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1. Lecture 1: Vector fields and differential forms

Please note that this is only a quick review. Hopefully it is mostly
familiar and you can learn quickly if not.

1.1. Fundamental results of ODE theory. If U ⊂ Rn is open, a
(smooth) vector field on U is a smooth map V : U → Rn, equivalently a
section of TU → U . Colloquially, a vector field is a choice of smoothly
varying collection of vectors at every point of U .

We are interested in the particle trajectories in U whose velocity
at any time is equal to the vector specified by V at the point it’s at.
Finding such trajectories is by definition solving the following ODE for
γ : I → U , where I is a real interval:

γ′(t) = V (γ(t)),(1)

for all t ∈ I.

Remark 1. A special class of vector fields are linear ones, i.e. linear
maps V : Rn → Rn. You have studied such ODE’s in detail and
it might be a good time to remember what was going on there (you
should have the full picture for n = 2). □

Theorem 1. • (existence) For every x0 ∈ U , there exists an
ϵ > 0 such that the ODE (1) has a solution γ : (−ϵ, ϵ) → U
satisfying the initial condition γ(0) = x0.
• (uniqueness) For any ϵ > 0, the initial value problem as in the
previous bullet point has at most one solution1.
• (smooth dependence on initial data) For every x0 ∈ U , there
exists an ϵ > 0 and a neighborhood Ux0 ⊂ U of x0 such that
the solution of the IVP with initial condition γ(0) = x on the
interval (−ϵ, ϵ) exists for all x ∈ Ux0 . Moreover, the induced
map

(−ϵ, ϵ)× Ux0 → U

is a smooth map.

Question 1. Prove the following rectification theorem. Assuming that
V (x0) ̸= 0, one can find a coordinate system y1, . . . , yn at x0 such that
V = ∂

∂y1
in the domain of this coordinate system. □

Remark 2. We call the points where the vector field vanishes its singu-
larities. Finding a normal form near singularities is much more difficult.
For example, it is not true that every smooth vector field is equal to a
linear one in a different coordinate system if the coordinate change is

1note that for large ϵ it may have no solutions!
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required to be smooth. This is possible using a continuous change of
coordinates if the singularity is hyperbolic due to Hartman-Grobman
theorem, which is a non-trivial result. □

1.2. Vector fields on manifolds and their flows. The main change
of perspective in differential topology from a standard ODE course will
be to study the solutions of an ODE with all possible initial condi-
tions at the same time (rather than solving a single initial value prob-
lem). This leads to the notion of the flow of a vector field. The well-
definedness and good behaviour of flows rely heavily on the smooth
dependence on initial data property, which may not have been at the
forefront thus far in your thinking of the basic theory of ODE’s.

Definition 1. Let X be a smooth manifold. A smooth section of TX →
X is called a (smooth) vector field. □

Question 2. Can you always push forward a vector field by a smooth
map? Why? How about a diffeomorphism? □

Let us go through what it means to write a vector field on X in local
coordinates. This is mostly about notation. Note that if we take a
chart (U, ϕ) on X, we obtain a vector field on U by restriction, and one
on Ũ = ϕ(U) ⊂ Rn by construction of TX.

Let us call x1, . . . , xn the coordinate functions2 on the Euclidean
space that Ũ resides. Then, it is customary to denote the vector field on
Ũ equal to (1, 0, 0 . . . , 0) everywhere by ∂

∂x1
, (0, 1, 0, . . . , 0) everywhere

by ∂
∂x2

and so on. We can think about these constant vector fields also
as living on U .

Notice that any vector field on Ũ can be written uniquely as

v1
∂

∂x1
+ . . .+ vn

∂

∂xn
,

for functions vi : Ũ → R, i = 1, . . . , n. In particular, any vector field
on X can be uniquely written in this form in the chart (U, ϕ).

Given a vector field V : X → TX, we can write down the following
differential equation for smooth maps γ : I → X:

(2) γ′(t) = V (γ(t)),

2Great confusion is caused by denoting the coordinate functions and the coordi-
nates of an arbitrary point in Rn with the same symbols. This corresponds to the
following: we usually denote the value of the coordinate function xi at point x by
xi. In the real line with coordinate function x we sometimes make it even more
confusing and denote the point which takes value x under the coordinate function
x by just x. All three objects would ideally get their own symbol.



4 UMUT VAROLGUNES

for every t ∈ I, where I is an interval inside the real line with coordinate
t, where γ′(t) := dγt

(
∂
∂t

)
. In coordinate charts this equation is the same

as the one we considered in the last class.
If we write V in a coordinate chart (U, ϕ) as above

V (x) = v1(x)
∂

∂x1
+ . . .+ vn(x)

∂

∂xn
, for all x ∈ Ũ ,

and denote the components of γ by γi in the same chart, the equation
(2) is equivalent to

γ′i(t) = vi(γ(t)), for i = 1, . . . n

which might be a more familiar form of an ODE (“a system of ODE’s”).
Solutions of the equation (2) are called integral curves. We know that

for any x0 ∈ X, there is an ϵ > 0 and an integral curve γ : (−ϵ, ϵ)→ X
satisfying γ(0) = x0. Note that an interval can sometimes be extended
to larger intervals in time. If it cannot be extended we will call the
integral curve maximal.

Question 3. Explain why the domain of a maximal integral curve
should be an open interval. Then using the same idea prove the fol-
lowing lemma. □

Lemma 1 (Escape lemma). Let X be a smooth manifold and V :
X → TX be a vector field. Assume that the domain of definition of a
maximal integral curve γ is not the entire real line. Then prove that
the image of γ is not contained in a compact subset of X.

We finally come to the fundamental theorem of flows.

Theorem 2. Let X be a smooth manifold and V : X → TX be a
vector field. Then there exists a unique subset U ⊂ R ×X containing
{0} × X and a map Φ : U → X such that Φ(0, x) = x for all x ∈ X
with the following properties:

(1) U ⊂ R×X is open.
(2) Φ : U → X is smooth.
(3) For any (t, x) ∈ U ,

dΦ(t,x)

(
∂

∂t

)
= V (Φ(t, x))).

(4) For any x ∈M , Ix := U ∩ (R× {x}) ⊂ R is connected and the
integral curve of V given by

Φ(·, x) : Ix → X

cannot be extended to a larger interval (i.e. it is maximal).



LECTURE NOTES - MATH 58T (SPRING 2023) 5

Question 4. Make sure you really understand what is meant by the
vector field ∂

∂t
in R×X. □

I would suggest taking this as a black box for the time. This is not
because the proof is hard (see Theorem 17.9 in Lee.) As expected, the
proof relies on the existence, uniqueness and the smooth dependence on
initial data properties discussed in the previous lecture. Your priority
should be to understand the statement. Rigorous proof can wait, but
its basic inputs should also be clear.

Definition 2. The map Φ : U → X from Theorem 2 is called the flow
of the vector field V . □

Question 5. Explicitly describe the flow (including its domain) of the
vector fields ∂

∂x1
, x1

∂
∂x1

+ x2
∂

∂x2
and −x2 ∂

∂x1
+ x1

∂
∂x2

on the open unit
disk in the plane with coordinates x1 and x2. □

Remark 3. The picture in your mind should be clear: the points in
the manifold are all flowing (backwards and forwards in time) in the
directions (and with speeds) dictated by the vector field. The only
tricky point is that the integral curves might stop existing after some
time. This last point is a common occurance, not just some theoretical
what if - just think about ∂

∂x
on an open interval finite in either side

in the real line. If you want to come up with examples that look less
clear, then use that any connected open interval is diffeoemorphic to
the real line. □

Question 6. Find a diffeomorphism [1,∞) → [0, 1) which sends the
vector field V (x) = x2 ∂

∂x
to a constant one. Explain the “blowing-up”

of the unique solution of the IVP

x′ = x2 with x(0) = 1

in this light. □

Definition 3. Let X be a smooth manifold and V : X → TX be a
vector field. We call V complete, if the domain of definition of all
maximal integral curves are the entire real line. This is equivalent to
saying that the flow of V is defined on the entire R×X. □

Question 7. Prove that compactly supported vector fields are complete
using the Escape lemma. What does this say about vector fields on
compact smooth manifolds? □

The following actually is used in the proof of the fundamental theo-
rem of flows, so logically it is not entirely accurate to state it here, but
conceptually it makes full sense.
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Proposition 1. Let X be a smooth manifold and V : X → TX be
a complete vector field. Then prove that the flow R × X → X of V
defines a Lie group action of R with its additive group structure on X.

This is a consequence of the uniqueness property of ODE’s and equa-
tion (2) being autonomous, i.e. it does not matter at what time a parti-
cle starts out at a point, its trajectory looks the same. More succintly,
if γ(t) is an integral curve, so is γ(t−∆) for any ∆, and it is the unique
one with the initial condition γ̃(∆) = γ(0).

Remark 4. Of course, there is a statement for non-complete vector
fields but it is a bit confusing to state, so I omitted it. □

Question 8. Let X be a smooth manifold, V : X → TX be a complete
vector field with flow Φ : R×X → X, and define Φt := Φ(t, ·) : X → X.
Prove that for every time t, Φt is a diffeomorphism. Moreover, show
that Φt preserves V . □

1.3. Vector fields as derivations. Let us recall the the directional
derivative operation. This operation takes in a smooth function f :
X → R and a tangent vector v ∈ TxX at some x ∈ X and produces
a real number v · f which measures the change of the function in the
direction of the vector. If you write in coordinates, this really is the
directional derivative from calculus but we give the following coordinate
free definition:

dfx(v) = (v · f) ∂
∂t
.

We also know that directional derivative satisfies the Leibniz rule
and is R-linear in both variables. There is a converse to this. Let us
denote the R-algebra of smooth functions on a smooth manifold X by

C∞(X,R).

Lemma 2. Let L : C∞(X,R)→ R be an R-linear map, which satisfies
the Leibniz rule at x ∈ X: for any ϕ, ψ ∈ C∞(X,R),

L(ϕψ) = ϕ(x)L(ψ) + L(ϕ)ψ(x).

Then, there exists a unique v ∈ TxX such that for any ϕ ∈ C∞(X,R)
L(ϕ) = v · ϕ.

Question 9. Show that L vanishes on constant functions. □

Proof. First, note that if ϕ vanishes in a neighborhood U of x, then
L(ϕ) = 0. To see this take a smooth function ρ which is 1 on X − U
and is zero in a smaller neighborhood of x. We have ϕ = ρϕ, which
proves the claim using the Leibniz rule. By linearity, we get that if ϕ
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and ψ are the same in a neighborhood of x, then L sends them to the
same number.

Let us prove the lemma when X = Rn and x = 0. The key to this is
the following weak Taylor expansion property. For any ϕ ∈ C∞(Rn,R),
there exists real numbers a, b1, . . . , bn and f1, . . . , fn ∈ C∞(Rn,R) such
that fi(0) = 0 for all i = 1, . . . , n and

f = a+
∑

bixi +
∑

xifi,

where x1, . . . , xn are the coordinate functions. Using the Leibniz rule
and R-linearity, we get that L is canonically determined by what it
does on linear functions

∑
bixi. Clearly, there exists a vector v ∈ T0Rn

such that v ·ϕ = L(ϕ) on linear functions, but we proved that then this
has to be the case for all smooth functions. □

Question 10. Finish the proof. □

Definition 4. Let A be an R-algebra. An R-linear map D : A → A is
called a derivation if it satisfies

D(ab) = aD(b) +D(a)b

for all a, b ∈ A. Let us denote their set by Der(A). Note that Der(A)
is naturally an A-module. □

Lemma 3. If f, g ∈ Der(A), then the commutator f ◦ g− g ◦ f is also
a derivation.

Question 11. Do it! □

Let us now introduce the notation that if E → B is a vector bundle,
we denote its set of smooth sections by Γ(E). For example Γ(TX) is
the set of vector fields on X (as above), whereas Γ(T ∗X) is the one of
covector fields. Γ(E) is naturally a C∞(B,R)-module.

Question 12. Let E → B and E ′ → B two vector bundles. Assume
that we are given a C∞(B,R)-module map T : Γ(E) → Γ(E ′). Prove
that T is obtained from a vector bundle map E → E ′ (i.e. a smooth,
fiber-preserving and fiberwise linear map). Hopefully the converse is
clear. This is Proposition 5.16 from Lee. □

Here is the upshot of the discussion so far. There is an isomorphism
of C∞(X,R)-modules

Γ(TX)→ Der(C∞(X,R)).

Question 13. Make sure you can parse this and prove it using the results
above. □
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Hence, smooth vector fields are precisely the derivations on the alge-
bra of smooth functions. You can think of such derivations as homoge-
neous first order differential operators acting on real valued functions.
This is of course an entirely different viewpoint on vector fields (also
very useful).

Let us finish by noting that for free we obtain an R-bilinear operation
[·, ·] : Γ(TX)× Γ(TX)→ Γ(TX)

called the Lie bracket of vector fields. We will explore this operation
and its geometric meaning next time.

Question 14. Let x, y be the coordinate functions on R2. Show that
the Lie bracket of ∂

∂x
and ∂

∂y
is the zero vector field. Find two vector

fields on R2 with a non-vanishing Lie bracket. □

Question 15. Read about the Lie algebra of a Lie group from Lee, pg.
93. Describe the Lie algebra of SO(3). □

1.4. Lie derivative of a differential form. Let us now also define
the Lie derivative of a differential form α along a vector field V . This
is an R-bilinear operation. If α is a k-form the result is a differential
k-form. The idea for the definition is the same as the Lie derivative of
a vector field along a vector field.

Let ΦV : U →M denote the flow of V . We define for every p ∈ X,

LV α(p) := lim
t→0

(Φ(t, ·)∗α)(p)− α(p)
t

.

Question 16. What is the Lie derivative of a function along a vector
field? □

Question 17. Prove that LV is a derivation on differential forms, i.e. if
α ∈ Ωk(X) and β ∈ Ωl(X), then

LV (α ∧ β) = LV (α) ∧ β + α ∧ LV (β).

□

Question 18. Prove that the Lie derivative operation also satisfies the
following Leibniz rule. If V,W vector fields, and α a covector field,
then

V · α(W ) = (LV α)(W ) + α(LVW ).

Generalize the result to differential k-forms. □

Finally, also note that given a vector field V and differential k-form
α, we can define the interior product ιV α pointwise:

ιV α(p) := ιV (p)α(p).
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The following important result is generally called Cartan’s magic
formula.

Theorem 3. If V is a vector field and α is a differential form:

LV α = ιV dα + d(ιV α).

Proof. The formula holds at the interior points of the set of zeros of
V . Both sides are R-linear in α. Moreover, note that both LV · and
ιV d · +d(ιV ·) are derivations on Ω∗(X) - former was mentioned above
and the latter is because the anti-commutator of two anti-derivations
is a derivation. Therefore, using also the continuity of both sides, it
suffices to check the formula for α being a smooth function or one of the
1-forms dx1, . . . , dxn in some coordinate neighborhood of every point
where V does not vanish. Choosing coordinates that rectify V this
becomes trivial. □

Question 19. This is an integral version of Cartan’s formula.
Let X be a compact oriented k-manifold with boundary embedded

inside a manifoldM . Take a vector field v onM , and a time dependent
k-form ωt. Prove:

d

dt
|t=0

∫
X(t)

ωt =

∫
∂X

ιvω0 +

∫
X

ιvdω0 +

∫
X

d

dt
|t=0 ωt,

where X(t) is the image of X under the time-t flow of v.
Prove the special cases where ω is time independent, and (i) ω is

closed or (ii) ∂X is empty or (iii) M = R2, X = {0} × [0, 1] without
using Cartan’s formula. □

1.5. Homotopy formula in deRham theory. Let f : M → N be
a smooth map between smooth manifolds. Then we can check the
following in local coordinates easily.

Proposition 2. Pullback map f ∗ : Ω∗(N) → Ω∗(M) intertwines the
exterior differentials:

df ∗ = f ∗d.

Therefore, f ∗ is a chain map and induces a map on deRham cohomolo-
gies

H∗
dR(N)→ H∗

dR(M).

Remark 5. You might want to refresh your memory about chain ho-
motopies between two chain maps at this point. □

We know that homotopic continuous maps induce chain homotopic
maps on the singular cochain complex. We will show that there is an
analogue for the deRham complex.
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Let F : R ×M → N be smooth, and define ιt : M → R ×M as
the inclusion to t-level and ft : M → N as F ◦ ιt. Let us also define
trt : R ×M → R ×M be the map that increases R by t. Now let us
compute:

d

dt
|t=t0f

∗
t ω =

d

dt
|t=t0ι

∗
0tr

∗
tF

∗ω

= ι∗0
d

dt
|t=0tr

∗
t0
tr∗tF

∗ω

= ι∗0tr
∗
t0
L ∂

∂t
F ∗ω

= ι∗t0(ι ∂
∂t
dF ∗ω + d(ι ∂

∂t
F ∗ω))

= (ι∗t0ι ∂
∂t
F ∗)dω + d(ι∗t0ι ∂

∂t
F ∗)ω

This is called the infinitesimal homotopy formula. We get the full
homotopy formula by integrating.

Proposition 3. Let F : [0, 1] ×M → N be smooth, and define ιt :
M → [0, 1] ×M as the inclusion to t-level and ft : M → N as F ◦ ιt.
There exists an R-linear map

h : Ω∗(N)→ Ω∗−1(M)

such that
f ∗
1ω − f ∗

0ω = hdω + dhω.

An explicit formula for h is given in the proof.

Proof. We can extend F to a smooth map F : R×M → N. Integrating
the infinitesimal homotopy formula (the extension does not appear at
all):∫ 1

0

(
d

dt
|t=t0f

∗
t ω

)
dt0 =

∫ 1

0

(
(ι∗t0ι ∂

∂t
F ∗)dω

)
dt0 +

∫ 1

0

(
d(ι∗t0ι ∂

∂t
F ∗)ω

)
dt0

=

∫ 1

0

(
(ι∗t0ι ∂

∂t
F ∗)dω

)
dt0 + d

∫ 1

0

(
ι∗t0ι ∂

∂t
F ∗ω

)
dt0.

We therefore define

h(α) :=

∫ 1

0

(
ι∗t0ι ∂

∂t
F ∗α

)
dt0.

The desired relationship follows since by the fundamental theorem
of calculus: ∫ 1

0

(
d

dt
|t=t0f

∗
t ω

)
dt0 = f ∗

1ω − f ∗
0ω.
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□

Corollary 1. Homotopic smooth maps induce the same map on deR-
ham cohomology. □

Corollary 2 (Poincare lemma). Let U ⊂ Rn be star-shaped, which
means that for some point p ∈ U , which we can assume without loss of
generality to be the origin, and for every c ≤ 1,

cU ⊂ U.

Then H∗
dR(U) = R[0]. This means that the homology is trivial in all

non-zero degrees and is one dimensional in the zeroth degree. □

2. Lecture 2: Moser argument

2.1. Vector fields depending on parameters. One often encoun-
ters vector fields that depend on extra parameters on a smooth manifold
X. To be rigorous these are smooth maps S ×X → TX, where S is a
smooth manifold and fixing the parameter to any s ∈ S, we obtain a
section X → TX.
For simplicity assume that S is an open subset of RN with co-

ordinates s1, . . . , sN . On a coordinate chart in X with coordinates
x1, . . . , xn, then this S-family of vector fields look like∑

i

fi(s1, . . . , sN , x1, . . . , xn)
∂

∂xi
.

We want to of course talk about the flows of these vector fields, specif-
ically we want make a statement that the flows of vector fields depend
smoothly on parameters. This sort of thing can be a bit confusing but
all you have to do is the following.

Consider the S-family of vector fields as a single vector field on S×X
in the only possible way. Now for this vector field we have developed
the theory of flows. All we need to do is to use the results that we
proved there.

Question 20. Assume that X is closed so that there is no issue of
completeness (just so that the result you get can be expressed easily).
Construct the flow map

R× S ×X → X

so that if we fix s, what we obtain is the flow of the vector field of the
parameter s. Prove that this map is smooth using our results for the
flow of a single vector field. □
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This is a useful technique in general: if you have something that
depends on extra parameters, you can just think of those parameters
as extra degrees of freedom in your space and consider one static some-
thing.

An important special case of vector fields depending on parame-
ters is time-dependent vector fields. This is the case where S is one-
dimensional. Typically S also has a specified coordinate given to us,
which we think of as time. Let us just take S = R for simplicity. Here,
there is something more interesting we can consider than just looking
at the flows of the vector fields for each value of the parameter. We
can change the vector field as we are flowing in the sense that our tra-
jectories (integral curves) are now tangent at time t to the vector field
at time t (which we call Vt.)

Question 21. Assuming X is closed again, show that this defines a
smooth map

R×X → X.

Do this by defining the vector field

∂

∂t
+ V (t)

on R × X, and relating the flow of this vector field on R × X to the
time dependent flow. Notice that the map R×X → X is not an action
of R for a time dependent flow. □

Remark 6. If you understand this method, you should be able to use
it when completeness is not given. □

2.2. Moser argument.

Definition 5. Let Xn be an orientable smooth manifold. Then µ ∈
Ωn(X) is called a volume form if µx ̸= 0 for all x ∈ X. □

Remark 7. Recall that, in fact, orientability is equivalent to the exis-
tence of a volume form. □

Now, assume Xn is closed, connected and oriented. Recall that
Hn

dR(X) ≃ R by [ω] 7→
∫
X
ω. Note that this map is well-defined since

if [ω] = [ω′], then ω − ω′ = dβ for some β ∈ Ωn−1(X), and
∫
X
dβ = 0

by the Stokes’ Theorem (because X is closed).
Moser invented the argument that goes by his name to prove the

following theorem.

Theorem 4 (Moser’s theorem on volume forms). Let µ0, µ1 be two
volume forms with

∫
X
µ0 =

∫
X
µ1. Then, there exists a diffeomorphism

φ : X → X such that µ0 = φ∗µ1.
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Idea. We are going to find a time-dependent vector field Vt such that
the time 1-map of its flow is the desired φ. (This is Moser’s argument.)

Remark 8. There is a similar result for symplectic forms and contact
structures. □

We will first generalize the question as follows: Let ω0 be a k-form,
and ωt := ω0+dβt, where βt is a family of smoothly varying k−1-forms.

Example 1. Let µ0, µ1 be two volume forms with
∫
X
µ0 =

∫
X
µ1 that

satisfies . Then µ1 − µ0 = dβ. Then, we can take µt := µ0 + tdβ =
µ0 + d(tβ). □

We try to find an isotopy φt : X → X such that φ0 = id and φ1 = φ
with the property

ω0 = φ∗
tωt.

This isotopy has to be generated by a time-dependent vector field Vt.
Indeed, Vt(x) is simply equal to the velocity vectors of the trajectories
given by the family of diffeomorphisms φt. This vector field generates
the given isotopy.

We want to find an isotopy such that d
dt
φ∗
tωt = 0. If we can achieve

this goal, then we will obtain φ∗
1ω1 = ω0 as desired. The problem is

that this might not be always possible. We will now see, along the way,
when we can make this work. Towards this goal, let’s try to have a
better understanding of d

dt
φ∗
tωt.

Note that d
dt
(φ∗

tωt)|t=t0 = d
dt
(φ∗

t0
ωt)|t=t0 +

d
dt
(φ∗

tωt0)|t=t0 , here we are
fixing one of φt and ωt and measure the change in the other and then
sum them up. By interchanging the diffeomorphism and the derivative,
and noticing that the second term can be written in terms of the Lie
derivative, we obtain

d

dt
(φ∗

tωt)|t=t0 = φ∗
t0

dωt

dt
|t=t0 + φ∗

t0
LVt0

ωt0 .

Note that dωt

dt
= ddβt

dt
, letting γt :=

dβt

dt
and using Cartan’s Magic for-

mula:
d

dt
(φ∗

tωt)|t=t0 = φ∗
t (dγt + (ιVtdωt + dιVtωt))

Recall that our goal was to make this vanish. Now we are going to try
to put some conditions on ωt to achieve this. If we assume ωt to be
closed, then ιVtdωt = 0. Thus, d

dt
(φ∗

tωt)|t=t0 = φ∗
t (d(γt + ιVtωt)). To

make this expression vanish, we may further assume γt+ ιVtωt = 0. So,
now we try to solve

−γt = ιVtωt.
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In other words, we are looking for a Vt satisfying this condition. In fact,
we are looking for such conditions that this equation uniquely defines
a Vt.

Let α ∈ Altk(V ) (considering the differential form at a point), where
V is an n-dimensional real vector space. Here Altk(V ) denotes the space
of alternating, k-linear maps on V . Recall that Altk(V ) ≃ ΛkV ∨. We
have the following map

V → Altk−1(V )

by v 7→ ιvα. Being able to find a Vt means that this map is surjective,
and uniqueness means that this map is injective. So, we are looking
for conditions on α such that this map is an isomorphism. This implies
that they have the same dimension, which happens for k = 2, n because
the dimension of Λk−1V ∨ is equal to

(
n

k−1

)
. This is not sufficient.

Let’s first look at the case for k = 2. Let α ∈ Λ2V ∨. In this case,
the map takes the form V → V ∨ given by v 7→ ιvα. If this is an
isomorphism α is called non-degenerate. Thus, the first option is that
ωt is a non-degenerate, closed 2-form, in other words a symplectic form.

Now, let’s begin the discussion of α ∈ ΛnV ∨ ≃ R. Again, we look
at the same map V → Λn−1V ∨ given by v 7→ ιvα. If α = 0, then the
condition is not satisfied. On the other hand, if α ̸= 0, then given v ̸= 0,
we can extend {v} to a basis {v, e1, · · · , en−1} and ιvα(e1, · · · , en−1) ̸=
0 =⇒ ιvα ̸= 0, meaning that we have an isomophism as desired.
Thus, the second option is that the n-form ωt is nowhere vanishing, i.e.
ωt is a volume form.

Proof of Moser’s theorem on volume forms. To prove the theorem about
volume forms, it only remains to show that µt := µ0 + tdβ is a volume
form for t ∈ [0, 1]. Note that this is just µ0+t(µ1−µ0) = (1−t)µ0+tµ1.
Because they induce the same orientation on tangent spaces, µ0 and
µ1 at any point are either both positive and negative on a given basis,
µt is never zero and hence a volume form as required. □

How about for symplectic forms? In particular, is the following state-
ment correct?

Non-Theorem 1. Let σ0, σ1 be two symplectic forms such that [σ0] =
[σ1] ∈ H2

dR(X), then there exists a diffeomorphism φ : X → X such
that φ∗σ1 = σ0.

Everything in the previous argument works except the fact that
σt = (1 − t)σ0 + tσ1 might not be non-degenerate (and therefore not
symplectic). There are many subtle questions here that you can read
about.
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Let us discuss the following theorem that is known as the Darboux
Theorem.

Theorem 5. Let (M,ω) be a symplectic manifold, and x ∈M . There
exists a coordinate chart U near x with coordinates p1, · · · , pn, q1, · · · , qn
such that ω|U =

∑
dpi ∧ dqi.

Proof. This is a local claim, so we may assume M = RN , and x to be
the origin. First, let’s discuss whyM is even-dimensional. Let’s look at
a single tangent space T0RN ≃ RN and ω0, which is an anti-symmetric
bilinear form. The linear algebra version of the theorem says that there
is a basis e1, · · · , en, f1, · · · , fn such that ω0(ei, ej) = ω0(fi, fj) = 0,
and ω0(ei, fj) = δij. We omit the proof of this statement - it is a good
exercise (more details after the proof).

Take p1, · · · , pn, q1, · · · , qn to be linear coordinates with ∂
∂pi

= ei and
∂
∂qi

= fi at the origin. Set ωst =
∑
dpi ∧ dqi. Note that (ωst)0 = ω0.

Notice that

ωt := tω + (1− t)ωst

is symplectic at the origin for every t. But this means that in a small
neighborhood of the origin it is symplectic. Since [0, 1] is compact,
there exists an open neighborhood of the origin where tω + (1 − t)ωst

is symplectic.
Now, let’s try to apply the Moser’s argument to the family ωt in this

neighborhood. In the Moser argument we take βt = tβ and γt = β,
where β is such that ω− ωst = dβ. It will yield a vector field but since
the manifold is open, we might not have completeness. If we force
β = 0 at the origin, the vector field will also be zero at the origin.
Then, during the Moser isotopy the origin will be stationary and by
using the existence, uniqueness and smooth dependence on initial data
results we will find a neighborhood of the origin (even smaller than the
symplecticity neighborhood) whose flow is defined for t ∈ [0, 1]. This
creates the desired coordinate system!

How can we make sure that we can choose such a β? Pick a random
β. Suppose β|0 =

∑
cidpi|0 + didqi|0. Set γ =

∑
cidpi + didqi; γ is

closed. Then β̃ = β − γ is a desired 1-form. □

Question 22. Prove the linear algebra version of the Darboux Theorem.
You may first start with a single vector e1 and try to extend it to n
vectors with the desired property. Then by using nondegeneracy you
can obtain fi’s as well. □
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3. Lecture 3: Volume Preserving Vector Fields, The De
Rham Complex, Compact Supports

3.1. Volume Preserving Vector Fields. Let M be an n-manifold,
µ ∈ Ωn(M) and V ∈ Γ(TM). Requiring µ to stay invariant by the flow
generated by the vector field V means φ∗

tµ = µ for all t. This condition
is equivalent to

LV µ = 0 ⇐⇒ ιV dµ+ d(ιV µ) = 0.

But as µ is an n form, the first term is zero and we get

d(ιV µ) = 0.

Now let’s assume that µ is also a volume form. Using this fact, we
get the following isomorphism

TxM
∼−→ Λn−1TxM

v 7→ ιV µ.

The above isomorphism and condition imply that the volume-preserving
vector fields correspond to closed n− 1 forms.

We can also interpret this geometrically. Given a nice bounded region
U in an oriented manifold M , we can integrate the form µ on U to get
a real number. If a vector field preserves the volume form µ, using the
flow, we get ∫

U

µ =

∫
U

φ∗
tµ =

∫
φt(U)

µ.

Now let µ = dx1 ∧ · · · ∧ dxn on Rn. We can write the vector field on
coordinates as V =

∑
ψi

∂
∂xi

. The condition d(ιV µ) = 0 gives

n∑
i=1

∂ψi

∂xi
dx1 ∧ · · · ∧ dxn = 0.

Therefore, volume preserving vector fields on coordinates are pre-
cisely the divergence free ones.

Question 23. Can you characterize the vector fields that preserve a
symplectic form ω? □

3.2. Start following Bott-Tu. We did a recap of the class last year to
allow better comparison with Bott-Tu. Even if most of what follows is a
repetition we go through it since it’s good to see different presentations
of the same material.
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3.3. The De Rham Complex. We first define the de Rham complex
on Rn. Let x1, . . . , xn be the linear coordinates. We define Ω∗ to be
the algebra over R generated by dx1, . . . , dxn with the relations

(dxi)
2 = 0

dxidxj = −dxjdxi, i ̸= j.

The C∞ differentials on Rn are elements of

Ω∗(Rn) = {C∞ functions on Rn} ⊗R Ω∗.

So an element ω ∈ Ω∗(Rn) is of the form
∑
fIdxI where I is a

multi-index. This algebra is naturally graded, and we can consider C∞

q-forms on Rn. There is a differential operator

d : Ωq(Rn) −→ Ωq+1(Rn)

defined as:

• if f ∈ Ω0(Rn), then df =
∑ ∂f

∂xi
dxi

• if ω =
∑
fIdxI , then dω =

∑
dfIdxI .

It can be checked that the operator satifies d(τ ∧ ω) = dτ ∧ ω +
(−1)degττ ∧ dω and d2 = 0. The complex Ω∗(Rn) with the differential
operator d is called the de Rham complex on Rn. The kernel of d is
called the closed forms, and the image is called the exact forms.

Definition 6. The q-th de Rham cohomology of Rn is the vector space

Hq
dR(R

n) = {Closed q forms}/{Exact q forms}.

□

Remark 9. We can replace Rn with an open set U of Rn in all of these
definitions. □

Example 2. (1) For n = 0 we get

Hk(p) =

{
R k = 0

0 otherwise

(2) In general,

Hk(Rn) =

{
R k = 0

0 otherwise

which is called the Poincare lemma.

□
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3.4. Compact Supports. Recall that the support of a continuous
function is Suppf = {p ∈M |f(p) ̸= 0}. If we restrict ourselves to
smooth functions with compact support, we get the compactly sup-
ported de Rham complex Ω∗

c(Rn) defined as

Ω∗
c(Rn) = {C∞functions on Rn with compact support} ⊗R Ω∗

The cohomology of this complex is denoted as H∗
c (Rn).

We can replace Rn with an open set U of Rn in these definitions too.

Example 3.

(1) Let’s first compute the compactly supported de Rham cohomol-
ogy of a point p. Only 0-forms exist so Hn

c (p) = 0 for n > 0.
Closed forms are the constant functions and they are compactly
supported on p. Therefore H0

c (p) = R, to summarize

Hk
c (p) =

{
R k = 0

0 otherwise

(2) For the compactly suppoored deRham cohomology of R, the
closed 0-forms are again constant functions, but the ones that
are not zero are not compactly supported on R, hence H0

c (R) =
0. To compute the first cohomology, consider the integration
map ∫

R
: Z1

c (R) = Ω1
c(R) −→ R.

The map is obviously surjective because the Riemann integral
of a non-negative and not identically zero compactly supported
function is positive - we can then scale this function to obtain all
real numbers. Furthermore, the map vanishes on exact 1-forms
(with compactly supported primitive!). To see this, consider
df where f has compact support, so the support of f and the
support of ∂f

∂x
lies in the interior of [a, b]. Using the funda-

mental theorem of calculus and the fact that f is zero on the
boundaries, we get∫

R
df =

∫ b

a

∂f

∂x
dx = f(b)− f(a) = 0.

Therefore the integration map induces a surjective linear map
from H1

c (R) to R. Now we claim that the kernel of the inte-
gration map is precisely the exact 1-forms. Let g(x)dx ∈ ker

∫
R
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and consider

f(x) =

∫ x

−∞
g(u)du.

As g(x) is compactly supported and the total integral is zero,
the integral is zero before certain a′ and after some b′. Hence
f(x) is also compactly supported. Using the fundamental the-
orem of calculus again, we get df = g(x)dx; hence g(x)dx is
exact. Therefore the induced integral map is an isomorphism
from H1

c (R) to R.

Hk
c (R) =

{
R k = 1

0 otherwise

(3) More generally,

Hk
c (Rn) =

{
R k = n

0 otherwise

which is known as the Poincare lemma for cohomology with
compact support.

□

4. Lecture 4,5.6: Mayer-Vietoris and Poincaré Lemma for
cohomology with compact support

We continued following Bott-Tu. Here we note parts of the lectures
only.

4.1. Mayer-Vietoris sequence for compactly supported coho-
mology. We wish Ω∗

c to share similar functorial properties with Ω∗.
But for a manifold M , pullback of a form with compact support via a
smooth function is not necessarily compactly supported. For example,
consider the pullback of functions onM by the projectionM×R→M .
We could work with proper maps, those maps under which the preim-

age of a compact set is always compact. Or we could consider inclu-
sions of open sets as morphisms in the category of smooth manifolds. If
j : U →M is an inclusion, then the pushforward j∗ : Ω

∗
c(U)→ Ω∗

c(M)
is the map which extends a form on U by zero to a form on M . Now
the functor Ω∗

c is covariant.
SupposeM is covered by two opens U and V . We have the sequence

of inclusions

M ← U ⊔ V ⇔ U ∩ V
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which give rise to a sequence of forms with compact support

Ω∗
c(M)← Ω∗

c(U)⊕ Ω∗
c(V )← Ω∗

c(U ∩ V )

(−j∗ω, j∗ω)←[ ω

where the leftmost arrow is summation.

Proposition 4. The Mayer-Vietoris sequence of forms with compact
support

0← Ω∗
c(M)← Ω∗

c(U)⊕ Ω∗
c(V )← Ω∗

c(U ∩ V )← 0

is exact.

Proof. See Bott&Tu pg.26 □

Mayer-Vietoris sequence gives rise to a long exact sequence in com-
pactly supported cohomology

Hq+1
c (M) Hq+1

c (U)⊕Hq+1
c (V ) Hq+1

c (U ∩ V )

Hq
c (M) Hq

c (U)⊕Hq
c (V ) Hq

c (U ∩ V )

. . .

d∗

d∗

4.2. Poincaré Lemma for compactly supported cohomology.
Let us first give a direct proof that

Hk
c (Rn) =

{
R k = n

0 otherwise

We already proved this for n = 0, 1, so let us assume n ≥ 2. Since Sn

is compact,

Hk
dR(S

n) = Hk
c (S

n) =

{
R k = 0, n

0 otherwise

Recall that Rn is diffeomorphic to n-sphere with north pole removed
Sn − {N} via stereographic projection. Given ω ∈ Ω∗

c(Rn) we can
extend it by zero to ι∗ω ∈ Ω∗(Sn) so that it is zero in a neighborhood
around N .
We first deal with the case 1 < k < n. Let ω ∈ Ωk

c (Rn) be a closed
form. Since k-th cohomology of n-sphere are zero, ι∗ω is exact. So
ι∗ω = dβ for some β ∈ Ωk−1(Sn).
If β is zero near N , we are done. We aim to modify β such that

it is zero in a neighborhood of N . Let U be a smoothly contractible
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neighborhood of N . Now we can use the homotopy invariance for
deRham cohomology on U and say ι∗Uβ = dη for some η since dι∗Uβ = 0.

Now we choose a function ρ that is compactly supported inside U
and equal to 1 near N . If we replace β with β − d(ρη). Now near N ,
we have β − d(ρη) = β − dη = 0 and dβ is same as before.

Exercise 1. Finish the proof by analyzing the k = 1 and k = n cases.
□

Let us also give a seperate argument for k = n as a warm-up to
Bott&Tu pg.37. Let α = f(x0, x1, . . . , xn)dx0 . . . dxn be a compactly
supported n+ 1-form. We claim that∫

Rn+1

α = 0⇔ ∃β ∈ Ωn
c (Rn), dβ = α.

Assuming this for the moment, the integral map

Hn+1
c (Rn+1)→ R

[α] 7→
∫
Rn+1

α

well defined by (⇐). It is an isomorphism too: (⇒) implies injectivity
since only exact forms have a total integral of zero and surjectivity is
given by finding a form whose integral is positive and then scaling it
to get any real number.

Now let us go back to the proof. (⇐) is Stokes theorem. Let us
prove (⇒). We set x⃗ = (x1, . . . , xn). From Poincaré lemma for deRham
cohomology we know that there exist β ∈ Ωn(Rn+1) such that dβ = α.

β =

(∫ x0

0

f(y, x⃗)dy

)
dx1 . . . dxn

But this β is not necessarily compactly supported. Now let

β =

(∫ x0

−∞
f(y, x⃗)dy

)
dx1 . . . dxn

β is compactly supported if
∫∞
−∞ f(y, x⃗)dy = 0. If that is the case, we

are done. Our goal is now to reduce to this simple case from a general
α.

Define the n+ 1-form

α̃ = ρ(x0)

(∫ ∞

−∞
f(x0, x⃗)dx0

)
dx0 . . . dxn = ρ(x0)g(x⃗)dx0 . . . dxn

where ρ is a compactly supported with total integral of 1. For α− α̃,
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∫ ∞

−∞

(
f(y, x⃗)− ρ(y)

(∫ ∞

−∞
f(ỹ, x⃗)dỹ

))
dy =

∫ ∞

−∞
(f(y, x⃗)dy−

∫ ∞

−∞
f(ỹ, x⃗)dỹ = 0

thus we can use the simple case and α−α̃ = dβ̃ for some β̃ ∈ Ωn
c (Rn+1).

Now it remains to show that α̃ = dγ for some γ ∈ Ωn
c (Rn+1) so that

α itself is exact. The n-form g(x⃗)dx1 . . . dxn ∈ Ωn
c (Rn) is compactly

supported because the image of the projection of a compact set in
Rn+1 to the last n coordinates is compact; and has integral zero since

0 =

∫
α =

∫
g(x⃗)dx1 . . . dxn.

By our induction hypothesis, g(x⃗)dx1 . . . dxn is exact. Say for some
τ ∈ Ωn−1

c (Rn), ω = dτ . Then, let τ ′ be τ seen as a form on Rn+1 (by
pullback), we have

d(−ρdx0∧τ ′) = d(−ρdx0)∧τ ′−(−ρdx0∧dτ ′) = 0+ρ(x0)g(x⃗)dx1 . . . dxn = α̃,

finishing the proof.

5. Lectures 7,8: Poincaré Duality in deRham theory

We continued following Bott-Tu but at times we switched to Robbin-
Salamon’s notes. We proved the Poincare duality statement

We gave a seperate proof for the existence of a good cover on a
smooth manifold (to be added)

6. Lecture 9:Poincaré Duals of submanifolds

6.1. Combinatorial Poincaré Duality. Given an n-dimensional sim-
plicial complex K, one can construct its dual K∨—which is not nec-
essarily a simplicial complex— by taking its n-cells and viewing them
as points, then n − 1-cells as edges connecting these points, and so
on. Then one has a correspondence of k-dimensional faces of K and
n − k-dimensional faces of K∨. If the resulting complex is also sim-
plicial(which happens if and only if exactly n + 1 facets join at each
vertex), then one has a pairing of simplicial chains

Csimp
k (K)× Csimp

n−k (K
∨) −→ R.

One needs to show that this pairing agrees with the boundary operators
and that it descends to the simplicial homology of the complexes. Since
the underlying spaces X = |K| = |K∨| are homeomorphic, Hsimp(K) ∼=
Hsimp(K∨). Thus we get

Hsimp
k (X)×Hsimp

n−k (X) −→ R.
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Of course in general it is not the case that the dual K∨ is also sim-
plicial. One could develop a homology theory for polytopal complexes
just as well, but for various reasons it is more advantageous to consider
more general kind of objects, called cell/CW complexes.

6.1.1. CW complexes and homology. One builds a CW complex by in-
ductively gluing n-cells Bn via continuous maps of their boundaries
∂Bn into the union of lower dimensional cells,, called the n−1-skeleton.
That is, we take a set of points X0, the 0-skeleton, then attach 1-cells
B1 = [0, 1] by gluing their boundary by a continuous map ∂[0, 1] −→ X0.
After we finish gluing all the 1-cells, we proceed on to gluing the higher
dimensional cells.

The cellular chains Ck(X) of degree k are simply direct sums over
the k-cells. The boundary map

∂ : Ck(X)→ Ck−1(X)

is computed as follows. For a given n-cell in Ck(X), which is specified
by a map α : ∂Bk → Xk−1, one computes the coefficient of a given cell
β ∈ Ck−1(X) by taking the degree of the map

α : ∂Bn → Xn−1

⧸complement of β·

The degree is well defined as both sides are n−1 spheres and β orients
the sphere on the right.

6.2. Cup Product on Singular Cohomology. The analogue of the
wedge product in de Rham cohomology in singular cohomology is the
cup product

Hk(M ;Z)×H l(M ;Z) ⌣−→ Hk+l(M ;Z),

which gives a graded commutative ring structure on H∗(M ;Z).
The cup product in singular cohomology is deceptively simpler to

express. For two given cochains f ∈ Ck(M ;Z) and g ∈ C l(M ;Z) one
defines f ⌣ g ∈ Ck+l(X) so that for any ρ : ∆k+l →M

f ⌣ g(ρ) = f(ρ|∆k−)g(ρ|∆−l).

Remark 10. The cup product fails to be (graded) commutative on the
cochain complex C∗(M ;Z), it only becomes commutative after taking
homology. □
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6.3. Comparing the cup product and wedge product. Recall
that we established the isomorphism

H∗
DR(M) ∼= H∗

sing(M ;R)

by associating to [η] ∈ Ωk(M) the (smooth) cochain∫
∆k

ρ∗η.

It clearly isn’t the case that∫
∆k+l

ρ∗(η ∧ ω) =
(∫

∆k−
ρ∗η

)
·
(∫

∆−l

ρ∗ω

)
.

Therefore the two products don’t agree at the cochain level.
However they define the same product on the cohomology. The eas-

iest proof of this fact goes through Čech cohomology. One shows the
equivalence of Čech cohomology with de Rham cohomology—this will
be covered in Ali’s talk—and then show the equivalence of Čech coho-
mology with singular cohomology.

Remark 11. There is also an argument which relates the two products
by way of subdividing simplices(defining cohomolgy over cubic chains
is more amenable for this type of argument) but that is also quite
technical. □

6.4. Intersection Theory of Manifolds. Let Y be an oriented man-
ifold and suppose that X and Z are closed oriented submanifolds of
complementary dimensions. The intersection number I(X,Z) is ob-
tained by counting(with sign) the points in the intersection X ∪ Z.
This number turns out to be invariant under homotopy.

Of course to even get isolated intersections one must add some hy-
pothesis. This is done via the following ‘Parametric Transversality
Theorem’.

Theorem 6. Let S,X, Y, Z be smooth manifolds, F : S ×X → Y and
g : Z → Y be smooth maps. Suppose that F ⋔ g, then for s ∈ S, the
map F (s, ·) : X → Y is transverse to g if and only if s is a regular
value of

(S ×X)×Y Z → S.

In the simpler case Z ⊂ Y , the fibered product becomes (S×X)×Y

Z = F−1(Z). The moral of the theorem is that given a large enough
family S of perturbations of f : X → Y , one can make X transverse
to Z.
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Definition 7. Let f : X → Y and g : Z → Y are as above. Suppose
that f ⋔ g. The intersection number I(f, g) is the signed count of
the points in the intersection I = {(x, z) ∈ X × Z : f(x) = g(z)}. A
point (x, z) ∈ I is counted with + sign if a positively oriented basis of
TxX and a positively oriented basis of TzZ gives a positively oriented
basis of Tf(x)Y when concatenated and transported by dfx and dgz,
respectively. □

The intersection number I(f, g) is invariant under homotopy.
The story in fact extends to the case when X and Z aren’t of com-

plementary dimension. This time, when X ⋔ Z, the intersection is a
closed, oriented submanifold of dimension equal to dimX + dimZ −
dimY . However to quantify this intersection X ∩ Z in a manner that
is invariant under homotopy, one must consider X ∩ Z in a different,
more relaxed, class of objects. There is more than one way to do this.
One could consider, say, cobordism classes of submanifolds. We will
instead consider the homology class [X ∩ Z] of the intersection.

6.5. Cup Product and Intersection Number. In singular homol-
ogy of an oriented manifold Y n, an oriented submanifold X i determines
a homology class [X] ∈ Hi(Y ), which is related by Poincaré duality to
a cohomology class [X]∗ ∈ Hn−i(X;Z). It turns out that intersection
is dual to the cup product in the following sense.

Theorem 7. Given transversely intersecting oriented submanifolds X,Z ⊂
Y , we have

[X]∗ ⌣ [Z]∗ = [X ∩ Z]∗.

We want to prove the de Rham version of the above theorem.

6.6. Intersection Form and Wedge Product. Let M be an ori-
entedm-dimensional manifold admitting a finite good cover. Instead of
submanifolds, we’ll consider maps f : P −→ M of compact, oriented k-
manifolds, a more general class. By Poincaré duality, there is a unique
compactly supported deRham cohomology class [τf ] ∈ Hm−k

c (M) sat-
isfying ∫

M

ω ∧ τf =

∫
P

f ∗ω

for any closed k-form ω ∈ Ωk(M).
For a compact oriented codimension-k submanifold Qm−k ⊂ M , we

set [τQ] := [τi] ∈ Hk
c (M), where i : Q→M is the inclusion map.
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Theorem 8. The previously defined intersection number can be com-
puted as follows.

I(f,Q) =

∫
M

τf ∧ τQ =

∫
Q

τf = (−1)k(m−k)

∫
P

f ∗τQ

Remark 12. One might ask why we took Q to be a submanifold, rather
than a general map g : Q→M as we did previously while defining the
intersection number. There are two reasons. One reason being that in
order to prove the above, we’ll use a special representative of [τQ], the
so-called ‘Thom form’, which will be defined in a small neighborhood
of Q.

The other reason is that all intersection numbers may be reduced to
the above form, that is, we have I(f, g) = I(f×g,∆), where f : P →M
and g : Q→M are maps, and ∆ ⊂M ×M is the diagonal. □

6.7. Localization Principle. Let Sk ⊂ Mn be a a compact oriented
submanifold of dimension k. One can pick a form ηS which represents
its compactly supported Poincaré dual so that ηS is supported in an
arbitrarily small neighborhood of S. We argue as follows: Consider
an open neighborhood W of S. Let η′ ∈ Hn−k

c (W ) be the compactly
supported Poincaré dual to S. Since η′ is compactly supported one can
extend η′ into η ∈ Hn−k

c (M) by defining it to be 0 outside W . Then
we observe that η is the Poincaré dual to S in M , since∫

S

ι∗ω =

∫
W

ω ∧ η′ =
∫
M

ω ∧ η.

This is called the localization principle.

6.8. Tubular neighborhoods. By the localization principle, we ob-
served that the Poincaré dual of a submanifold S ⊂M doesn’t interact
with the topology at large ofM , it is determined solely by the local pic-
ture around S. We’ll show that S has particularly nice neighborhoods
which are called tubular neighborhoods.

Definition 8 (Normal Bundle). Suppose that Z ⊂ Y is a submanifold.
We define the normal bundle of Z in Y to be the quotient vector bundle

NYZ = TY|Z⧸TZ.

□

One could also view the normal bundle NYZ as a subbundle of TY|Z ,
albeit non-canonically. To do so, we equip Y with a Riemannian metric
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g, then consider the subbundle PerpZ of subspaces which are perpen-
dicular to TZ. Then under the quotient map

PerpZ → TY|Z⧸TZ
the fibers are isomorphic. Therefore PerpZ ∼= NYZ.

Theorem 9 (Tubular Neighborhood Theorem). Let Z ⊂ Y be a closed
submanifold. Then there exists an open neighborhood U ⊂ NYZ of the
zero section, which we identify with Z, which can be smoothly embedded

U → Y

so that

• it equals the identity on Z.
• it can be prescribed to first order.

Now we’ll define the dual of Z inside U and implant it inside Y by
the above diffeomorphism. Of course, in order to implant the form, we
need to control its support well. This is no point of concern for the
compactly supported dual as we have have seen in the previous section,
but for the other one the problem isn’t as simple. For this reason we
take a detour in vertically compactly supported forms.

6.8.1. Vertically Compactly Supported Forms. Let E
f−→ Z be a sub-

mersion(a smooth map whose differential is surjective at each point).

Definition 9. A differential form ω ∈ Ω∗(E) has compact vertical sup-
port if for every z ∈ Z, the restriction to the fiber ι∗ω ∈ Ω∗(f−1(z)) is
compactly supported. □

The forms of compact vertical support gives us a commutative dif-
ferential graded algebra equipped with the wedge product and exterior
derivative. We denote it by

Ω∗
vc(E).

Remark 13. Note that the map f : E → Z is a crucial part of the
information which defines the above complex but the notation omits
this, so best be cautious! □

Suppose moreover that Z is connected and that the fibers of E can
be coherently oriented and are of dimension r. Then we can define
“integration along fibers”, a chain map

Ω∗
vc(E)→ Ω∗−r(Z).
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Theorem 10 (Thom Isomorphism). Let E → Z be an oriented vector
bundle of rank r. Then

H∗
vc(E)→ H∗(Z)

is an isomorphism!

The preimage of 1 is called the Thom class, often denoted ΦE. The
inverse map is given by pullback and wedging with the Thom form.

Proposition 5. Any closed form ω ∈ Ωr
vc(E) which integrates to 1 on

each fiber represents the Thom class.

7. Lecture 10: Thom isomorphism and intersection theory

In the previous lecture, we have talked about (closed) Poincaré dual
and compact Poincaré dual of submanifolds closed (as a subset) and/or
compact, respectively. Now, let’s take a look at the following example.

Example 4. LetM = S1×R, i.e. the infinite cylinder in both directions.
Let S1 = S1×{0} and S2 = {(−π

2
, x) : x ∈ R}, see figure 1. For S2, we

are looking for an ω ∈ H1(M) such that for every η ∈ H1
c (M), we have∫

S2
η =

∫
M
η ∧ω. This ω is the closed Poincaré dual of S2. Let η = dρ,

where ρ’s dependence on x is shown in figure 2. Then, η = dρ is a
generator of H1

c (M), since dρ is compactly supported but ρ is not, and
it clearly closed. Plugging this in, we obtain

∫
S2
dρ =

∫
M
dρ ∧ ω. The

integral on the left-hand side is 1, thus ω should depend on θ. Indeed,
a direct computation by Fubini’s theorem shows that dω = dθ

2π
. Note

that S2 does not have a compact Poincaré dual. Now, let’s talk about
S1. For the closed version,

∫
S1
dρ =

∫
M
dρ ∧ ω needs to be satisfied as

in the previous case. The integral on the left-hand side is zero, since
ρ depends only on x. We can pick ω to be equal to zero. For the
cohomology of the Compact Poincaré dual of S1,

∫
S1
η =

∫
M
η ∧ ω̃ has

to be satisfied for every η ∈ H1(M). By picking, η = dθ, which is the
generator, we obtain

∫
S1
dθ =

∫
M
dθ∧ ω̃. The left hand-side is equal to

2π, so, we can pick ω̃ = −dρ, referring to dρ for S2 above. □

Remark 14. The previous example shows that for a compact submani-
fold, like S1, the compact and closed Poincaré duals might differ. Also
note that, by abuse of language, we call the representative of the unique
cohomology class obtained by the Poincaré duality, which is called the
Poincaré dual, the Poincaré dual as well. For, instance, in the above
example, we said that ”we can pick ω to be equal to zero”, and we call
the 1-from equal to 0 the Poincaré dual. Yet, what we actually mean is
the unique cohomology class that corresponds to our submanifold via
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Figure 1. S1 and S2 are denoted by the green and red
curves respectively.

Figure 2. ρ’s dependence on x, the upper value is 1.

the Poincaré duality is the zero class. For that matter, any exact ω
would also be the Poincaré dual in that case. □

Remark 15. By the localization argument, we know that we can ac-
tually choose the Poincaré dual of S1 so that its support is arbitrarily
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close to S1. For instance, the compact Poincaré dual −dρ is not nec-
essarily as near to S1 as we want to. However, we can change the ρ
so that the portion where it is not stabilized (where it is growing) can
be made arbitrarily small so that support of dρ is as near to S1 as
we wish. Let’s consider the case of S2, the closed Poincaré dual of is
ω = dθ, which is supported everyhwere. However, by choosing g so
that

∫
g = 1 and g is supported near −π

2
, we can also set ω = g(θ)dθ.

Clearly, this is also a representative with the additional property that
its support is as close to S2 as we wish. □

Let Z ⊂M be a closed submanifold. In the previous lecture, we de-
fined Ω∗

vc(E → Z), where E → Z is a submersion. Today we will learn
about the integration along fibers operation π∗ : Ω∗

vc(E) → Ω∗−r
dR (Z),

where r is the rank of the fibers.

Theorem 11 (Thom Isomorphism Theorem). Assume that E is an

oriented vector bundle of rank r, then H∗
vc(E)

π∗−→ H∗−r
dR (Z) is an iso-

morphism. This isomorphism is called the Thom isomorphism and
[ΦE] := π−1

∗ (1) is called the Thom class.

Remark 16. Recall that we did a simpler case of this, we talked about
the map π∗ : Ω∗

c (M × R) → Ω∗−1(M) when discussing the Poincaré
Lemma for the compactly supported forms. □

Remark 17. The inverse of π∗ is given by first taking the pullback and
then taking the wedge product with ΦE. □

Related to this theorem, we have the following proposition:

Proposition 6. Any closed Φ ∈ Ωr
vc(E) which integrates to 1 in all

fibers represents the Thom class.

Let’s start with integration along fibers. Suppose f : En+r → Zn is
a submersion. Recall that this means that the differential is surjective
at all points, i.e. dfe : TeE → Tf(e)Z is surjective at e ∈ E. We want
to choose a splitting of this at all e, i.e. a map Tf(e)Z → TeE in a
smoothly varying way such that it is also a right inverse of dfe. The
images give us ”horizontal subbundle”. The idea is basically as follows:

• Choose a cover by submersion charts.
• In each chart, such right inverses can be found.
• Then patch together these using a partition of unity (can mul-
tiply linear maps with scalars).

This is called an Ehresmann connection. Once we have this, we can
lift vectors up. Being able to lift vectors up at each point of the fiber

lets us define the integration along fibers map: ΩN
vc(E)

f∗−→ ΩN−r(Z)
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for any N . We will describe this in a moment, but first, we need to
add an orientability condition: Suppose that the vertical tangent bun-
dle over E is oriented. Note that this implies each fibers are oriented
in a smoothly varying manner. Now, we can define f∗(ω) as follows:
Given p ∈ Z and v1, · · · , vn−r ∈ Tp(Z), define f∗(ω)p(v1, · · · , vn−r) =∫
f−1(p)

ω(v1, · · · , vn−r, · · · ). Note that here vi denotes the lifted up vec-

tors. How do we know that this does not depend on the lift? If ṽi
denotes a different lifting of the vectors. Then, vi − ṽi has to be verti-
cal since they denote the same vector below. This implies that the form
given by taking the difference vanishes since fibers are r-dimensional
and we plug in N vectors. Thus, the integral along the fiber we just
defined does not depend on the lifts.

Proposition 7 (Projection Formula). Let π : E → Z be an oriented
(the vertical tangent bundle over E) submersion with fiber rank r, τ a
form on Z and ω a form on E with compact support along the fiber.
Then

π∗((π
∗τ) ∧ ω) = τ ∧ π∗ω.

Proof. Let τ be a k-form and ω be an r + ℓ form. Let ε(σ) denote the
sign of σ, and ṽi denote the lift of vi. Let ei be vectors in the vertical
tangent bundle over E. Let’s compute the left-hand side.

((π∗τ ∧ ω) (p, v1, . . . , vk+ℓ)) (e1, . . . , er)

= (π∗τ ∧ ω) (ṽ1, . . . , ṽk+ℓ, e1, . . . , er)

=
∑

σ∈Sk,ℓ

ε(σ)τp
(
vσ(1), . . . , vσ(k)

)
ω
(
ṽσ(k+1), . . . , ṽσ(k+ℓ), e1, . . . , er

)
=

∑
σ∈Sk,ℓ

ε(σ)τp
(
vσ(1), . . . , vσ(k)

) (
ω(p, vσ(k+1), . . . , vσ(k+ℓ)

))
(e1, . . . , er)

Applying π∗ yields,

(π∗ (π
∗τ ∧ ω))p (v1, . . . , vk+ℓ)

=

∫
Ep

(π∗τ ∧ ω) (p, v1, . . . , vk+ℓ)

=
∑

σ∈Sk,ℓ

ε(σ)τp
(
vσ(1), . . . , vσ(k)

) ∫
Ep

ω(p, vσ(k+1), . . . , vσ(k+ℓ))

=
∑

σ∈Sk,ℓ

ε(σ)τp
(
vσ(1), . . . , vσ(k)

)
(π∗ω)p

(
vσ(k+1), . . . , vσ(k+ℓ)

)
= (τ ∧ π∗ω)p (v1, . . . , vk+ℓ) .
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The last computation depends on the fact that τp(vσ(1), · · · , vσ(k)) is
constant. □

Given a compact, k-dimensional, oriented manifoldN with boundary
embedded into Z. We can restrict the bundle E → Z to N , which is
again an r-dimensional bundle over N : f : E|N → N . We have the
following proposition.

Proposition 8. Let Nk be a compact, oriented, manifold with bound-
ary embedded into Z. Then, for τ ∈ Ω(E|N),∫

N

f∗τ =

∫
E|N

τ,

Here, f∗ is the integration along the fiber map.

Remark 18. Notice that, essentially, this proposition tells that first in-
tegrating along the fibers and then integration on the base is equal
to integrating in the total space. Notice the connection with the Fu-
bini’s Theorem. The proposition can be proven by covering with the
submersion charts and then computing directly. On the charts, this is
precisely the Fubini’s Theorem. □

Proposition 9. Integrating along the fibers commutes with exterior
differentiation, i.e. d(f∗ω) = f∗(dω).

Proof. Before we start the proof, note that given any two k-forms η ̸=
η′, we can always construct an oriented Nk ⊂ Z such that

∫
N
η ̸=

∫
N
η′.

This is true because, if they differ at a point, then they differ on a k-
dimensional subspace. One of them is greater than the other and by
choosing a coordinate patch close to this subspace, we can obtain N
this way. Now, back to the proof. Let’s check this for ω ∈ Ωn+r

vc (E).
We need to show that for all compact domains U ⊂ M with smooth
boundary

∫
U
f∗(dω) =

∫
U
d(f∗ω) . By Stokes’ Theorem, the latter

is equal to
∫
∂U
f∗ω. By the Fubini-like theorem above,

∫
U
f∗(dω) =∫

f−1(U)
dω. Again, using the Stokes’ Theorem, this is equal to (taking

vertical and horizontal boundaries into account and the fact that ω
is zero on the horizontal boundary)

∫
f−1(∂U)∪horizontal boundary ω. Again

by the previous Fubini-like theorem , this last expression is equal to∫
∂U
f∗ω as desired. For forms other than the top forms, one can do this

by using the proposition above. □

Now, we are ready to prove the Thom Isomorphism Theorem. So
far, we have done everything in the general setting where E → Z
was a submersion. But, now, we have to restrict our attention to
vector bundles. So, let π : E → Z be an oriented vector bundle, and
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Φ ∈ Ωn
vc(E) be closed and with fiber integral equal to 1. Here is a

sketch of the proof:

Proof. Consider the following diagram from the MV sequences for Z =
U ∪ V . Both rows are exact.

0 Ω∗
vc(E) Ω∗

vc(E|U)⊕ Ω∗
vc(E|V ) Ω∗

vc(E|U∩V ) 0

0 Ω(Z) Ω(U)⊕ Ω(V ) Ω(U ∩ V ) 0

π∗ π∗ π∗∧Φ ∧Φ ∧Φ

It can be seen that squares are commutative with respect to both ver-
tical maps. The map that first goes up and then comes down is the
identity map (use the projection formula). We have two long exact
sequences. All squares commute, including the one involving the con-
necting homomorphism. By using the 5 Lemma and starting from the
case Z×Rn → Z, it turns out that these maps are isomorphism in the
homology, i.e. ∧Φ map is the inverse of π∗ in the homology. Then by
using disjoints unions, can prove this for any base Z. This completes
the proof. □

Note that Φ represents the closed PD, and if Z also the compact
PD. Notice that this does not mean that closed and compact PD’s
coincide, it just means that they are both represented by the same
form. Consider the example at the beginning of this lecture.

Definition 10. Let E → B be an oriented vector bundle and s be a
section. The Euler class of E is defined to be s∗[Φ], where Φ ∈ Ωn

vc(E)
is a Thom form. □

Euler class is an example of a characteristic class. Assume, moreover,
that B is oriented, r-dimensional, and compact, then

∫
B
s∗Φ ∈ R is

called the Euler number.

Remark 19. The Euler class does not depend on the section since all
sections are homotopic and homotopic maps induce the same map on
homology. Nevertheless, one can always take s to be the zero section
as well. □

By using the projection formula, s∗[Φ] ∧ 1 = π∗([Φ] ∧ [Φ]). By as-
suming that Br is oriented and compact,

∫
B
s∗ϕ =

∫
E
Φ∧Φ, the latter

is equal to the intersection number of the zero section with itself (Φ’s
are not the same), so this is an integer.
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7.1. Intersection theory via deRham theory.

Theorem 12. LetM be an oriented m-manifold without boundary that
admits a finite good cover, let Q ⊂M be a.compact, oriented (m− ℓ)-
dimensional submanifold without boundary, let P be.a compact oriented
ℓ- manifold without boundary, let f : P → M be a smooth map, and
let τf ∈ Ωm−ℓ

c (M) and τQ ∈ Ωℓ
c(M) be closed forms dual to f and Q,

respectively. Then, the intersection number of f and Q is given by

f · q =
∫
M

τf ∧ τQ =

∫
Q

τf = (−1)ℓ(m−ℓ)

∫
P

f ∗τQ.

We are going to show that the first quantity is equal to the last
integral. To be continued...

7.2. Poincare-Hopf theorem.


