index of vectorfields on 
/I-dimensional spheres (Brouwer, 1911b, pp. 107ff.); cf. [Johnson, 1987, p. 82]. 
^^ Ironically Poincare got the name wrong speaking about "Brioschi" where he obviously referred to Betti's work 
(Poincare, 1886, p. 448), showing that he just started to assimilate the subject. 
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diffeomorphisms of open neighborhoods of M, respectively M\ in their embedding 
real space, which map M onto M' or vice versa. In his terminology he did not even 
indicate the possibility of a distinction between a general topological and a differen
tial topological structure, although he used the terminology of "homeomorphismes" 
(Poincare, 1895, pp. 196ff.). In fact Poincare alluded to Klein's Erlanger program 
and called the groupoid of his diffeomorphisms a "group", which should define the 
branch of geometry called "analysis situs", as he saw it (ibid., p. 198). 

(2) The second main definition allowed for a finite set (we would say adas) of differen-
tiable regular parametrizations of M by domains V,- in W\ Poincare considered M 
as covered by sets Ui which all were subsets of M"̂  (m ^ n), without considering M 
as a subset of M"': M = [Ji^j Ui with parametrizations ©t: V/ -^ Ui (l ^ i ^ I) 
and regular change of parametrization in /i-dimensional components of overlaps of 
the Ui-s (and with a similar definition in the complex case).^^ Poincare concen
trated attention in this definition on the analytic case and used the terminology of 
"analytic continuation" for the description of change of parameters in overlapping 
regions (Poincare, 1895, p. 200). In this case he introduced the orientability of M 
by the condition of positive functional determinant for changes of parametrization. 

Of course, Poincare did not exclusively consider these main definitions, but explained how 
to derive local parametrizations from the first definition, discussed diverse examples of 
mixed constructions, e.g., by restriction of the parameter sets V/ to lower dimensional sub-
manifolds of the parameter space W, defined by method (1). Even the operation of a finite 
group leaving the parametrizing submanifold invariant was included, as in his description 
of an image of the real projective plane Pi^ in R^. ^̂  

Depending on the context of investigation, Poincare later introduced additional con
struction procedures, which presupposed that the resulting object satisfied definitions (1) 
or (2). 

(3) The most important of these additional constructs was the cell subdivision and 
the representation of M as a finite geometric cell complex a "polyedre", which 
by definition satisfies the local manifold condition (Poincare, 1895, pp. 270ff.). 
He used it inter alia for constructing manifolds with prescribed fundamental group 
by boundary identification rules, although restricted to the three-dimensional case, 
where the local manifold conditions about identified 0-cells could be controlled by 
a combination of symbolic representation and basic space intuition (Poincare, 1895, 
pp. 229ff.).^2 

(30 In the fifth complement (1904) Poincare introduced even more construction pro
cedures, a "skeleton" representation of 3-dimensional manifolds, containing some 
ideas of three-dimensional Morse theory (Poincare, 1904, pp. 475ff.), and an adap
tation of an idea of P. Heegard to form a closed 3-manifold M by boundary identifi
cation of two homeomorphic handle bodies V and V'P He used these procedures 

^^ Poincare would not read M as literal union of the Vi. In lower dimensional components of intersection Ui Pi Uj 
he thought in terms of a disjoint union, only in /i-dimensional components he would identify the respective points 
of Ui and Uj; therefore he did not treat M globally as subset of R'". In more recent terminology, M is a mani
fold, while the immersion used in Poincare's construction is not necessarily injective, and thus the image M no 
(sub-) manifold of R'". 
^̂  Poincare used a parametrization of ^ 2 ^ by S'^ C R^ with antipodal identification. 
^•^ These examples are discussed in detail in [Volkert, 1994, pp. 87ff.]; compai'e also [Volkert, 1997]. 
^^ Compare [Volkert, 1994, pp. 137ff.]. 
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to present the famous Poincai'e "dodecahedral space" M with trivial homology but 
fundamental group isomorphic to the (extended) dodecahedral/icosahedral group 
/* (Poincare, 1904, pp. 478ff.). 

Poincare was convinced that each manifold given by definitions (1) or (2) can be repre
sented as a (finite) "polyedre" as in definition (3). His arguments in favour of that convic
tion were, however, more founded on intuitive "optimism" than on critical evaluation of 
the question (Poincare, 1899, pp. 332ff.). So Poincare claimed to have a positive solution 
for what later was considered to be a basic problem for the clarification of the conceptual 
structure of the topological theory of manifolds, the existence of triangulations for differ-
entiable or topological manifolds.̂ "^ A similar evaluation can be given for his use of the 
principle that it is always possible to find a common subdivision of two given finite cell 
subdivisions of a manifold (Poincare, 1895, p. 271), which later became the Hauptvermu-
tung in the terminology introduced by Kneser.^^ 

Already from this short presentation it may become apparent that Poincare's construc
tive concept of manifold contained an arsenal of methods to build examples to enrich the 
understanding of the world of new geometric objects. Although he did not even attempt to 
give a formal analysis and unified delimitation of the concept, Poincare's work was thus 
highly effective and gave a tremendous push towards a more refined understanding of the 
general concept outlined by Riemann and so difficult to understand in the second half of 
the 19th century. 

4.3. Giving a theoretical status to the topology of manifolds 

These examples of manifolds constructed and considered by Poincare served as material 
for the exploration and development of methods to analyze their intrinsic analysis situs na
ture. Poincare's work is, of course, much better known by its contribution to these methods 
than by the elaboration of the basic material of manifolds.^^ In fact, Poincare presented 
two approaches to analyze the homology of manifolds, the first followed Riemann and 
Betti rather directly and was introduced in the opening work of the series (Poincare, 1895). 
The second one with a presentation and elaboration of the homology of cell complexes was 
the subject of the first two complements (Poincare, 1899, 1900). Moreover he introduced 
the fundamental group of manifolds already in (Poincare, 1895) and constructed diverse 
examples of 3-dimensional manifolds with prescribed fundamental group. These more el
ementary examples were superseded by the elaborate case of the "dodecahedral" space in 
the fifth complement (Poincare, 1904). In the two intermediate supplements he developed 
methods to calculate the homology of algebraic surfaces (Poincare, 1902a, 1902b). Diverse 
detailed historical studies deal with different aspects in Poincare's topological work;^^ here 
I only want to outline the homological part of the profile of the theory which Poincare pro-

^^ Compare [Kuiper, 1979]. 
^̂  Compare [Volkert, 1994, p. 164] and other contributions in this volume. 
^^ For the latter aspect see [Volkert, 1994]. 
^̂  For the homological aspects of Poincare's work consult primarily [Bollinger, 1972] and in addition 
[Dieudonne, 1989, 1994] and from a semiotic point of view [Herrmann, 1996], for the homotopic aspects [Vanden 
Eynde, 1992], for specific construction methods of low 3-dimensional manifolds [Volkert, 1994], for a discussion 
of the contiibution to the manifold concept and an outline of Poincare's topological study of algebraic surfaces 
[Scholz, 1980]. Compare also diverse other contributions to this volume. 
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posed in order to make the "hypergeometry" of manifolds accessible. Poincare's introduc
tion of the fundamental group is discussed in the article of Vanden Eynde (this volume). 

In his first approach to homology in a n-dimensional manifold M Poincare followed Rie-
mann's proposal to study bordance relations of oriented submanifolds V\,... ,Vkof given 
dimensional m ^n. His procedure was conceptually still highly intuitive and vague, as the 
underlying idea supposed the study of equivalence relations on the set of all m-dimensional 
submanifolds and was too complicated to get hold of, with the methods available at the 
time. Moreover, to make the approach feasible, the "submanifolds" should admit certain 
"nicely behaving" singular subsets, like the topological (or smooth) "varieties" recently 
proposed by (Kreck, 1998). Poincare, however, went a step further than his predecessors 
in the symbolical description of his objects and relations. In particular, he introduced an 
algebraic representation, 

Vi + V2 + . •. + y^ - 0, 

for the condition that all the V, form a complete boundary of an (m + l)-dimensional sub-
manifold and transformed such homology relations by addition and multiplication of the 
terms with integer coefficients. In this approach the terms were of a peculiarly ambivalent 
semiotic nature. Basically, Poincare interpreted terms like XVi (X G Z) as a collection of 
X "slightly varied" copies of the (oriented) submanifold V,; but he accepted and used a 
formal division of homologies,^^ as a result of which the homologies no longer directly 
had to express boundary relations.^^ In the result Poincare got an interesting symbolical 
system for homologies and the calculation of Betti numbers pi ,̂ ^ which allowed him to 
explore basic features of the homology of manifolds much deeper than his predecessors, 
in particular duahty for the Betti numbers, pi = pn-i for orientable closed manifolds, and 
the Euler-Poincare theorem x (^) = X]/Lo(~ 1)' Pi • 

None of these could be proven indubitably in Poincare's approach. For the duality the
orem his calculation of the intersection numbers remained highly intuitive, as the differ
ential topology of general transversal intersections was too involved to be clarified by his 
means. For the generalized Euler theorem Poincare used his principle of the existence 
of a common refinement of two finite cell decompositions of the manifold M (the later 
Hauptvermutung). So, from a critical point of view, both principles (Poincare duality and 
Euler-Poincare) had rather the status of well motivated conjectures than of "theorems", 
even in the eyes of critical contemporaries like Heegard, Dehn, Tietze et al. 

After Heegard's criticism of the discussion of duality in manifolds, Poincare estabUshed 
his second, much better algebraicized combinatorial method to define and calculate con
nectivity numbers, adding torsion numbers and coefficients to the Betti numbers (Poincare, 
1899,1900).^^ He started from a representation of the manifold M as a geometric cell com
plex constituted by ^-cells a^^ (1 ^ / ^ aq for all dimensions 0 ^ q ^ n), and described 

^^ He made the "division rule" explicit in the first complement answering P. Heegard's criticism of having sup
pressed torsion elements. In (Poincare, 1895) it was subsumed under a sort of "metarule" for homologies: "Les 
homologies peuvent se combiner comme des equations ordinaires" (Poincare, 1895, p. 207). 
^^ Compare the often discussed example of the line / in ^ 2 ^ with 2/ ~ 0 having a direct geometric interpretation 
as a small angular segment U between two lines, dU = 2/; whereas the result of division / ~ 0 had no longer 
direct geometric interpretation, as criticized by Heegard. 
^^ To be precise, Poincare used a slightly changed definition of Betti numbers P/ := p/ + 1, if /?/ is the maximal 
number of homologically independent /-cycles ("with division", i.e. calculating with integer coefficients in Q). 
6̂  Compare [Bollinger, 1972]. 
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boundary identifications as "congruences", of = J^j ^tf^j \ codified by the matri
ces E^^^ = (s^j) , and reduced the consideration of cycles and their boundary relations 
to those expressible in Hnear combinations of cells. That allowed him, of course, to avoid 
the difficult problems arising from investigation of all submanifolds and led to the well-
known approach of combinatorial topology. Poincare could thus very well show that the 
most evident difficulties arising from his first approach resulted geometrically from nonori-
entability of the manifold M and algebraically from the ambivalence between homology 
"with division" (we would say calculating the homology over Q) and "without division" 
(over Z). 

Poincare (1900) presented a new definition and a calculus for the calculation of Betti 
numbers and torsion from the incidence matrices E^^^ of a cell decomposition of M. The 
method used diagonalization of incidence matrices by elementary transformations to ma
trices T^^\ Expressed in sHghtly more structural terms Poincare developed a calculus to 
choose generators of the Z-module Cq of cellular ^-chains such that all boundary opera
tors dq \Cq -^ Cq-\ are diagonahzed. That allowed him to read off immediately the Betti 
numbers and torsion coefficients and the distinction between manifolds "with" or "with
out" torsion from the diagonahzed matrices 7^^^ (Poincare, 1900, p. 369). 

Poincare was sure that his second, the combinatorial, method led to the same homolog-
ical invariants (Betti numbers and torsion coefficients) as the first, bordance of submani
folds, method. He first showed that a subdivision of the "polyedre" does not change the 
combinatorial invariants (1899, pp. 303ff.). Considering now a set of submanifolds, aris
ing in the representation of cycles and homologies of the first method from the "principle" 
of the existence of cell subdivision for each of them and the assumed possibility of con
structing a common subdivision ("Hauptvermutung"), he concluded without any hesitation 
that the "old" and the new (combinatorially defined) homological invariants are identical. 
This part of the "proof" needed only six lines in his presentation (Poincare, 1899, p. 309). 
Although he thus got new problems he could not solve or even realize, he achieved on the 
other hand a proof of duality for orientable manifolds and the generalized Euler theorem 
in the symbohcally clear framework of the new approach (1899, pp. 302f.; 313ff.). 

In the end Poincare had achieved a lot for a homological theory of (differentiable com
pact) manifolds about the turn of the century. He had introduced the old invariants (Betti 
numbers) in a new, much clearer symbolical framework, had introduced new ones (torsion 
coefficients), developed a well algebraicized calculus to compute them, calculated them in 
a great variety of cases, and proven two basic theorems (duality, Euler-Poincare). More
over he had introduced and given a basic analysis of the topological importance of the 
fundamental group, which is put into the context of the development of homotopy ideas 
in the contribution of R. Vanden Eynde in this volume. Thus, even taken into considera
tion that Poincare took basic principles to be valid without any hesitation (triangulabihty, 
Hauptvermutung), that turned out to contain serious problem potential for the future clari
fication of basic structures of the topology of manifolds during the century to come, there 
can be no doubt that he was the main initiator of a topological theory of manifolds of wide 
range.^^ Moreover, the elaboration of his second (combinatorial) approach to homology 
opened the path towards a homological theory of more general topological spaces. 

^^ This advancement tends to be suppressed in Dieudonne's discussions of Poincare, as he looks at the latter 
rather with the eyes of a "modern" mathematician in the sense of the 20th century than with those of a historian. 
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5. Elaboration of a logical frame for the modern manifold concept 

5.1. Early axiomatic attempts for two-dimensional manifolds 

Topological spaces on different levels of generalization were analyzed in different ap
proaches and with varying degrees of precision in the rise of modern mathematics in the 
early 20th century. During the last three decades of the 19th century Cantor had devel
oped his theory of point sets in R" in the framework of general set theory. He himself was 
shocked to realize that bijective maps between real continua of different dimensions can be 
conceived, and even Dedekind's comforting conviction that more specific maps, in this case 
bijective and (bi-)continuous ones, would respect the invariance of dimension left the prob
lem to prove (or disprove) such a conjectured invariance. Naive assumptions from space 
intuition were particularly deceptive in this field; that became even clearer about 1890 
when Peano published his example of a "spacefilling" curve with the surprising effect, that 
the lack of injectivity would even for continuous maps not necessarily lead to a decrease 
of dimension (or keep it at most invariant), but could as well increase it. Early attempts 
by Liiroth, Thomae, Netto, and Cantor himself, to prove the invariance of dimension under 
bijective continuous maps, turned out to contain unclosable gaps and again (as in the case 
of the continuity proof for uniformization) it was only Brouwer who surmounted the dif
ficulties and indeed proved the correctness of Dedekind's suggestion (Brouwer, 191 la).^^ 
About the turn of the century two methodological strategies for clarifying the concept of 
manifold were formed and sketched, an axiomatic one proposed by Hilbert, taken up by 
Weyl (about 1913), Hausdorff, H. Kneser, and VeblenAVhitehead, and a constructive one 
proposed by Poincare, taken up by Dehn/Heegard, Tietze, Steinitz, Brouwer, Weyl (after 
1920), Vietoris, van Kampen and others. 

The first attempts at an axiomatic formulation of manifolds by Hilbert and by Weyl 
(1913) were limited to dimension 2 by contextual considerations. They contained a blend 
of early ideas of general topology and postulates for regular coordinate systems as specific 
manifold structures. Hilbert's approach (1902a, 1902b) arose from the context of the foun
dations of geometry and had as its main goal the erection of an axiomatic framework for 
the concept of a (simply connected) two-dimensional continuous manifold which should 
serve as a starting point for a group theoretic characterization of the principles of Euclidean 
geometry. 

Hilbert supposed the plane E to be topologized by a sufficiently rich system of neigh
bourhoods ("Umgebungen") Up of each point p e E, formed by sets U C E containing 
p and each complemented by at least one coordinate bijection i/r :U -^ V onto a Jordan 
domain V C M?, such that the four following conditions hold: 

(1) For each Jordan domain V^ C V containing \lr(p) the counterimage V̂ ""̂  (V') is also 
a neighbourhood of p. 

(2) For two coordinate bijections -ij/ and ^^ of the same neighbourhood U onto V and 
V^ the coordinate change i/r̂ i/r""̂  : V -> VMs bijective and continuous. 

(3) A neighbourhood V of p e E, containing a point q, is also a neighbourhood of ^. 
(4) Each two neighbourhoods V, V^ of p contain another one V C V H V. 
(5) To any two points p,q e E there exists a common neighbourhood V. 

^^ For the history of invariance of dimension see [Johnson, 1979/1981, 1987] and for an outline of Brouwer's 
proof [Koetsier and van Mill, 1997]. 
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Hilbert commented that his postulates contain, as he thought, the "precise definition of 
the concept, which was called multiply extended manifold by Riemann and Helmholtz and 
number manifold by Lie" (Hilbert, 1902a, p. 233). This remark of Hilbert was, like so 
many others in the foundations of mathematics, a bit rash but showed a promising way to 
proceed. 

In fact, Hubert's sketch of an axiom system for two-dimensional manifolds containing 
all the conceptual components for the later refinement of both, the characterization of gen
eral topological spaces, by what would later be called a neighbourhood basis as formulated 
by Hausdorff (1914)^^ and the axiomatic definition of manifolds by coordinate systems and 
a regular atlas as elaborated by Veblen and Whitehead (1931). Hilbert dealt, however, with 
both aspects in a simplified form justified by his restricted context. The later Hausdorff 
separability was indirectly implied by his last axiom of "big" coordinate neighbourhoods 
to any two points p,q £ E and their separability in the coordinate plane by Jordan regions 
(in addition to axiom (1)). 

Weyl, in his Idee der Riemannschen Fldche, could already build upon Brouwer's result 
of the invariance of dimension under bijective continuous maps between open sets in M". 
That may have given him the confidence that a slightly more "intrinsic" characterization 
(than Hubert's) of a two-dimensional manifold was possible. 

Like Hilbert he characterized the structure of a two-dimensional manifold F by a system 
of neighbourhoods Up, each of which, U C F would contain p and be supplemented by 
a bijective map \lr :U -^ V e C, with V an open disk with center irip). The totality of 
neighbourhoods was used by Weyl as a neighbourhood basis for the topology of F in the 
modern sense. He demanded that they satisfy two conditions. The first one amounted to 
what would be expressed in more recent terminology as (i) the open map condition for the 
coordinate map i/̂  with respect to the topology on F induced by the neighbourhood basis. 
The second one was: (ii) for any neighbourhood L̂  of a point p e F with coordinate map 
\l/ :U ^^ V and a small disk V' C V of center \lf{q) (q e U), there is a neighbourhood U^ 
of^ such that TA([/0 C V^ 

The second postulate had a double function in Weyl's argument; it made sure that co
ordinate maps were continuous and it secured the existence of sufficiently many "neigh
bourhoods" to constitute a neighbourhood basis (from our point of view). Essentially Weyl 
characterized a manifold F as a topological space by the assignment of a neighbourhood 
basis U in F, postulating that all assigned neighbourhoods U e U art homeomorphic to 
open balls in R^. That was, of course, a remarkable contribution to the clarification of 
what is essential for an axiomatic characterization of manifolds. Weyl left, however, a gap, 
which was not surprising for the time. He dropped Hilbert's axiom (5) to achieve stronger 
locaHzation than his former teacher; but he did not realize that separability of points by 
neighbourhoods was thus lost. So it was left to Hausdorff, the more acute thinker with 
respect to logical clarification of concepts, to pinpoint the necessity of such an additional 
postulate in his axiomatization of topological spaces (Hausdorff, 1914, p. 213).^^ 

Compare [Scholz, 1996; Aull and Lowen, 1997]. 64 

^̂  Weyl was relatively slow to accept the necessity of a separability axiom for manifolds. He did not supplement 
or change his axiomatics of two-dimensional manifold in the second edition of (Weyl, 1913) in 1923 and did so 
only for the third edition in 1955. In the middle of the 1920-s he had accepted the importance of this Hausdorffian 
specification (Weyl, 1925/1988, p. 3). I owe R. Remmert the hint at the this gap and the relatively late correction 
in Weyl's approach. 
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At the end of his book on the foundation of analysis Das Kontinuum Weyl experimented 
with a modified axiomatization of the concept of two-dimensional manifolds from a con
structive perspective. Now he worked with a restricted real continuum, the Weylian reals 
W, constructed by only those Dedekind cuts in Q that are definable in a semiformalized 
arithmetical language (essentially using first order predicate logic and recursive definitions 
over N) (Weyl, 1918, pp. 80ff.).^^ He postulated a "somehow" constructively given count
able base of nested neighbourhoods Up^n ('̂  ^ N) with Up^i-^i C Upji for a countable 
"dense" net of points p e X C F, each Up^n bijectively bicontinuous with an open disk 
in the Weylian number plane W^. But for philosophical reasons he was discontented with 
his new approach just from the beginning.^^ A little later he turned towards Brouwer's ap
proach in the foundation of mathematics, even if only for a while, and essentially became 
an adherent of a constructive (combinatorial) approach to manifolds. 

5.2. The rise of the combinatorial and piecewise linear approach 

Other mathematicians had already started to pursue such another, more constructive ap
proach to a modern formulation of the manifold concept, following Poincare's decomposi
tion of manifolds into geometric cell complexes ("polyedres"). Already Dehn and Heegard 
in their article on Analysis Situs for the Encylopddie der Mathematischen Wissenschaften 
emphasized the combinatorial construction of manifolds, which was intended as a defini
tion, not as a reconstruction of an object that had already been given in another way. In 
consequence they explicitly introduced the idea that morphisms of these objects should 
be defined by combinatorial equivalence^^ rather than by (bicontinuous) homeomoi*phism. 
Such an approach was also chosen by H. Tietze in his Habihtationsschrift in which he 
studied manifolds as n-dimensional cell complexes up to combinatorial equivalence. To 
specify manifolds among more general cell complexes he postulated that the star of each 
m-dimensional cell C", i.e. the union of all higher dimensional cells that intersect the 
boundary of C" be simply connected, by which he understood that it is combinatorially 
equivalent to a sphere S"~"^~^ (Tietze, 1908, p. 24).^^ He left open, however, how such an 
equivalence could be identified. 

As a great advantage of this approach Tietze observed that it would lead to a founda
tion of analysis situs independent of the consideration of infinite sets and their inherent 
logical difficulties and methodological subtleties (1908, p. 2)P^ As a contribution to such 
subtleties (at least from the point of view of Poincare) he discussed cell decompositions of 
the same manifold M with infinitely many components of the intersection of cells. Thus he 
showed that Poincare's conviction that each two (finite) cell decompositions have a com
mon subdivision was too rash to be accepted. He admitted that a proof of the existence of 

^^ [Feferman, 1988; Coleman and Korte, 1998]. 
6*7 Compare [Scholz, 1998]. 
^^ Dehn and Heegard used Mobius' terminology of "elementary relationship (Elementarverwandtschaften)" 
(Dehn and Heegard, 1907, pp. 159f.). 
^^ Tietze used the terminology of "homeomorphism" to s'^~'"~K but made it clear that he understood in this 
context "homeomorphism" in the sense of combinatorial equivalence (Tietze, 1908, p. 13). 
^^ At the time of pubHcation of Tietze's studies the principle of choice, which had been used by Zermelo (1904) 
a little earlier and explicidy introduced as an axiom of set theory the same year (Zermelo, 1908a, 1908b), led 
to intense debate and controversian reactions among mathematicians in France and Germany. Cf. [Moore, 1978, 
1982]. 
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such a common subdivision "might be relatively simple in the case of two dimensions", 
but that it "waits for a deeper investigation (harrt einer eingehenderen Erledigung) in the 
general case of higher dimensions (Tietze, 1908, p. 14). So he openly posed the question, 
whether two homeomorphic manifolds M and M' are in fact combinatorially equivalent, 
as an important problem of the theory. In the 1920-s H. Kneser emphasized the method
ologically central role of this conjecture even more strongly and gave it the famous name 
of Hauptvermutung for the combinatorial theory of manifolds (Kneser, 1926, p. 6). 

In another publication of the same year E. Steinitz attempted an axiomatic foundation 
of combinatorial topology by a set of postulates for the incidence structure of abstract 
finite cell complexes constituted by a finite set of "elements" a graded by "dimension" 
dim a = [a] (0 ^ [a] ^ n) and with prescribed incidence relations. After the introduc
tion of six axioms to regulate the concept of an abstract combinatorial polyhedron Steinitz 
added three more to specify what he considered as "combinatorial manifolds". Strangely 
enough he only postulated connectedness (axiom 7), existence of bounding cells for cells 
of intermediate dimension (2 ^ [a] ^ n — 2) and connectness of the boundary set (ax
iom 8) and existence of incident cells [c] of each intermediate dimension [a] < [c] < [b] 
to each two incident cells a and b of dimensional difference at least 3 (axiom 9) (Steinitz, 
1908, pp. 31f.)J^ Of course, Steinitz also introduced a combinatorial concept of equiva
lence for his abstract cell complexes (and "manifolds"); but although his axiomatization 
broke new ground for an abstract approach towards combinatorial topology in general, his 
characterization of manifolds was much too weak to be accepted or of broader influence 
for future research. So it was in fact Brouwer's highly influential introduction of a "mized 
approach" of combinatorial and continuity methods, in which manifolds were defined by 
simplicial methods, that marked the next remarkable leap for a constructive underpinning 
of the manifold concept. It also pointed out in which direction one had to go if manifolds 
should be selected among the more general objects of abstract combinatorial complexes.^^ 

Brouwer seems to have detected the importance of simplicial decomposition of man
ifolds, of simplicial approximation, and of mapping degree for the investigation of long 
standing problems in the topology of manifolds early in 1910.^^ He introduced his 
new tools of simplicial approximations and the mapping degree of continuous maps be
tween manifolds in his famous pubhcation (Brouwer, 1911b). There he defined mani
folds in a manner adapted to his context of the simplicial methodology. He explained an 
n-dimensional manifold M to be a (possibly) infinite^^ geometric simplicial complex of 
dimension n such that: 

(1) two intersecting n-simplexes share a p-dimensional face {I ^ p ^ n — I) and with 
it all lower dimensional faces of the latter, 

(2) for each vertex the collection of incident simplexes is homeomorphic to an /i-ball 
(Brouwer, 1911b, p. 97). 

"7̂  Compare [Volkert, 1994, pp. 173ff.]. 
^^ For an outline of how Brouwer's intuitionism and his topological constructivism went in hand see [Koetsier 
and van Mill, 1997]. 
^^ See Freudenthal's evaluation of an unpublished notebook of Brouwer in (Brouwer, 1976, pp. 422-425); com
pare also [Johnson, 1987, pp. 8Iff.]. 
"̂̂  In the case of a finite simplicial decomposition he called the manifold "closed" (in our terminology compact), 

in the infinite case "open". 
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If all «-simplexes of an n-dimensional manifold M are represented by « + 1 homoge
neous coordinates of a standard simplex in the (n -\- 1)-dimensional "number space"7^ 
such that lower dimensional simplexes carry identical coordinates from each w-simplex to 
which they belong, Brouwer called the manifold "measured", in more recent terminology 
M carries a piecewise linear (abbreviated PL-) structure. By a recursion procedure over 
the dimension he showed that a manifold in his sense can always be "measured" (given 
a PL-structure). That allowed him to characterize orientability and orientation of his PL-
manifolds, barycentric subdivisions, simplicial approximation of continuous maps, and the 
mapping degree of continuous maps between manifolds. That served as the basis for his 
investigation of the index of vectorfields on spheres, his fixedpoint theorem, the proof of 
the invariance of dimension, etc.^^ Thus he introduced a new approach for a constructive 
characterization of manifolds besides the less standardized representations as geometric 
cell complexes in the sense of Poincare, Tietze et al. 

Brouwer's approach to manifolds combined a constructive representation of the global 
structure by "measured" simplicial complexes with a criterion of local simplicity, which 
still referred to pointset topological properties of "numberspaces" and did not even attempt 
to transform the latter to combinatorial criteria. In this respect Tietze (and Steinitz) had 
been more consequential in their attempt to avoid the fallacies of pointset topology. They 
had successors to elaborate more in detail, what Tietze had left open in his all-inclusive 
characterization of "simple connectedness" of neighbourhoods of /:-cells. In the early 
1920-s Veblen and Weyl pushed this characterization a step further, although they were 
not completely successful in their search for a convincing and operative characterization. 

5.3. Manifolds in the methodological ''battles'' of the 1920-s 

Veblen followed in his Analysis Situs (1922) the combinatorial approach to manifolds and 
complemented it by ingredients from Brouwer's simplicial constructs. Like Tietze he ex
plicitly tried to avoid pointset topological considerations as far as possible.^^ He modified 
Tietze's combinatorial definition by a rather pragmatic reduction of the combinatorial prob
lem to characterize "simply connected" stars of ^-cells in an n-dimensional complex.^^ Af
ter giving three procedures to build an n-complex combinatorially equivalent to an n-cell,^^ 

^̂  I deliberately use Brouwer's original terminology and do not write R", as Brouwer's terminology leaves 
the interpretation of the number continuum open. It can be interpreted by classical real numbers, Brouwer's 
inituitionistic real continuum, or even (later) by Weylian reals W of 1918. 
'^^ Cf. [Johnson, 1987; Koetsier and van Mill, 1997]. 
^^ " . . . we leave out of consideration all the work that has been done on the point-set problems of analysis situs 
and on its foundation in terms of axioms or definitions other than those actually used in the text." (Veblen, 1922, 
p. vii). In consequence Hausdorff did not start to read Veblen's and other mathematicians' work on combinato
rial topology before the late 1920-s when Alexandroff's approach to homology via "nerves" of open coverings 
allowed an algebraization of homology which was directly applicable to topological spaces independent of a 
combinatorial structure. 
^^ In addition Veblen choose to give the explanation of a "neighbourhood" of a A;-cell a^^"^ in an ^-dimensional 
complex Cn a surprising shift towards pointset theoretic criteria. He characterized such a "neighbourhood" as 
any set S of nonsingular cells of C„ such that all point sets M C Cn with a limit point on a^^^ have points in S 
(Veblen, 1922, Chapter III.4). 

^^ The simplest of these three procedures was of course the following: Two nonintersection «-cells A, , ^2 

incident with exacdy one {n — l)-cell a^"~^^ constitute an /i-cell. 
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Veblen defined an n-dimensional manifold to be a closed (finite) regular cell complex of 
dimension n, in which each k-ct\\ has a "simply connected" star, where "simple connect
edness" was defined by a combination of the three construction procedures of/c-cells given 
before.^^ 

H. Weyl was at that time highly impressed by Brouwer's ideas of "free choice se
quences" to characterize continuum ideas mathematically without reference to the concep
tual framework of transfinite sets. So he experimented at the end of his polemical article 
on the new foundational crisis of mathematics with a characterization of point localization 
in a two-dimensional continuum by "free choice sequences" of nested stars in an infi
nite series of barycentric subdivisions of a two-dimensional Brouwerian manifold (Weyl, 
1921, p. 177f.). He tried to come to a genetic definition of points in a two-dimensional 
combinatorial continuum and rejected the idea that "points" might be presupposed as ideal 
"atomistic" local determinations in advance.^ ̂  In that respect the "purely" combinatorial 
approach to manifolds appeared to him of high importance for the foundations of mathe
matics, the more so as he could not be sure that Brouwer's intuitionistic continuum (which 
in the early 1920-s was not yet well elaborated in technical details) and his own ideas on 
an "infinitesimal continuum" would conceptually coincide after sufficient symbolical elab
oration. In any case, it would be logically preferable to free the combinatorial approach to 
continuum concepts from the direct link to number concepts, which was presupposed in 
Brouwer's "mixed" approach to manifolds. 

Thus Weyl took the opportunity of his visit to Madrid and Barcelona in early 1922 not 
only to elaborate his ideas on the "analysis of the space problem" from the new view
point of his infinitesimal geometric approach but also to give an exposition of his view 
of combinatorial topology for the Revista Matematica Hispano-Americana (Weyl, 1923, 
1924). He developed his own approach to a characterization of a combinatorial ^-sphere 
(a "Zyklus" as Weyl said) by two groups of axioms. As there was neither a semantically 
complete axiomatic characterization of combinatorial spheres, nor a complete set of con
struction procedures for the latter in sight, Weyl proposed for the time being a provisional 
axiomatic characterization of structural properties of combinatorial spheres "from above" 
in a first group of axioms, and in addition a second group of axioms, which gave a collec
tion of genetic procedures for the construction of combinatorial /:-spheres "from below". 
He hoped for a step by step completion of the axiom system in future research, which in 
the end might lead to a coextensive characterization of combinatorial /c-spheres by any of 
the (extended) two groups of axioms, and thus of manifolds.^^ 

The first group of axioms for a Weylian combinatorial n-sphere Z" were the postulates 
that Z" be connected (axiom 1), that to each /:-cell a^^^ in Z" {0 ^k < n) the collection of 
all higher dimensional cells b^^^ bounding directly or indirectly (k < j ^ n, a^^^ C b^^"^) 
carries the combinatorial structure of a Weylian combinatorial sphere Z^"^'^ (axiom 2),^^ 
that it be orientable (axiom 3), and homologically trivial in dimensions less than n {diX-
iom4).84 

80 (Veblen, 1922, Chapter m.24). 
8̂  For more details on Weyl's philosophical motivation and the context of his rejection of transfinite set theory 
as a background in which to model "continuum" ideas, compare [Scholz, 1998]. 
82 Cf. (Weyl, 1924, pp. 416f., 419) and also (Weyl, 1925/1988, p. 10). 
8̂  Weyl called this (modified) Tietzean property of a cell complex to be "unbranched". 
^^ Weyl called this a "plain (schlicht-de una hoja)" complex (Weyl, 1923, p. 403). 
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For the "genetic" characterization of combinatorial n-spheres Weyl characterized the 
0-sphere as two points (axiom 0), generation of /i-spheres from w-spheres by subdivision 
of a rather general kind^^ up and down (axioms A, B) and two constructions of higher 
dimensional spheres from lower dimensional (axioms C, D). Weyl proved several results 
for combinatorial manifolds, in particular Poincare duahty for closed orientable manifolds. 
But his approach was probably too involved in foundational considerations and technically 
too sophisticated to be taken up as a convincing strategy for the elaboration of a more 
broadly accepted genetic concept of manifold, which stood up to the standards of mod
ern mathematics.^^ So the research strategy proposed by Weyl was not taken up by other 
mathematicians, but at the best selectively adapted to other methodological views. 

About the middle of the 1920-s all ingredients for a satisfying formulation of the man
ifold concept, taking up the knowhow on axiomatization and on genetic characterizations 
of manifolds were at hand. There is no point in repeating here the interesting history of 
the preparation and elaboration of the general concept of topological space.̂ '̂  After Haus-
dorff, Frechet, and Riesz opened this new field of investigation, it found particularly active 
supporters in the newly rising mathematical groups in Poland, the Soviet Union, and the 
United States, and it also left its imprint on the modern reframing of mathematics in Ger
many and Austria. The first attempt for balance between the different approaches to the 
manifold concept was given by the young Hellmuth Kneser, who had written his disserta
tion with Hilbert in 1921 and got a professorship in Greifswald in 1925, in an article for 
the Jahresbericht der DMV (Kneser, 1926). 

Kneser discussed both approaches, an axiomatic one based on Hausdorff's set theoretic 
foundations for topology, and a combinatorial one referring to, but deviating from Weyl's 
approach. For the axiomatic characterization of manifolds he limited himself to the topo
logical case, without any discussion of differentiable structures. He thus characterized a 
topological manifold M by Hausdorff's axioms for a neighbourhood basis (of a Hausdorff 
space) including the second countability axiom for a neighbourhood base of all points in M 
(thus of all open sets in M) and added just one postulate: Each point p e M has a neigh
bourhood which is topologically equivalent to an open ball in the "w-dimensional num-
berspace", by which he obviously referred to the R" (Kneser, 1926, pp. 1-3). A "closed" 
(in our terminology compact) manifold was characterized by the Heine-Borel criterion for 
open coverings of M. 

After the introduction of a combinatorial decomposition of a "closed" manifold as a 
finite cell complex Kneser introduced the Hauptvermutung as fundamental for the combi
natorial theory of manifolds and proposed a characterization of a combinatorial manifold 
by the simultaneously inductive definition of the concepts of «-dimensional cell complex 
C", n-dimensional combinatorial sphere 5", n-dimensional cell £", the boundary of E^, 
and internal transformations (allowed subdivisions of cells of 5"-s). He first defined by 

^̂  For subdivision of an w-cell £" Weyl used any combinatorial n-sphere Z" punctuated it and substituted it for 
the£" . 
^^ H. Kneser (1926) referred to Weyl, and gave a little later van Kampen the hint that the latter's cell complexes 
satisfy Weyl's axioms (van Kampen, 1929, p. 3). On the other hand Kneser criticized Weyl's axioms as too 
complicated, as the consistency and completeness of the axioms were left open (1926, pp. 12f.). The former 
aspect (consistency) had in fact been discussed by Weyl (1924, pp. 416ff.), while completeness had been marked 
as a severe problem by the latter (1924, p. 419). 
^̂  See diverse articles in the recent Handbook [Aull and Lowen, 1997] and the announced next volume(s) with 
several contributions on the history of set theoretic ("general") topology. 
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induction over dimension n, what might be called a regular cell complex^^ C", where 
essentially each n-cell Z" in C" has a combinatorial sphere 5"~^ as boundary, and the 
{n — l)-subcomplex is also regular. Moreover for all /c-cells Z^ in C" (1 ^ ^ ^ ^) internal 
transformations by elementary cell subdivisions (or the inverse operation) are defined.^^ 
Starting from standard combinatorial w-spheres^^ S^^ Kneser allowed all those combinato
rial schemes of spheres, which can be constructed by internal transformations in his sense. 
Thus he was proud to achieve a simpler characterization of combinatorial manifolds M" 
than Weyl, by the condition that the neighbourhood complex of each 0-cell Z^ has an 5""^ 
as boundary.^ ̂  But his approach was not only built on the unproven (and unprovable as we 
know) Hauptvermutung, but did even not allow the proof of Poincare duality for orientable 
manifolds by combinatorial means. So it was in the end doubtful whether his approach 
had a real advantage in comparison with Weyl's, although he had achieved a much simpler 
framework of postulates. 

In the late 1920-s several mathematicians in different international groups, relatively 
independent from each other, turned towards a more pragmatic approach with respect to 
combinatorial manifolds. They turned the question upside down^^ and looked for combi-
natorially accessible conditions that an orientable cell complex satisfies "Poincare" duahty. 
J.W. Alexander, L.S. Pontrjagin,^^ L.F. Vietoris (1928), and E.R. van Kampen in his Leiden 
dissertation (1929) chose similar strategies to get rid of the unanswerable question under 
which conditions a combinatorial complex is a "real" (i.e. topological) manifold. The es
sential common point of their approaches was the idea of weakening the sphere condition 
for the boundaries of neighbourhood complexes from combinatorial to purely homological 
ones. In this sense Vietoris took up Brouwer's constructive definition of a manifold and 
modified it by a homology criterion for the local simplicity property, defined inductively 
over dimension. More precisely, he defined an h-manifold as a simphcial complex M in 
which the star of each vertex e^ is bounded by an "/t-sphere". An {n — 1)-dimensional 
h-sphere, on the other hand, is defined as an orientable /z-manifold of dimension n — 1 
with the same Betti numbers as a sphere: po = P/i-i = 1» A = 0 for 1 < i < n — I; with 
the inductive definition anchored in the obvious stipulation that a 0-dimensional /i-sphere 
is a pair of points (Vietoris, 1928, p. 170). That allowed him to estabhsh Poincare dual
ity for orientable closed /z-manifolds by the construction of dual complexes and the use 
of Poincare's argument. In fact, in the introduction of his paper he stated frankly that his 
proposal of a modified concept of /z-manifolds arose from a proof analysis as a result of 
which he did not try to fill the gap in the original argumentation, but preferred to adapt the 
conceptual frame to Poincare's original proof structure.^^ 

^̂  Kneser used the terminology "cell building (Zellgebaude)". 
^ More precisely the boundary of each Z^ which is a S ^^ is divided into two standard {k — l)-cells with 
common boundary S^~^. Then the substitution of Z^ by two /c-cells Z p Z2, and a (k — l)-cell Z^~^ which are 

bounded by the subdivided parts of the S^~^ and inherit the boundary relations of the large cell Z^ is an internal 
transformation in the sense of Kneser (1926, p. 8). 
^ S'^ is defined by two cells in each dimension 0 , . . , , /i, each of which is bounded by all cells of less dimension. 
^̂  Kneser claimed that by use of the internal transformations the same holds for "all the other points". 

From the point of view of the manifold concept one should perhaps say that they turned the question "downside 
up". 

Alexander and Pontrjagin's in unpublished notes, as was reported by van der Waerden (1930, p. 125); compare 
also [Dieudonne, 1989, p. 50]. 
^^ "We shall not fill this gap (of the original proof referring to manifolds, ES) but define a manifold concept for 
which we can fill it, while the remaining proof of Poincare can be transferred without change." (Vietoris, 1928, 
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Lefschetz generalized this approach in terms of relative homology with respect to a 
subcomplex, thus documenting that the combinatorial strategy to work out the manifold 
concept was deeply influenced and even transformed by the advent of algebraic topology 
(Lefschetz, 1920, pp. 119ff.). 

Van Kampen followed an approach closer to Veblen's and Weyl's recursive definition 
of manifolds. During his doctoral research he was in contact with B.L. van der Waerden 
and informed by the latter about the different strategies for coming to a formally satisfying 
definition of the concept. Van Kampen choose to add to the basic structure of a Brouwerian 
simplicial complex the structure of what he called a star-complex, where the concept of star 
and star complex had a common recursive definition.^^ Equality of star-complexes STC^ 
and STC"^ was defined by him as a combinatorial equivalence of the underlying simplicial 
complexes, which leads to a bijection of the stars. Thus the incidence structure of the stars 
(of all dimensions) gives complete information about the structure of a star-complex,^^ 
and allowed him to define a dual star-complex ^TC"* to a given star-complex STC^ with 
the same underlying simplicial complex and dualization k' = n — k of the dimensions 
k, k' of dual stars.^^ Then the incidence matrices of a star-complex and its dual arise from 
interchanging order of the columns and transposition and behave like Poincare's incidence 
matrices in the proof of Poincare duality. 

Van Kampen had thus won a recursively defined normalization of simplicial complexes 
to which he added a postulate with a dual combinatorial criterion of local simplicity for 
defining a combinatorial manifold: (1) Each /c-star is homologically trivial in dimensions 
1 < j < k; and (10 the same holds for the stars of the dual star-complex (van Kampen, 
1929, p. 13). The approach was chosen to derive different duality theorems (Poincare-, 
Alexander-, etc.) in a purely combinatorial and thus finite manner. Moreover the com
binatorial manifolds satisfy Weyl's axioms, as van Kampen remarked with reference to 
H. Kneser, but without any discussion of Weyl's original goal to sharpen increasingly the 
combinatorial postulates until they are coextensive with an axiomatic characterization of 
continuous manifolds.^^ 

The next year B.L. van der Waerden gave a talk at the annual meeting of the Deutsche 
Mathematiker-Vereinigung, in which he presented and discussed the different proposals for 
the definition of a topological manifold on what he called the "battlefield of different meth
ods" in combinatorial topology (van der Waerden, 1930, p. 121). He counted 5 different 
possibilities, an axiomatic one (Kneser, 1926), two purely combinatorial ones, of which he 
presented one as methodologically unsatisfying (Dehn and Heegard, 1907, Tietze, 1908) 
and the other, homologically oriented one, as more sophisticated (Vietoris, 1928; van Kam
pen, 1929), and "two" mixed approaches (Poincare, 1899,1900; Brouwer, 191 lb). Van der 

p. 165). Here we have, to put it in Lakatos' terminology, a beautiful case of a completely conscious concept 
modification generated by proof analysis. 
^̂  A star of dimension 0 is a point; a 0-dimensional star-complex is a finite set of stars. An n-dimensional star 
is a (simplicial) projection of an {n — 1)-dimensional star-complex from a point (the centre of the star). An 
n-dimensional star-complex STC" is produced from an (n — 1)-dimensional star-complex STC^~^ by adding 
i2-stars, generated by projection of star-subcomplexes of STC'^~^, such that each star from the latter is part of 
the border of at least one of the n-stars (van Kampen, 1929, pp. 6f.). 
9̂  (van Kampen, 1929, Theorem 2a,b). 
^^ A A;-dimensional star af of STC" is dualized by collecting all (n — /:)-dimensional stars b"-' which meet the 

centre of af, but no other vertex. 
9̂  (van Kampen, 1929, p. 3). 
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Waerden discussed the relative merits and disadvantages of all these approaches.^^ The 
phase of open exploration for the topological manifold concept had more or less come to 
a conclusion; the axiomatic characterization and a constructive (purely combinatorial) one 
were the outcome of differing methodological approaches, Brouwer's "mixed" approach 
gave the most promising bridge, and Weyl's original intentions were close to forgotten. ̂ ^̂  

5.4. Finally the ''modern " axiomatic concept 

There was, of course, still another line of research, more closely linked to differential 
geometry, where manifolds played an essential role, and purely topological aspects (in
dependently of whether continuous, combinatorial, or homological ones) did not suffice 
and still needed elaboration. In North America Oswald Veblen and his students formed 
an active center in both fields of topology and modern geometry. Veblen and his student 
J.H.C. Whitehead, coming from (and going back to) Oxford, brought the axiomatization 
of the manifold concept to a stage which stood up to the standards of modern mathemat
ics in the sense of the 20th century (Veblen and Whitehead, 1931, 1932). Veblen was an 
admirer of the Gottingen tradition of mathematics, in particular, F. Klein and D. Hilbert, 
and cooperated closely with H. Weyl, the broadest representative of his own generation 
from the Klein and Hilbert tradition. Veblen and J.H.C. Whitehead combined a view of the 
central importance of structure groups for geometry (generaUzing the Erlanger program) 
with Hubert's embryonic characterization of manifolds by coordinate systems; and they 
took care that the topologization of the underlying set would satisfy Hausdorff's axioms 
for a topological space. 

They characterized the structure of a manifold by the specification of a regular groupoid 
G C'pseudogroup") of transformations of open sets ("regions") in M", allowing as main 
examples C-transformations of open sets (/ = 0 , . . . , oo, or / = co). The n-dimensional 
manifold of structure G in the sense of Veblen and Whitehead consists in a set M and a 
system of admissible coordinate systems (p:U -^ V with bijective maps cp onto regions 
V C M", defined fovU eU C V(M), such that three groups of axioms hold: 
(A) Basic axioms for admissible coordinate systems: 

Changes of coordinates are given by maps from the structure groupoid G and each 
coordinate map may be changed by a transformation from G (axioms A\, A2). More
over, to each coordinate map (p:U -^ V 3. restriction ioU' C V such that (p(U') = V 
is an n-cell V' in R" is also an admissible coordinate system (A3). U^ is called an n-
cell in the manifold. 

(B) Union of compatible coordinate systems: 
If for a collection of admissible coordinate systems (p:Ui -> V/ (/ G / ) , with n-cells 
as coordinate images V,-, the coordinate maps coincide on overlaps (f// H Uj ^ 0), then 
the "union" of coordinate systems defined in the obvious way, cp: (J • Ui -^ |Ĵ - V/, is 

^^ The references between the 5 approaches to authors were not all made explicit by van der Waerden but pre
sented on a purely methodological level. 

Weyl's contribution appeared in van der Waerden's bibliography, but was not discussed by him. He thus 
indirectly took part in the methodological "battle" of combinatorial topology, although he probably did not realize 
it. 
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also admissible (axiom B\). Each admissible coordinate system can be represented as 
such a union (^2)-^^^ 

(C) Topological axioms: 
For intersecting «-cells U, U' in M with p e U nU' there is an w-cell U'' C U r\ 
U' containing p (axiom C\). For each two different points p,q e M there exist 
nonintersecting coordinate neighbourhoods Up, Uq of p and q, respectively (C2). 
Finally, M contains at least two different points (C3). 

Taking «-cells in M, containing p, as neighbourhoods of p the axioms of Veblen and 
Whitehead give a structure of a Hausdorff space on M (without second countability axiom) 
(Veblen and Whitehead, 1931, p. 95; 1932, p. 79). 

Whitehead and Veblen presented their axiomatic characterization of manifolds of class 
G first in a research article in the Annals of Mathematics (Veblen and Whitehead, 1931) 
and in the final form in their tract on the Foundations of Differential Geometry (Veblen 
and Whitehead, 1932). Their book contributed effectively to a conceptual standardization 
of modern differential geometry, including not only the basic concepts of continuous and 
differentiable manifolds of different classes, but also the "modern" reconstruction of the 
differentials dx = {Ax\,..., dxn) as objects in tangent spaces to M}^^ Basic concepts like 
Riemannian metric, affine connection, holonomy group, covering manifolds, etc. followed 
in a formal and symboUc precision that even from the strict logical standards of the 1930-s 
there remained no doubt about the wellfoundedness of differential geometry in manifolds. 
Moreover they made the whole subject conceptually accessible to anybody acquainted with 
the language and symbolic practices of modern mathematics. 

5.5. And first successes in unification 

The clear definition and mutual delimitation of continuous, differentiable and analytic 
structure of manifolds by Whitehead and Veblen improved the framework for a more de
tailed study of the basic questions of triangulation, Hauptvermutung and thus the questions 
which were at stake with the competing strategies of a genetic/constructive characteriza
tion of manifolds versus an axiomatic one. They had been posed at first for topological 
manifolds, but could as well be fruitfully transferred to the differentiable case. 

Already at the turn of the thirties, i.e. before the Veblen and Whitehead axioms had been 
formulated, first positive results on the connection between the two large strategies had 
been achieved. In 1925 T. Rado had shown that two-dimensional manifolds can be trian
gulated and thus that in this respect Tietze had been right. During the following decade the 
higher dimensional case could only be dealt with under structurally specifying conditions. 
Several authors contributed to the proof that a real analytical manifold admits triangulation: 
Van der Waerden (1929) clarified the triangulabihty for algebraic manifolds, Lefschetz 
(1920, Chapter VIII) sketched the outhne for a general proof in the case of a general ana
lytic manifolds, and Koopman and Brown (1932) elaborated a complete proof. Only a few 
years later S.S. Cairns, a former student of M. Morse, proved the existence of triangula-
tions for ^-dimensional differentiable manifolds (Cairns, 1934). In 1940 J.H.C. Whitehead 
considered and showed the existence of differentiable triangulations of a C^-manifold of 

^̂ ^ Neither here nor elsewhere did Veblen and Whitehead postulate a countability restriction for the coordinate 
neighbourhoods. 
^̂ ^ They still used the pre-Bourbakian terminology of "contravariant" vector for the objects in the tangent space. 
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any dimension and proved that in this structure even the (differentiable) Hauptvermutung 
is true.̂ -̂̂  Thus the combinatorial and the axiomatic approach had turned out by 1940 to 
be complementary aspects of completely coextensive characterizations for differentiable 
manifolds. 

So far Poincare's intuition had been vindicated and put on a solid logical basis, although 
the elaboration of "purely" (continuity) topological structure had shifted the question to a 
deeper conceptual level than Poincare ever would have considered. ̂ "̂̂  And even the topo
logical case seemed at first rather promising, at least in low dimensions. Rado's success 
for dimension 2 was extended in the early 1950-s, when E.E. Moise proved that each 
3-dimensional continuous manifold admits a triangulation (Moise, 1952). At the turn of the 
1950-s one might thus have hoped that the different specifications of the manifold concept 
had led to difficult and challenging technical problems for modern mathematics, but that 
they could perhaps be solved positively by increasingly sophisticated methods and an inter
play between the different structural level and methods. Why should they not lead to a uni
fied frame for the topology and geometry of manifolds in a rather straightforward manner? 

6. Outlook on more recent developments 

6.1. Growing diversity... 

Even the conceptual unity one might have hoped for in the early 1950-s was, however, not 
at all a narrow one. Already Riemann had indicated the possibility of investigating man
ifolds from different methodological views and had considered this differentiation as an 
important feature for adapting the general concept to diverse scientific contexts. Such a 
differentiation had developed on a technically much more refined level during the first half 
of the 20th century in a broader range. Besides the distinction between the combinatorial 
or PL- and axiomatic approaches to the topological manifold concept and its differenti
ation according to smoothness levels ( C , 0 < / < oo or / = a;), other contexts had 
given reasons for developing the concepts of a complex analytic manifold and of algebraic 
birational variety. These, as well as the diverse differential geometric structural specifica
tions on differentiable manifolds, would have to be considered for a broader picture of the 
growing diversity of manifolds in our century, but remain outside the range of this article. 

To keep closer to the core of our subject, we have to face the surprising diversity in the 
topological and differential structures on manifolds of dimension n > 4, which became 
apparent by and by starting in the late 1950-s. After J. Milnor detected nonstandard dif
ferentiable structures on the 7-sphere (Milnor, 1956), an increasing number of unexpected 
insights into the differentiable structure of higher dimensional manifolds came to the fore. 
Among them were E. Brieskorn's and others' study of exotic spheres, which arose rela
tively "naturally" in investigations of singularities of algebraic geometry, and in the 1960-s 
M.H. Freedman's and S.K. Donaldson's broad investigations of differentiable structures 
on 4-manifolds. During the 1980-s the tremendous range of effects, from a number of 
unexpected differentiable structures on supposedly well known manifolds, like higher di
mensional spheres and the R^, to the fact that certain topological 4-manifolds do not admit 

^̂ 3 (Whitehead, 1940, Theorem 8, p. 822). 
^̂ ^ Poincare considered his manifolds always as differentiable, in times even as analytic, which he defined by an 
approximation argument of analytic maps by differentiable ones. 
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a differentiable structure at all, became known. They would have given sufficient reason 
for a Poincare to deplore again, and now on another much more sophisticated level, the 
turn of mathematics towards an "artificiaUty which aUenates the whole world", as he had 
proclaimed in his talk to the second International Congress of Mathematicians with re
spect to the rise of modern mathematics (Poincare, 1902c). He was particularly struck by 
the results of the logical analysis of continuous nondifferentiable functions. ̂ ^̂  The prepa
ration of such unexpected symbolical phenomena was nevertheless an important part of 
the achievements of the high phase of modern mathematics and characteristic for its spirit. 
They are discussed more in detail and with much more expertise in other contributions to 
this volume. 

Similar evaluations might be drawn on the fate of the triangulation problem and the 
Hauptvermutung for topological manifolds of dimension n ^ 5.5. Milnor's early example 
of manifolds in dimension 8, with different combinatorial structures (Milnor, 1961) paid 
tribute to but finished the hope for a too simply conceived positive end of the program 
outlined in the first third of the century. The work by R.C. Kirby and L.C. Siebenmann 
(1969) with the characterization of exact obstruction criteria, given by cohomology classes 
of the manifold in question, allowed their successors to determine manifolds for all dimen
sions n ^ 5, in which the Hauptvermutung does not hold, and to characterize topological 
manifolds without any PL-structure. 

Thus from the late 1960-s onward the hope for a conceptually unified framework for all 
of modern mathematics has undergone a deep transformation, ^̂ ^ forced upon the research 
community by the growing complexity of material, methods and results.^^^ There is a 
growing and perhaps ever increasing trend towards diversification, and differentiation even, 
to a certain degree, between different subbranches or aspects in the mathematics of such a 
relatively well delimited field as the topology and differential topology of manifolds. 

6.2. .. . but still a unifying perspective on mathematical practice by overarching 
concepts 

Some observers even tend to see a loss of connection between different branches of math
ematics as a whole and identify such a loss of unity, growing pluralism of methods, struc
tures, and approaches from a specific cultural perspective as a "postmodernist" dynamics of 
mathematics, which has speeded up from the late 1960-s onward. No doubt, modern math
ematics, and maybe with it, modern culture has reached a mature, probably even "late" 
stage, at least in comparison with its expansionary "high" phase from the late 19th to the 
middle of the 20th century. ̂ ^̂  But history has always been an open process, and Riemann's 
and other persons' vision of the cognitive strength and productivity of conceptual unifica
tion has neither lost its fruitfulness nor its convincing power. 

The vision of a strictly unified and structurally predetermined symbolical universe of 
mathematics, which seems to have been the dream of many of the protagonists of the high 

^̂ ^ The famous citation of the monster functions which he abhorred is in (Poincare, 1908); H. Mehrtens describes 
this as Poincare's "antimodernist" view of mathematics [Mehrtens, 1990, Chapter 3.3]. 
106 pjj-g|. glances of such an ongoing shift could probably be seen already in the late 1950-s by very sensitive 
observers. 
^̂ ^ Compare also [Corry, 1996] with respect to the fate of the structural "image" in recent algebra. 
^̂ ^ I. James has called this phase of modernity as the "classical" one in his Nice talk. 
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phase of mathematical modernity,^^^ has become obsolete through the progress of math
ematical work itself. But we are not at all obliged to understand mathematical concepts 
in a rigid, mainly technical sense; we may also conceive them as organizing centers of 
cognition, which act in a "dialectical" interplay between their role of cognitive orientation 
and the symbolical and technical specification they impart on the practice of mathematics. 
There is no good argument to reduce, or even to proclaim the end for, the unifying role 
of concepts in today's and future mathematics and human knowledge more general. We 
could just as well draw the opposite conclusion and insist on an increasing importance of 
their unificatory role as a counterbalance to cultural and cognitive diversification. Thus the 
history of the manifold concept may be taken as paradigmatic for a symbolical world of 
increasing diversity and richness in which we live, work, and orient ourselves. 
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